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Abstract

Topologically associated domains (TADs) are spatial and functional units of metazoan chromatin structure. Interpretation of
the interplay between regulatory factors and chromatin structure within TADs is crucial to understand the spatial and
temporal regulation of gene expression. However, a computational metric for the sensitive characterization of TAD
regulatory landscape is lacking. Here, we present the spatial density of open chromatin (SDOC) metric as a quantitative
measurement of intra-TAD chromatin state and structure. SDOC sensitively reflects epigenetic properties and gene
transcriptional activity in TADs. During mouse T-cell development, we found that TADs with decreased SDOC are enriched
in repressed developmental genes, and the joint effect of SDOC-decreasing and TAD clustering corresponds to the highest
level of gene repression. In addition, we revealed a pervasive preference for TADs with similar SDOC to interact with each
other, which may reflect the principle of chromatin organization.
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Introduction

Topologically associated domains (TADs) comprise a series of
square self-interacting domains, identified on contact maps
derived from high-resolution chromosome conformation cap-
ture (Hi-C) [1–3]. The linear positions of TADs are conserved
across cell types [1, 3], while intra-TAD chromatin state and
structure can alter significantly, which underlie the regulation
of key genes during cell differentiation [4–6] and reprogram-
ming [7, 8]. Recent study showed that transformation of open
chromatin into repressive state is often accompanied with the
alteration of chromatin structure and plays important roles in
gene silencing and cell fate commitment [9]. Despite the large
variety of TAD-calling algorithms [10], a computational tool for
the sensitive quantification of TAD repression is lacking, hinder-
ing the identification of TADs that undergo functional signifi-
cant alteration over time. Here, we propose the spatial density
of open chromatin (SDOC) which is a quantitative measure-
ment of the degree of spatial aggregation of accessible regula-
tory elements within a TAD. SDOC enables the sensitive iden-
tification of TAD heterogeneity in terms of epigenetic mod-
ification strength and transcriptional activity. We performed
SDOC simulation using multiple Hi-C and DNase-seq datasets
and demonstrated that the simulated SDOC values are reli-
able for the identification of TAD variation in terms of histone
modification, enhancer activity and gene transcription activity
with higher sensitivity compared with existing metrics. Appling
our metric to T-cell differentiation, we identified 302 SDOC-
decreasing TADs, where key developmental genes are repressed
and the degree of repression is related to the level of increase
in TAD-TAD contact to other SDOC-decreasing TADs. Finally,
we revealed a pervasive preference for TADs to interact with
distal TADs that share similar SDOC in each developmental
stage.

Results
Implementation of SDOC

We defined the SDOC as the ratio of the total number of accessi-
ble chromatin regions in a TAD to the entire 3D space taken up
by the physical structure of the TAD. To demonstrate the power
of SDOC in reflecting functional heterogeneity of TADs, we first
performed comprehensive analysis based on the simulation of
SDOC in various cell lines. These analyses were conducted using
publicly available high-resolution Hi-C data provided by Rao
et al. [11] and DNase-seq data downloaded from ENCODE [12].
TADs were detected from normalized Hi-C contact maps using
the insulation score [13]. Chromatin structure of each TAD was
simulated using the Pastis-PM2 method [14]. 3D coordinates of
all loci in each TAD were used to calculate a convex hull whose
volume was defined as the TAD volume (Figure 1A). Then, the
raw SDOC was calculated by dividing the number of DNase-
seq peaks in a given TAD by the TAD volume (Figure 1B). We
performed quantile normalization to raw SDOC in four datasets
(Figure S1). The distributions of normalized SDOC are subjected
to normal distribution and thus are similar across different
datasets (Figure S1A), which facilitate comparison between the
SDOC of different datasets for the subsequent analysis. The
expression level of genes in TADs of high normalized SDOC is
similar to those of high raw SDOC, while normalized SDOC is
more spread out for TADs with low SDOC (Figure S1C). In addi-
tion, we tested Pastis-MDS and Pastis-NMDS on the GM12878
Hi-C dataset at 10 kb resolution, and similar SDOC values were

produced when these chromatin conformation reconstruction
algorithms were used (Figure S1D).

We next investigated whether the reconstructed TAD struc-
ture and the simulated TAD volume reflect the properties of
TADs including TAD length and interaction pattern within TADs
on the GM12878 dataset at 10 kb resolution. We found that
the volumes of TADs of shorter lengths (10–12 bins) are pre-
dominantly smaller than the volumes of TADs of intermediate
length (20–24 bins). The results are similar when comparing
TADs of intermediate length to those of longer lengths (40–
48 bins) (Figure S2A). There is also a strong linear correlation
between genomic lengths of TADs and volume of reconstructed
TADs in all cell types we tested (Figure S2B). Therefore, simu-
lated TAD volume indeed reflects TAD length. To investigate if
the simulated structure and the corresponding volume of TADs
reflect different interaction patterns of TADs, we performed
analysis on GM12878 dataset at 10 kb resolution to demon-
strate that different interaction patterns of TAD correspond to
different TAD volumes. To do this, we first need to exclude
the factor of TAD length in TAD volume. For each TAD length,
if there are more than 5 TADs of this length, we did z-score
normalization on the volumes of these TADs. Thus, the z-score
normalized TAD volume represents the relative volume of a
TAD compared with other TADs of the same length. We found
that TADs with low z-score normalized volume (z score < −0.5)
correspond to TADs with higher interaction frequency compared
with those with high z-score normalized volume (z score > 0.5)
(Figure S2C and D).

The volumes of TADs were implemented in SDOC to provide
the spatial information of TADs that may be lost if using 1D or
2D features of TADs. To illustrate this, we created a new TAD
that is simulated based on an existing TAD (chr1: 16 120 000–
16 390 000) by reorganizing its Hi-C interaction counts while
maintaining the sum of contact in each genomic distances of
the original TAD (Figure S3A). Specifically, all contact counts of
all cells in the contact matrix at each genomic distance were
randomly reassigned to these cells. In this way, the interaction
pattern is different between the original TAD and the simulated
TAD, but the total sum of Hi-C contact in each genomic distance
of the two TADs and the total sum of all Hi-C contact in the
two TADs remains the same. We generated 100 simulated TADs
by performing the simulation for 100 times. First, we calculated
SDOC of the original TAD and simulated TADs based on the
volume of 3D structure of TADs as described in this section.
Then, we recalculated SDOC by replacing the 3D TAD volume
to (i) the total sum of Hi-C contact counts within the TAD and
(ii) the 1D TAD length, respectively. When the 3D structure of
TADs was used, SDOC reflected the differences of the intra-
TAD structure, and the SDOC value is different between the
original TAD and simulated TADs (Figure S3B), whereas when
using the 2D and 1D feature of the TADs, the SDOC values
are equal between the original TAD and the simulated TADs
(Figure S3C) and thus do not reflect the difference in the spatial
structure.

To assess the degree that known critical factors of Hi-C data,
including sequencing depth, resolution and different normal-
ization methods may influence the SDOC value, we calculated
SDOC on Hi-C data of lower coverage by downsampling the orig-
inal Hi-C data of GM12878 cell line to 1/16 as described in recent
studies [15, 16]. Correlation of SDOC calculated based on original
Hi-C and downsampled Hi-C is above 0.99 (Figure S4A), showing
relatively weak influence of sequencing depth on SDOC. We
recalculated SDOC using Hi-C data of GM12878 cell line in 10, 25
and 50 kb resolution, respectively, and the correlation between
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Figure 1. SDOC calculation and properties. (A) Schematic diagram of TAD volume calculation. (B) Illustration showing TADs with different SDOC levels. (C) SDOC

differences between adjacent TADs and randomly selected TADs. Log-2 ratios for high SDOC and low SDOC levels are shown. ∗∗∗P < 0.001, Welch’s t test. (D) Illustration

showing the tendency for adjacent TADs to have similar SDOC levels.

SDOC in different datasets is all above 0.98 (Figure S4B–D), show-
ing relatively weak influence of Hi-C data resolution on SDOC.
We have added the comparison of two sets of SDOC calcu-
lated based on the Knight-Ruiz normalization and the Vanilla-
Coverage method, respectively. The correlation of SDOC value
is 0.98 (Figure S4E), which also showed relatively low influence
on SDOC.

SDOC reflects genetic and epigenetic diversity of TADs

We calculated genome-wide SDOC in four cell types (GM12878,
IMR90, K562 and HUVEC) to demonstrate the properties of the
SDOC metric and its relationship to genetic, epigenetic charac-
teristics and level of gene transcriptional activity of TADs. We
believe that data for these four cell types are representative
of typical high-resolution Hi-C data, as coverage differs signif-
icantly among them. To demonstrate that SDOC simulation can
be conducted based on a wide range of Hi-C matrix binning sizes,
we used 5, 10, 25 and 50 kb binning sizes for each cell type and
generated a total of 16 SDOC datasets. SDOC values for linearly
adjacent TADs are more similar than those of randomly selected
TADs (results for the GM12878 cell line at 10 kb binning size
are shown in Figure 1C), supporting a non-random distribution
of SDOC throughout the genome, which may related to a larger
scale of genome arrangement like A/B compartment (Figure 1D).

We used the SDOC dataset for the GM12878 cell line at 10 kb
resolution to demonstrate the ability of SDOC to characterize
the regulatory and functional properties of TADs. We categorized
TADs into five groups based on preset cutoffs (−1.5 ×, −0.5 ×,
0.5 × and 1.5 × standard deviation of normalized SDOC). TADs in
each group differed significantly in multiple features (Figures 2
and S5), showing that SDOC reflects various genetic and epi-
genetic properties of TADs. In each TAD group, the densities of
H3K4me3 active histone modification marks and RNA-seq read
scaled with SDOC, showing that TADs of high degree of SDOC
correspond to actively transcribed regions [17]. SDOC is related
to the density of Alu elements, TAD length, methylation level and
H3K27me3 histone modification level (Figures 2A and S5A–C).
TADs with higher SDOC levels contain more genes (Figure S5D)
and more chromatin loops (Figure S5E) than did those with lower
SDOC levels. The fractions of TADs in A compartment were
also related to SDOC (Figure 2B). In addition, super-enhancers
are significantly enriched in TADs group corresponding to the
highest SDOC (Figure 2C). This is consistent in all four cell types
(Figure S6). These observations show that SDOC reflects the het-
erogeneity of TADs in terms of variety of genetic and epigenetic
properties and gene transcriptional activity.

To further illustrate that SDOC can be used to characterize
TAD epigenetic states in detail, we clustered all TADs into six
groups using k-means based on H3K4me3, H3K27me3 and MRE-
seq read densities in reads per kilobase of exon model per
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Figure 2. Properties of SDOC. (A) Genetic and epigenetic characteristics of different groups of TADs, defined by ascending SDOC. (B) Fraction of TADs with different

compartment composition in different groups of TADs. Blue bars denote the fraction of TADs in compartment B. Cyan bars denote the fraction of TADs with mixed

compartment (compartment B > 50% of TAD region). Orange bars denote the fraction of TADs with mixed compartment (compartment A ≥ 50% of TAD region). Red bars

denote the fraction of TADs in compartment A. (C) Barplot showing the density of super-enhancers in each group of TADs. (D) Visualization of TADs using t-SNE. Left

panel: Strength of red, green and blue corresponds to H3K4me3 ChIP-seq tag density, MRE-seq tag density and H3K27me3 ChIP-seq tag density in each TAD. Middle

panel: TAD clusters. Right panel: RNA-seq tag density in each TAD. Clustering of TADs was performed using K-means based on four epigenetic features. The labels of

the K-means TAD clusters has been renumbered according to the mean SDOC value in each cluster. (E) SDOC of TADs in K-means cluster. Significance: ∗∗∗P < 0.001, t

test. (F) An example of adjacent TADs with different SDOC.
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Figure 3. SDOC is more sensitive in reflecting heterogeneity and alteration of gene activity in TADs than previous methods. (A) Correlations of SDOC values, D scores

and AP values with the mean normalized expression of genes in each TAD. (B) Correlations of differences in SDOC values, D scores and AP values with gene expression

differences in each TAD between different cell types.

million reads (RPKM) (Figure 2D). Each cluster corresponds to
a different TAD epigenetic state (Figure S7). TADs were visu-
alized in two dimensions based on their epigenetic features
using t-SNE, with different colors representing different types
of epigenetic mark and the strengths of colors corresponding
to the epigenetic feature levels (Figure 2D). The variety of colors
showed the diversity of TAD epigenetic states, supporting the
function of TADs as regulatory units. We found that SDOC values
differed significantly between all clusters (Figures 2E and S8),
which further supports the ability of SDOC that characterizes
different epigenetic states.

Benchmarking of SDOC

We next benchmark the sensitivity of SDOC in reflecting het-
erogeneity of gene transcriptional activity within TADs. Several
studies have shown that the D score, a quantitative parameter
reflecting the degree of intra-TAD connectivity, is relevant to
transcriptional activity within TADs [5, 7, 18]. The D score was
defined as the ratio of intra-TAD contacts to all cis contacts. The
aggregation preference (AP) was defined based on aggregation
patterns of significant interactions on Hi-C contact maps; this
parameter has been shown to be related significantly to epige-
netic and functional properties of TADs [19]. We compared the
capability of the D score, AP and SDOC to sensitively reflect
the levels of transcriptional activity within TADs, and found
that SDOC showed the strongest correlations (P-value < 10−300

for all SDOC datasets) in multiple cell types and at various Hi-
C resolutions (Figure 3A). SDOC also surpassed the D score and
AP value in terms of their correlation to difference in gene
expression level between different cell types (Figure 3B). Overall,
D score corresponds to higher correlation compared with AP and
lower correlation compared with SDOC. We also performed these
analyses to examine the performance of SDOC using 1D and 2D
features of TADs as in Figure S3. The results showed that SDOC
with the use of 1D, 2D and 3D features is all higher in the cor-
relation to gene expression level compared with D score and AP
(Figure S9). We also noticed that SDOC calculated using 2D fea-
tures of TADs corresponds to slightly lower correlation compared
with SDOC with the use of 1D or 3D features of TADs (Figure S9).
In addition, SDOC with the use of 1D and 3D features of TADs
showed comparable correlation (Figure S9). All Spearman corre-
lation coefficients shown in Figures 3 and S9 are presented in
Table S1. To determine whether the alteration of TADs identified
by SDOC but not by D score represents functional significant
changes within TADs, we selected genes with expression alter-
ation that accompanied with unilateral increase in SDOC or in D
score, respectively, for gene ontology (GO) analysis to check for
cell-type-related functional enrichment. As expected, we found
that there were more genes that showed coherent increase in
gene expression level and in SDOC than genes with coherent
increase in gene expression and in D score in most combination
of datasets (Figure S10A). We then performed GO analysis to each
of these gene groups. As cell function for GM12878 and HUVEC
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is distinctive and thus readily anticipated, we focused on gene
expression increase in these two cell types as proof of concept.
As expected, we found that genes with coherently increased
SDOC and expression level while with decreased D score are
enriched in cell-type-related functional terms (Figure S10B). For
example, when comparing GM12878 to IMR90, we identified
genes with functional enrichment in ‘regulation of lymphocyte
activation’. When comparing HUVEC to GM12878, we identified
genes with functional enrichment in ‘tube development’. On
the contrary, fewer functional enrichment terms for genes with
coherent increase in D score and expression level were identified
if there was any. Finally, to assess the potential effect of different
TAD detection algorithms, we calculated SDOC, D score and AP
values using TADs detected by different TAD detection meth-
ods including insulation score, Arrowhead [11], directionality
index [1] and OnTAD [20]. We found that SDOC was the most
robust against different TAD-calling methods and different lay-
ers of hierarchical TADs detected by OnTAD (Figure S10C). These
results show that SDOC can reflect the transcriptional activity
level of TADs more sensitively than existing methods and is least
affected by the use of different TAD detection methods.

SDOC identifies TADs undergoing functional significant
alteration during T-cell differentiation

SDOC is a sensitive measure of intra-TAD chromatin state and
structure, we demonstrate that the use of SDOC facilitates the
identification of functional relevant alteration of TADs during T-
cell differentiation. We identified a total of 4186 TAD boundaries
from the eight developmental stages. We calculated SDOC of
TADs in all eight developmental stages from HSPCs to T cells
and sorted the TADs by the standard deviation of their SDOCs
across all stages from low to high, and the standard deviation
showed a sharp increase starting from 0.3 (Figure 4A). Thus,
we used 0.3 as empirical cutoff to select TADs with altered
SDOC during eight development stages and identified 574 TADs
with altered SDOC (Figure 4A). Unsupervised clustering using
SDOC of these TADs identifies a cluster which is comprised
of 302 TADs with decreasing SDOC during differentiation
(Figure 4A). As expected, gene expressions in these SDOC-
decreasing TADs are significantly down-regulated before and
after the DN2-to-DN3 transition which is associated with T
lineage commitment (Figure S11A). Another cluster comprising
177 TADs with increasing SDOC corresponds to genes that
are up-regulated before and after the DN2-to-DN3 transition
(Figure S11B). GO analysis of genes located within SDOC-
decreasing TADs shows functional enrichment of development
process of lineages other than T-cell, for instance, ‘nervous
system development’ (Figure 4B), indicating that the silencing
of these genes may reinforces cell differentiation into the T-cell
lineage.

SDOC reveals a synchronization on chromatin
environment between local and spatially adjacent TADs

We assume that the SDOC change during T-cell differentiation
may also reflect global structural rearrangement of these TADs.
We first checked the composition of A/B compartment in each of
the 302 SDOC-decreasing TADs. A majority of TADs are located
completely within the active A compartment at hematopoietic
stem cells (HSCs) stage (196 out of 302, Figure S12A). We
found a minor but statistically significant decrease in the
number of these TADs that completely located within the
active A compartment before and after the double-negative

stage 2 (DN2)-to-DN3 transition (P = 0.009, t test, Figure S12A),
and more than half of the SDOC-decreasing TADs are still
in the A compartment at double-positive (DP) stage (161 out
of 302). Hu et al. identified 488 genes that are located in
regions exhibiting A-to-B compartment flipping. We found
that only a small fraction of these genes are located in the
SDOC-decreasing TADs (Figure S12B). Thus, SDOC alteration and
compartment flipping reflect associated and different aspect
of chromatin reorganization during T-cell differentiation. We
then investigated the relative position among SDOC-decreasing
TADs based on normalized pairwise contact frequency between
intra-chromosomal TAD pairs. Given a group of TADs, we
defined developmental TAD clustering index (DTCI) of a TAD
in the group to measure the alteration in the pairwise contact
frequencies between it and other TADs in the group throughout
the eight T-cell developmental stages (see Methods). A TAD of
high degree of DTCI indicates an increased spatial proximity
to other TADs in the group throughout the differentiation
process. We randomly selected 302 TADs as control and
calculated DTCI for SDOC-decreasing TADs and for the control
group separately, and found that the SDOC-decreasing TADs
correspond to higher DTCI (Figure 4C). Therefore, they are prone
to increased TAD-TAD contact compared with other TADs,
suggesting that SDOC-decreasing TADs tend to be spatially
aggregating with each other during T-cell development. We
further categorized TADs into ‘low’, ‘intermediate’ and ‘high’
groups based on their DTCI to assess the impact of DTCI to
gene silencing. In all three groups, SDOC-decreasing TADs
correspond to higher degree of gene silencing compared with
randomly selected TADs. Interestingly, although higher DTCI
tend to be associated with a higher degree of repression for
both SDOC-decreasing TADs and control, TADs with ‘high’
DTCI in the control group correspond to weaker repression
compared with SDOC-decreasing TADs with ‘intermediate’
DTCI (Figure 4D). These results suggest that the joint effect of
spatial aggregation and decreased SDOC level may underlie
the most prominent gene silencing events compared with
unilateral change. We further performed the same analysis on
SDOC-increasing TADs and we found that, although statistically
significant, DTCI of SDOC-increasing TADs was only slightly
higher than randomly selected TADs (Figure S13A). In addition,
unlike SDOC-decreasing TADs, expression alteration of genes in
‘high’ DTCI group of SDOC-increasing TADs was not significantly
higher than genes in ‘low’ and ‘intermediate’ DTCI groups
(Figure S13B). Therefore, the clustering of SDOC-increasing TADs
during eight T cell development stages was not as prominent as
the clustering of SDOC-decreasing TADs, and the relationship
between TAD clustering and gene expression was also not
observed in SDOC-increasing TAD.

We assume that the clustering of SDOC-decreasing TADs
may reflect a pervasive spatial affinity among TADs with sim-
ilar SDOC at various SDOC level during T cell differentiation.
Indeed, chromatin contacts between TADs with similar SDOC are
stronger than those between TADs with more divergent SDOC
in DP (Figure 4E). This trend is consistent at each developmen-
tal stage and at each SDOC level. These results support the
connection between local and global chromatin environments.
To assess the extent to which local chromatin environment is
associated with global chromatin structure, we predicted the
SDOC for each TAD based on SDOC of other distal TADs (genomic
distance >2 Mb) that tend to be close in 3D based on normalized
TAD-TAD pairwise contact in the eight developmental stages
(see Methods). We found that the predicted SDOC is strongly cor-
related to original SDOC as the correlation coefficients are above
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Figure 4. Identification of repressive TAD clusters during T-cell lineage development. (A) Selection of 302 SDOC-decreasing TADs. Left panel: TADs with altered SDOC

were first selected by a cutoff of SDOC standard deviation across all developmental stages. Right panel: Heatmap showing the result of unsupervised clustering based

on SDOC which identified SDOC-decreasing TADs among the TADs with altered SDOC. Cluster tree shows that the eight development stages were separated to pre- and

post-DN2-DN3 stages by unsupervised clustering. (B) Functional enrichment of genes in SDOC-decreasing TADs. (C) Histogram showing difference in DTCI distribution

between SDOC-decreasing TADs and random TADs. DTCI groups: ‘low’: DTCI ≤ 0 (violet background), ‘intermediate’: 0 < DTCI < 0.25 (orange background) and ‘high’:

DTCI ≥ 0.25 (green background). Black dashed line indicates the median of TCIs for Random TADs. Blue dashed line indicates the median of SDOC-decreasing TADs.

Significance: P < 1.5 × 10−45, Kolmogorov–Smirnov test. (D) Boxplot showing expression fold change (DP versus HSC) for each group of TADs. DTCI groups are marked at

the x-axis. Significance: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, t test. (E) Heatmap showing mean normalized contact frequency between TADs from various SDOC range. (F)

Correlation between SDOC and predicted SDOC at the eight developmental stages. (G) Comparison between (i) spearman correlation of SDOC and mean gene expression

of TADs and (ii) spearman correlation of predicted SDOC and expression of TADs.

0.8 for all stages and reached 0.91 for the DP stage (Figure 4F).
This result suggests that the chromatin state and the structure
of a TAD could be sufficiently recuperated from other TADs
with preferential contact to it. We next assessed if the predicted
SDOC, with such high similarity, is as strongly related to tran-
scriptional activity as the original SDOC. The results showed that
the predicted SDOC is also highly correlated to mean expression
level of TADs, even with a slightly higher correlation coefficient
in most developmental stages compared with the original SDOC
(Figure 4G). We further asked if SDOC of linearly adjacent TADs is

more predictive to the SDOC of preferentially interacting distal
TADs. Correlation between original SDOC and predicted SDOC
is higher than correlation between original SDOC and average
SDOC of two linearly adjacent TADs, even when only one of the
TAD in the two adjacent TADs with a closer SDOC is selected
(Figure S14A). SDOC of linearly adjacent TADs is also less corre-
lated with gene expression compared with the predicted SDOC
(Figure S14B). Altogether, these results suggest a pervasive simi-
larity in chromatin state among preferentially interacted non-
contiguous TADs, to the extent that the intra-TAD chromatin

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa210#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa210#supplementary-data
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state and the structure can be sufficiently recuperated from
those of other ‘spatially neighboring’ TADs.

Discussion
We provide SDOC as a quantitative and sensitive measure of
intra-TAD chromatin state and structure. Our metric integrates
information of both 1D chromatin state and 3D chromatin struc-
ture and is closely related to histone modification and gene
activity. Decreased SDOC in a subset of TADs during mouse
T-cell differentiation is accompanied with spatial aggregation
of these TADs, which correspond to silencing of key genes.
While decreased SDOC alone is associated with decreased gene
expression, the increased spatial contact between these TADs
leads to a significantly higher level of repression. Therefore,
the interplay between intra- and inter-TAD chromatin state and
structure may play a significant regulatory role in T-cell devel-
opment. We show that TADs with similar SDOC levels tend to be
more frequently connected at all SDOC level, suggesting that the
chromatin state and the structure of a TAD are strongly related
to its chromatin environment. Supporting this, we showed that
the SDOC of a TAD can be well predicted based on the SDOC
of other ‘spatially adjacent’ TADs. We believe that this prefer-
ential clustering that bridges TADs with similar SDOC supports
a well-organized chromatin structural landscape that underlies
efficient regulation of gene expression.

A recent study revealed that strongly connected TADs form
TAD cliques associated with lamina-associated domains and
gene repression. Although TAD cliques are enriched in the
repressive B compartment, many TADs in TAD cliques are
located within A compartment. Using SDOC, we showed that the
existence of TAD clique in both compartments is consistent with
the tendency of TADs to preferentially contact with other TADs
with similar SDOC at all SDOC levels. The enrichment of TAD
cliques in B compartment also corresponds to an overall higher
TAD-TAD contact frequency observed between low SDOC TADs
compared with TADs with higher SDOC level. It is interesting
to investigate the mechanisms supporting preferential contact
between TADs with similar SDOC, which may also underlie
TAD clique formation and the formation of global landscape
of chromatin structure.

In conclusion, we proposed SDOC as a quantitative measure
of chromatin state and structure of TADs. SDOC is strongly
associated with a variety of genetic and epigenetic properties of
TADs and is more sensitive than existing method in reflecting
gene transcriptional activity. Applying SDOC, we identified
a subset of TADs associated with silencing of key genes in
T-cell differentiation. Spatial clustering of these TADs is more
significant than other TADs, which enhanced the degree
of gene repression. In addition, we found that SDOC can
be better predicted by preferential interacted distal TADs
than by linearly adjacent TADs, showing a strong connection
between intra-TAD chromatin state and inter-TAD positioning in
nucleus.

The current method of using convex hull for TAD volume
approximation is a preliminary attempt and a more advanced
computational method may enable more accurate volume
approximation. In addition, as the structure of TADs is complex
and displays cell-to-cell heterogeneity, modeling TAD structure
using data of higher resolution generated by experiment
protocol such as Micro-C, or single cell Hi-C data that reflect cell-
to-cell variability in chromosome structure may go a long way
towards a more accurate TAD structure simulation and further
improves the performance of the SDOC metric. We believe SDOC

will facilitate future research in deciphering functional changes
of chromatin organization in 4D.

Methods
Hi-C data processing

We used Hi-C data for four human cell lines (GM12878, IMR90,
K562 and HUVEC; GEO accession number GSE63525) from Rao
et al. [11]. Raw Hi-C contact matrix files (in sparse matrix for-
mat) were provided directly and were used to construct raw
Hi-C contact matrices at four resolutions: 5, 10, 25 and 50 kb.
The matrices were corrected using KR normalization factor [21]
files provided together with the Hi-C data. Specifically, the raw
contact frequencies at the ith and jth loci were divided by the
product of the ith and jth lines in the KR normalization factor
files.

Hi-C data of mouse T-cell developmental stages were con-
verted to .fastq format using fastq-dump command of SRA-
toolkit. Alignment to mouse mm9 genome was performed using
Bowtie2. Quality control and creation of Hi-C pair-end tag direc-
tory were performed using the makeTagDirectory command of
HOMER software. Hi-C contact maps were created using anal-
ysisHiC command of HOMER software. Replicates were pooled
to increase coverage for each developmental stage. Our analyses
are based on human genome assembly GRCh37/hg19.

Detection of contact domains

TADs were detected using the insulation score [13]. The width
of the window used when calculating insulation scores was set
to five times the Hi-C matrix binning size to better accommo-
date boundary detection at different resolutions. We computed
the delta score using the insulation scores for the five nearest
upstream and five nearest downstream loci. We identified TADs
as genome regions centered between two adjacent boundaries
and excluded regions containing low coverage bins. Data on
contact domains detected by Arrowhead [11] at 5 kb resolution
were downloaded from GEO accession number GSE63525.

In data analyses in T cell differentiation, a reference set of
TADs was used in all development stages. First, TADs detected in
all development stages were pooled. Then, adjacent boundaries
were merged, and the position of the merged TAD boundary
was assigned to one of these genomic regions where the bound-
aries of the most development stages were located. Boundaries
supported by only one development stage were excluded to
minimize false positives.

SDOC calculation

Each intra-TAD contact matrix was extracted from normalized
Hi-C contact maps as input data for a chromatin conformation
reconstruction algorithm. We used the Pastis-PM2 algorithm
[14] to reconstruct chromatin structure. Three-dimensional (3D)
coordinates of all loci in individual TADs were calculated using
Pastis-PM2 with default parameters. These coordinates repre-
sented simulated chromatin structures within the TAD and were
used to construct the convex hull of each TAD using in-house
python scripts (provided in Supplementary Data). The volume of
each convex hull was calculated as the raw volume of the TAD.
The raw SDOC was calculated as the ratio of open chromatin
peaks (total number of DNase-seq peaks in each TAD region)
to the raw TAD volume. The number of total DNase-seq peak
counts may increase or decrease as sequencing depth changed
or different peak-calling algorithms were used. We assume that
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this effect may generally influence all TADs as a multiplicative
noise and can be normalized by performing quantile normaliza-
tion. Quantile normalization was performed to raw SDOC using
the preprocessCore package of R to normalize the SDOC value
of each dataset to Gaussian distribution (mean = 0, standard
deviation = 1).

Visualization of TADs using t-distributed stochastic
neighbor embedding

All TADs were visualized using t-distributed stochastic neighbor
embedding (t-SNE) [22]. Each point in the t-SNE plot represents
a TAD which was embedded on the 2D space based on four
epigenetic features of each TAD: chromatin accessibility level
(DNase-seq tag density), H3K4me3 level, H3K27me3 level (ChIP-
seq tag density) and methylation level (MRE-seq tag density),
where the tag density of each feature was calculated using RPKM
normalization method. H3K4me3 modification level, H3K27me3
modification level and MRE-seq tag density of each TAD were
marked by the strengths of the red, blue and green color of the
corresponding point, respectively. For example, a red dot repre-
sents a TAD with strong H3K4me3 modification but very weak
H3K27me3 modification and low density of unmethylated PcG
islands. T-SNE was performed using t-SNE function of Python
scikit-learn library.

Assessment of SDOC metric performance

Based on normalized Hi-C contact maps, we calculated a D score
[5, 7, 18] for each TAD by dividing the number of intra-TAD
contacts by the total number of intra-chromosomal contacts
involving the genome region of the TAD. The gene expression
level for each TAD was calculated as the average TPM of all genes
in the TAD. The AP [19] was calculated using TADLib-0.3.1 [19]
with default parameters. An SDOC value, a D score and an AP
value were assigned to all genes with TSSs located within each
TAD. These values were used to examine correlations between
changes therein and gene expression levels.

As the datasets we downloaded contained Arrowhead-
detected TADs at a 5 kb binning size, we performed the
comparison with different TAD-detecting algorithms at 5 kb
resolution. When two different sets of detected TADs were
compared, all 5 kb genomic regions located within TADs of
both sets were assigned the SDOC/D score/AP values of the
corresponding TAD. Spearman correlation of assigned values of
each metric (SDOC, D score and AP) in all shared genomic regions
was then calculated and was used to assess the influence of
different TAD detection method.

Calculation of normalized pairwise TAD-TAD contact

First, raw pairwise TAD contact frequency of two TADs is calcu-
lated as follows:

Fij = n
Li × Lj

,

where Li and Lj correspond to the length of the two TADs in
the same chromosome and n corresponds to the total sum of
contact frequency between genomic regions of the two TADs.
Specifically, the total sum of contact frequency between two
genomic regions A and B is the total sum of all Hi-C interacting
pairs connecting these two regions, which means an interacting
pair was counted only if it was comprised by two DNA frag-
ments of which one is from genomic region A and the other
is from genomic region B. The distances between TAD pairs

are calculated as the genomic distances of the center of the
TADs, which is the number of consecutive DNA base pairs that
separate the two mid-points of the two TADs. Pairwise TAD con-
tact frequencies are further regressed against distances between
TAD pairs using loess regression. The standard deviation of pair-
wise TAD contact frequency at each distance is calculated and
regressed against genomic distance using loess regression. The
normalized pairwise TAD contact frequency is then calculated as
follows:

Fijnorm = Fij − μd

σd
,

where μd and σd correspond to the loess regressed pairwise
contact frequency and loess regressed standard deviation.
Loess regression was performed using the lowess function of
statsmodels Python library.

Grouping TADs based on DTCI

Given a group of TADs, DTCI of each TAD reflects the propensity
of it to be more (positive DTCI) or less (negative DTCI) spatially
aggregated with other TADs in the group during T cell differ-
entiation. All combinations of two TADs within this group and
were in the same chromosome were selected to calculate a linear
regression slope that measures the degree of alteration in their
normalized pairwise TAD-TAD contact frequency throughout
the eight developmental stages. When performing the linear
regression, we considered each developmental stage as evenly
spaced integers 0, 1, . . . , 6, 7 in the order of T cell differentiation:
HSC, MPP, CLP, ETP, DN2, DN3, DN4 and DP. Linear regression
was performed using LinearRegression function in scikit-learn
python package. For each TAD, the DTCI is the averaged slope of
all TAD pairs in the group of TADs that are associated with this
TAD. DTCI is calculated separately in SDOC-decreasing TADs and
in random TADs. TADs are categorized into three groups based
on their DTCI: ‘low’: DTCI ≤ 0, ‘intermediate’: 0 < DTCI < 0.25 and
‘high’: DTCI ≥ 0.25.

Unsupervised clustering

Unsupervised clustering of the 574 TADs with altered SDOC was
performed using the KMeans function of Scikit-learn python
package with the following parameters: n_clusters = 3 the SDOC
of each TAD in all developmental stages.

Predicting SDOC based on preferentially interacted
TADs

Predicted SDOC of the ith TAD (sorted by genomic coordinates of
the midpoint of the TAD) in a chromosome that consists n TADs
in total is calculated as follows:

SDOC′i =
∑n,j �=i

j=0
SDOCjFij,

where SDOCj is the jth TAD on the same chromosome and Fij

is the normalized pairwise TAD-TAD contact frequency between
the ith TAD and the jth TAD. We let Fij = 0 if the genomic
distance between the ith TAD and the jth TAD is less than
a cutoff of 2 Mb or if Fij is less than a cutoff of 1 to make
sure only distal TAD pairs with a relatively high contact fre-
quency contribute to the value of the predicted SDOC. Altering
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these cutoffs brings minor changes in the predicted SDOC (data
not shown).

GO analysis

GO analysis was performed using the PANTHER web-based plat-
form at http://geneontology.org/.

Data availability
Human gene expression (polyA RNA-seq) data were down-
loaded from ENCODE under accession numbers ENCSR000COQ
(GM12878), ENCSR000CTQ (IMR-90), ENCSR000CPH (K562) and
ENCSR000COZ (HUVEC).

Data of super-enhancers in the GM12878, IMR90, K562 and
HUVEC cell lines were downloaded from https://www.cell.com/
cell/fulltext/S0092-8674(13)01227-0.

Hi-C data including raw Hi-C contact matrix files, normaliza-
tion vector files, TADs detected using Arrowhead and annota-
tions of chromatin loops for human cell lines (GM12878, IMR90,
K562 and HUVEC) were downloaded from GEO dataset GSE63525.

ChIP-seq, DNase-seq, total RNA-seq and MRE-seq data for the
human GM12878 and IMR90 cell lines were downloaded from
ENCODE under accession numbers ENCSR000DRY (GM12878
H3K4me3 ChIP-seq), ENCSR000DRX (GM12878 H3K27me3 ChIP-
seq), ENCSR000EMT (GM12878 DNase-seq), ENCSR000AEE
(GM12878 total RNA-seq) and ENCSR398TCH (GM12878 MRE-seq).
DNase-seq peaks, compartment PC1 value and Hi-C data are
downloaded from GEO dataset GSE74222. Code and related data
for reproducing main results in this study have been uploaded
to the GitHub repository (https://github.com/birmjiangs/Code-
for-main-results).

Key Points
• We proposed SDOC, a quantitative measurement for

chromatin state and structure of TADs, with higher
sensitivity and robustness compared with previous
methods.

• Appling SDOC, we identified 302 TADs with repressive
structural alteration that underlie silencing of key
genes to reinforce differentiation to T cell lineage, and
we found that the most prominent gene repression
was associated with spatial clustering of a subset of
these TADs.

• We revealed a propensity of TADs with similar SDOC to
be spatially adjacent in 3D as an organization principle
of spatial positioning of TADs in mammalian nucleus.

Supplementary Data

Supplementary data are available online at Briefings in
Bioinformatics online.
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