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Abstract: The fungal genus Fusarium contains numerous plant pathogens causing consider-

able economic losses. In addition, Fusarium species are emerging as opportunistic human

pathogens causing both superficial and systemic infections. Appropriate treatment of

Fusarium infections in a clinical setting of neutropenia is currently not available. ESCMID

and ECMM joint guidelines, following the majority of published studies, suggest early

therapy with amphotericin B and voriconazole, in conjunction with surgical debridement

and reversal of immunosuppression. In this review, we elaborate on the trans-kingdom

pathogenicity of Fusarium. Intrinsic resistance to several antifungal drugs and the evolution

of antifungal resistance over the years are highlighted. Recent studies present novel com-

pounds that are effective against some pathogenic fungi including Fusarium. We discuss the

robust and dynamic antifungal pipeline, including results from clinical trials as well as

preclinical data that might appear beneficial for patients with invasive fusariosis.
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Trans-Kingdom Pathogenicity
Fusarium is a diverse genus of fungi containing several hundreds of species.1–3 Some

plant pathogenic members of the genus are restricted to a single host species, whereas

others have a broad host range. Economic losses in agriculture may be considerable,

and the genus is listed as one of the most destructive plant pathogenic fungi.4,5 This

genus is also frequently involved in vertebrate infection.6,7 Although the conditions in

host tissues of plants and animals are very different, nearly all 24 taxa that have been

described to occur in human infections as real cases8 have also been reported from plant

diseases. Fusarium is capable of infecting plants as well as humans, a phenomenon

known as trans-kingdom pathogenicity.9 This unusual ability has been demonstrated in

numerous studies.10–18 Fusarium oxysporum f. sp. lycopersici, F. keratoplasticum, and

F. falciforme are known for their pathogenicity to plants, but have also been reported

from humans and other mammals.11–13 Similarly, F. pisi, F. temperatum, F. ramigenum,

F. musae, Fusarium solani sensu stricto, and F. volatile have been recovered from

living plants, while also their clinical relevance has been underlined.14,19–21 Cross-

kingdom pathogenicity is in obvious conflict with plant host specificity. In

F. oxysporum, small conditionally dispensable chromosomes carrying virulence fac-

tors, which are horizontally transmitted between germinating cells of different lineages

in response to signals from a suitable habitat and which differentiate into infection

hyphae,22,23 may explain the sudden outbreaks observed in agricultural settings. Three
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Fusarium oxysporum mitogen-activated protein kinases

(MAPKs) have distinct and complementary roles in stress

adaptation and cross-kingdom pathogenicity.24 Under selec-

tive pressure of host conditions, lineages show adaptation

enhancing survival and replication. Segorbe et al25 under-

lined the role of MAPK genes that contribute to the regula-

tion of development, stress response and virulence in plants

and animals. Instantaneous use of windows of opportunity is

instrumental for rapid expansion. Van Baarlen et al noted

a molecular similarity between hypothetical virulence factors

in plant and human pathogens,26 but among fungi in general

such abilities are rarely combined8 and thus cannot be gen-

eralized; more often, opportunism is combined with

extremotolerance.27 Cross-kingdom pathogenicity may thus

be considered rather unique to Fusarium.

Fusarium oxysporum shows virulence in theGalleria mel-

lonella infectionmodel.28 In humans, the infectionmechanism

is largely unknown. In general, immunocompromised indivi-

duals are highly susceptible to developFusarium disseminated

infections, especially during neutropenia.11,29,30 In otherwise

healthy individuals, fusariosis generally remains a superficial

infection;31 the fungi are quite commonly isolated from der-

matological samples in the tropics.32 Fusarium keratitis,

mostly initiated by traumatic inoculation of contaminated

materials such as plant leaves,19 is a major public health con-

cern with an estimated global burden of about 1–1.2 million

cases annually.33

Evolving Taxonomy
The taxonomy of the genus Fusarium has been affected by

changes in species concept. During the last centuries, the

number of recognized species by traditional taxonomists var-

ied enormously, from as few as nine species to several

hundreds.34 In 1910, Apple and Wollenweber grouped all

asexual fungi producing multicellular macroconidia with

croissant shape from slimy sporodochia in Fusarium.35

Wollenweber and Reinking used the differences in morphol-

ogy to organize the genus into 16 sections. These sections

contained 65 species, 55 varieties, and 22 host-specific formae

on the basis of the color of stroma, the presence and absence of

sclerotia, and the length and number of septations in

macroconidia.36 The characteristics used by those authors

were the shape of conidia, microconidia, macroconidia, chla-

mydospores, basal foot cells and phialides. Also, the location

of chlamydospores and other types of conidia was considered.

Booth simplified this system to only 14 species.37 The taxon-

omy proposed by Gerlach and Nirenberg was similar to that of

Wollenweber and Reinking, recognizing 21 species.38 Leslie

and Summerell used morphological, biological and phyloge-

netic information for reclassification; they concluded that 70

species could be distinguished.34 At present, with the dawn of

molecular sequencing, more than 300 species are recognized,

grouped in 22 species complexes, all differing in morphology,

host association, and particularly in molecular parameters.2

Fusarium was one of the first fungal groups where the term

“species complex” was used for a series of closely related

species. The term “species complex” has been defined,8 ela-

borating on early papers for use in clinical routine by Chen

et al39 and Kwon-Chung et al,40 as a monophyletic group

which are different at the molecular epidemiological level

but are functionally indistinguishable. In other words, there

are identifiable discontinuities in their features, but the differ-

ences are not meaningful for practice. Variations or disconti-

nuities may lead to reproductive barriers and speciation.

Whether the speciation process has advanced sufficiently

remains a matter of debate with every single species cluster.

Geiser et al brought together a consortium of clinical and

phytopathological experts and launched a plea for nomencla-

tural stability with preservation of the name Fusarium for all

clinically relevant species complexes.41 The proposal was

not effective, as Lombard et al moved the F. solani species

complex to the genus Neocosmospora, and the F. dimerum

species complex to a new genus Bisifusarium, on phyloge-

netic grounds.42 As these genera include species with sub-

stantial significance as plant and human pathogens, transfers

have not widely been accepted. However, the same research

group recently reported that 68 species are accepted in the

genus Neocosmospora, 29 of them described as new, while

13 new combinations were made and 11 species remained as

yet undescribed.43 For the sake of nomenclature stability in

the clinical field, we adhere in this review toFusarium as best

known descriptor for fungi with morphological and ecologi-

cal features in the sense of Wollenweber and Reinking,36 as

agents of “fusariosis.”

Intrinsic Resistance to Antifungals
Most research on antifungals focuses on acquired resistance

obtained by mutations in resistance genes, for example, the

wealth of information available on Aspergillus fumigatus

acquiring azole resistance triggered by exposure to agricultural

antifungals in the environment.44–47 Among agricultural fun-

gicides, difenoconazole had the lowest activity against

Fusarium solani SC with MICs of >32 mg/mL.48 Herkert

et al suggested a similar selective pressure on environmental

Fusarium strains as that seen with Aspergillus.48 However,

natural, intrinsic resistance, which is independent of previous

Al-Hatmi et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Infection and Drug Resistance 2019:123728

http://www.dovepress.com
http://www.dovepress.com


antifungal exposure, has largely been neglected.49 Some fungi

are intrinsically resistant to single drugs (e.g., C. krusei to

fluconazole or C. lusitaniae to amphotericin B), while others

are resistant to different classes of antifungals (e.g., C. auris,

some strains resistant to all antifungals).50–52 Among the fila-

mentous fungi, members of two adjacent orders are multi-

resistant, i.e., the Microascales (genera Scedosporium,

Lomentospora, Scopulariopsis) and the Hypocreales (genera

Acremonium, Fusarium, Trichoderma).53 Discovery of genes

conveying intrinsic resistance may not only provide drug

targets for the development of new antifungals, but may also

repurpose antifungals with limited effectivity by blocking the

intrinsic drug resistance genes of the pathogens.54

Nearly all Fusarium species are among those fungi that

have inherent structural and functional characteristics to

resist antifungals without prior exposure. The reason why

this phenomenon occurs naturally in Fusarium and other

members of the above orders is unknown. Resistance has

been observed for amphotericin B, itraconazole, fluconazole

and echinocandins, but variable MIC results are recorded

with the newer triazoles (posaconazole, voriconazole, and

isavuconazole).1 The molecular mechanisms of intrinsic

resistance in Fusarium have not been described yet.

However, a hypothetical molecular mechanism has been

proposed by Fan et al who showed that CYP51 in

Fusarium has three paralogues of sterol 14α-demethylase

cytochrome P450 (CYP51A, -B, and -C), with CYP51C

being restricted to Fusarium.55 The same authors stated that

CYP51A deletion increased the sensitivity of Fusarium gra-

minearum to azoles.55 Katiyar et al reported that mutations in

the FKS1 gene,56 i.e., amino acid substitutions P647A and

F639Y in FKS1, contribute to intrinsic echinocandin resis-

tance in Fusarium solani. The major mechanism responsible

for high-level azole resistance in clinical species of Candida

is overexpression of plasma membrane efflux pumps,57 and

this may also reduce azole susceptibility in Fusarium. Under

the influence of azoles, various efflux mechanisms are trig-

gered in F. graminearum, such as ATP-binding cassette

(ABC) transporters to actively transport molecules across

the cell membrane, reducing their impact on viability.58

Experiments with the agricultural antifungal tebuconazole

indicated the presence of different resistance mechanisms

in F. graminearum. One of the phenotypes conveyed resis-

tance to azoles, whereas another was related to multidrug

resistance.58

Heteroresistance is another example of variation in drug

susceptibility within a population. It was already reported that

inCandida albicans, Cryptococcus neoformans, Cryptococcus

gattii, Aspergillus fumigatus andAspergillusflavus, single cells

can give rise to progeny with heterogeneous resistance pheno-

types resistant to the azoles.59–61 This phenomenon may also

be present in Fusarium.

Evolution of Antifungal Resistance
In recent decades, there has been much improper use of

azoles, especially in agriculture. Resistance to azole fun-

gicides in Aspergillus fumigatus as a human opportunist

and Mycosphaerella fijiensis as a plant pathogen has been

recognized during the last two decades, and the resistance

mechanism is based on analogous genes (CYP51).62,63 In

1997, the first azole-resistant clinical isolate of Aspergillus

fumigatus was reported,64 followed shortly thereafter by

resistant A. fumigatus strains in the (agricultural) environ-

ment, exhibiting cross-resistance with fungicides.65

Due to the high fungicide pressure in the environment,

resistance can also increase in Fusarium, although the

main hypothesis is that resistance in Fusarium was already

present prior to fungicide exposure. According to Lucas

et al, in some organisms, the level of pre-existing resis-

tance is high and should, therefore, be considered as

intrinsic resistance.66 In other organisms, processes such

as increasing efflux pump activity or metabolism of toxins

are not enough to confer intrinsic resistance to fungicides,

but under high pressure of fungicides, resistance variation

might occur.67,68 In addition to the problem of intrinsic

variation of drug susceptibility among Fusarium species,

we need to add the emerging issue of acquired resistance

(if present), which refers to the ability of Fusarium species

to evolutionarily develop mechanisms that lower their

susceptibility toward certain antifungals. In this scenario,

Fusarium, as a plant pathogen, as well as Aspergillus

species, which are saprobic on plant debris, all occur in

the environment,69 and therefore Fusarium is also exposed

to the fungicides that are currently in use in agriculture.

Consequently, it is useful to verify whether changes can be

found in resistance profiles among clinical Fusarium iso-

lates, in analogy to Aspergillus. We have checked this

hypothesis by selecting Fusarium isolates from culture

collections accessed before 1970 and after 1990 and tested

their MICs against several antifungals including amphoter-

icin B, itraconazole, posaconazole, voriconazole, isavuco-

nazole, propiconazole, tebuconazole and difenoconazole

using CLSI and EUCAST microdilution methods. We

found that on the timescale and also comparing different

methods, no statistically significant difference was

revealed (p 0.122) between the MICs of strains from
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before 1970 and strains isolated after 1990. However,

strains of Fusarium differed among each other in MIC

values (Tables 1 and 2),1,70 showing that high MICs in

Fusarium are strain specific. Current data show that some

species/strains have higher MIC values than others. Our

comparative antifungal susceptibility testing with clinical

and environmental isolates from before 1970 and after

1990 showed that Fusarium indeed may have intrinsic

resistance.

Current and New Drugs in the
Pipeline
Here we discuss leading articles on antifungals that are

available at present and those that are in the pipeline for

use in patients with fusariosis (keratitis, onychomycosis

and disseminated infections). The standard for treatment of

keratitis due to Fusarium has not been determined, but is

most commonly managed by topical application of nata-

mycin or amphotericin B.71 Natamycin was found to be

active against Fusarium species both in vitro and in vivo,

and recently it has been recommended in combination with

voriconazole as the mainstay of treatment for Fusarium

keratitis.53 Early detection and installment of therapy are

essential.72 Voriconazole has been used in regimens com-

bining topical (10 mg/mL eye drops) and oral (400 mg/

day) administration, with good results, particularly when

a hypopyon is present.71 Recently, Oliveira et al and Kunt

et al reported that chlorhexidine demonstrated in vitro

antifungal activity against Fusarium strains isolated from

keratitis lesions.73,74 Todokoro et al demonstrated that

luliconazole exhibited strong in vitro antifungal activity

against a broad range of filamentous fungi including

Fusarium species.75

Combination therapy of natamycin with voriconazole,

itraconazole or micafungin showed synergism,76 although

Prajna et al reported in a clinical trial equal or inferior efficacy

of 1% voriconazole compared to 5% natamycin alone in eye

drops.77 Rees et al evaluated in vitro activities of natamycin

and voriconazole in combination with four non-antifungal

ophthalmic agents (5-fluorouracil, dorzolamide, EDTA and

timolol).78 In eight Fusarium ocular isolates, resistance was

noted to both natamycin and voriconazole. The data suggested

that commonly used ophthalmic agents enhance the in vitro

activity of antifungal drugs against drug-recalcitrant ocular

fusariosis when used in combination.78 Posaconazole and

ravuconazole are new azoles that have yet to be topically

applied in ophthalmic settings.

Therapeutic outcomes of Fusarium onychomycoses, par-

ticularly of subungual cases, are variable. No standard treat-

ment of onychomycosis due to Fusarium has as yet been

identified. In general, itraconazole is applied either daily or

intermittently.71 A second commonly used drug is terbina-

fine, sometimes combined with topical ciclopirox and

amorolfine lacquer or with keratolytics such as urea.79,80

Tupaki-Sreepurna et al presented susceptibility profiles of

44 common nondermatophyte fungi including Fusarium

against efinaconazole and showed excellent in vitro

activity.81 Luliconazole and lanoconazole are new imidazole

antifungal agents with broad-spectrum antifungal activity

used clinically as topical drugs in the treatment of onycho-

mycosis and dermatophytosis.82 Abastabar et al concluded

that luliconazole, lanoconazole and efinaconazole exhibit

potent in vitro activity against clinical and environmental

Fusarium species, and these compounds might be an option

for treating onychomycosis due to Fusarium.83 The same

authors reported that the in vitro antifungal activity of efina-

conazole, with a GM MIC of 0.85 µg/mL, was superior to

that of amphotericin B, natamycin, other triazoles and

echinocandins.83

Despite advances in therapy and early diagnosis, inva-

sive fusariosis remains associated with high morbidity and

with up to 70% mortality in case of dissemination.84

Research results confirm a high level of resistance, regard-

less of the species or strain of Fusarium involved. The high

MIC levels are worrying and are imperative for the devel-

opment of new drugs. The prognosis of patients with dis-

seminated fusariosis is poor and is mainly associated with

reversal of neutropenia, but novel antifungals and formula-

tions may improve outcomes also.49 Isavuconazole has

MICs against Fusarium species that are equivalent to or

higher than other triazoles (1 to ≥16 μg/mL).69,85 In two

clinical trials (SECURE and VITAL), seven patients with

disseminated fusariosis were treated with isavuconazole as

primary therapy, resulting in 44% 90-day survival.86,87

Fusarium antifungal resistance remains a significant pro-

blem for patients with compromised immunity and at high risk

for invasive infection, and therefore there is an urgent need for

novel therapeutic compounds and strategies. The following

drugs are in the pipeline and have been studied and investi-

gated in phase 1–2 preclinical trials (Table 3). ASP2397 is

a new antifungal compound, producing its antifungal effects

by disruption of the intracellular membrane. It has a modest

in vitro antifungal activity (≤8 μg/mL) against Fusarium

species.88 AR-12 (celecoxib derivative) has shown antifungal

activity against different fungi such as Cryptococcus
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neoformans, Candida albicans and Scedosporium species and

was active against Fusarium species at aMIC of 4 μg/mL.89,90

F901318 (olorofim, F2G) is a member of a novel class of

antifungals, the orotomides, acting by interference of pyrimi-

dine biosynthesis in the fungal cell. This compound displayed

excellent activity against a broad range of pathogens.91 It has

been used as an intravenous and oral agent for use in systemic

mold infections.92 However, olorofim was tested against

Fusarium species with variable results.93 Full inhibition was

achieved with F. proliferatum (MIC 0.016 μg/mL), 50% inhi-

bition with F. solani (MIC 1–2 μg/mL), while no inhibition

was observed with F. dimerum.93 APX001 (E1210/1211, fam-

nogepix) is an antifungal compound that is still under

development.92 Reportedly, it has potent in vitro antifungal

activity against molds that are difficult to treat, such as

Fusarium, where MIC values of 0.015–0.25 μg/mL94 and

0.12 μg/mL95 were obtained. The arylamidine enfumafungin

(MK-3118, SCY-078, ibrexafungerp) is a novel, orally bioa-

vailable 1,3-β-d-glucan synthesis inhibitor. The compound

was highly active against multidrug resistantCandida albicans

and C. glabrata isolates,96 but showed no or poor activity

against Fusarium species.97 However, the molecular variation

SCY-078 T-2307 that inhibits fungal growth by interference

with cellular metabolism98,99 has potent in vitro activity (0.125

μg/mL) against Fusarium solani.100 The histone deacetylase 2

inhibitor MGCD290 is effective in combination with both

azoles and echinocandins in vitro and in animal

models.101,102 The combination with voriconazole demon-

strated synergy against six out of eight Fusarium isolates.101

In conclusion, Fusarium is one of the few fungi cap-

able of infecting plants as well as humans, a phenomenon

known as trans-kingdom pathogenicity. Intrinsic resis-

tance and acquired resistance of Fusarium species are

a threat to both human medicine and agriculture.

Especially immunocompromised patients with longstand-

ing neutropenia and disseminated fusariosis have a poor

prognosis. Reversal of neutropenia is life-saving, but new

classes of antifungals in the pipeline may improve the

outcome of these severe opportunistic infections.
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