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ABSTRACT
Anti-tumor immune responses impede tumor formation, and cancers have evolved many mechanisms of
immune evasion. Confirming earlier findings, we show that human tumors with high chromosomal instabil-
ity (CIN+) are significantly less immunogenic, as judged by tumor lymphocyte infiltration, compared to those
with more stable genomes (CIN-). This finding is paradoxical, as genomic instability is expected to evoke an
innate immune response. Importantly, CIN+ tumors and cell lines exhibited suppressed expression of
proteins involved in MHC class I antigen presentation at least partly due to DNA hypermethylation of the
corresponding genes. Using a mouse model of the in vivo evolution of aneuploid tumors, we found that the
induction of chromosomal instability in tumor cells is highly immunogenic due to the activation of the
STING/TBK1 pathway and consequent increased interferon signaling and antigen presentation. However,
tumors evolving under immune pressure suppress the STING/TBK1 and antigen presentation pathways and
evade anti-tumor immune responses. In contrast, CIN+ tumors that develop under low immune pressure in
both humans and mice retain efficient MHC class I antigen presentation and immunogenicity. Altogether,
this study identifies an important mechanism of immune evasion in chromosomally unstable tumors.
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Introduction

Early neoplastic cells are mostly immunogenic and are targeted by
both innate and adaptive immune responses.1 Therefore, “success-
ful” tumors are characterized by tumor evasion mechanisms that
either reduce their immune visibility (e.g. through reduced antigen
presentation), block tumor lymphocyte infiltration (e.g. by β-
catenin signaling2) and/or actively suppress tumor-infiltrating
effector cells through inhibitory signaling (e.g. due to expression
of PD-L1, IDO, etc …).3 The strategy of re-activation of local
tumor infiltrates by inhibiting the negative regulatory checkpoints,
such asCTLA-4 andPD-1, onT-cells has had a remarkable success
in the clinic. However, despite the promise of unprecedented long-
term disease management in select patients, the response rates to
checkpoint inhibitor therapies are still low, underscoring the
importance of poorly understood tumor escape mechanisms.4

Immunotherapy has been traditionally considered for
“immunogenic” tumors: those that are characterized by signifi-
cant lymphocyte infiltration.4 Accordingly, one of the strongest
correlates of clinical response to checkpoint inhibitors is the
increased tumor lymphocyte infiltration (TLI) both prior to,

and in response to, the administration of therapy.5–7 In addition
to innate mechanisms of TLI, such as pro-inflammatory onco-
genic stress,1 TLI has been proposed to be driven by the adaptive
immune response to the tumor-specific antigens. As such, tumor
mutational load was found to correlate with TLI in a panel of
cancers,8 as well as with the clinical response to PD1 and CTLA4
blockade in lung cancer and melanoma patients.5,7,9,10 A recent
study found a strong negative correlation of TLI with tumor
aneuploidy, meaning that highly aneuploid tumors were char-
acterized by scarce immune infiltration.11

The finding that aneuploid tumors have suppressed immune
infiltration is somewhat paradoxical, as the induction of genomic
instability and aneuploidy in tumor cells has been found to elicit
anti-tumor immune responses in vivo.12–15 In this study, to iden-
tify the mechanisms of immune evasion in chromosomally
unstable (CIN+) tumors, we conducted a comprehensive pan-
cancer analysis of The Cancer Genome Atlas (TCGA) and the
Cancer Cell Line Encyclopedia (CCLE) datasets. We found that
antigen presentation through MHC class I pathway (APP) is
suppressed in CIN+ tumors and cell lines at least partly due to
DNA hypermethylation of the corresponding genes. Then, using
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a mouse model of CIN+ tumor evolution, we show that APP is in
fact induced, not suppressed, by CIN through the cytoplasmic
DNA sensing pathway. However, the process of tumor evolution
under immune pressure conditions (i.e. immunoselection) in vivo
leads to the eventual suppression of APP and to subsequent
immune evasion. Our findings shed light on the mechanisms of
suppression of TLI in chromosomally unstable tumors, and sug-
gest therapeutic avenues for the forced re-activation ofTLI in these
patients.

Results

CIN negatively correlates with tumor lymphocyte
infiltration

To study the role of CIN in tumor immune infiltration, we
retrieved copy number variation (CNV) data for genes measured
by the Affymetric SNP6 array across a panel of 22 cancer types
from TCGA. We scored CIN as the number of genes that had
a gain (i.e. CNV > 0.25) or a loss (CNV < −0.25) of their copy
numbers in a given tumor (nCNV). The nCNV values correlated
with mutations in TP53 in several cancers (Supp. Figure1A), and
strongly correlated with several markers of DNA double strand
breaks, a hallmark of CIN, such as increased protein levels of p53
binding protein (p53BP1), Ku80 subunit of DNA-dependent pro-
tein kinase, Rad50, and Chk2 (Supp. Figure1B). Moreover, nCNV
values strongly correlated with the abundance of genomic struc-
tural rearrangements (SGRs), such as chromosomal breakage and
fusions, as detected by analyses of whole genome sequencing
data16 (Supp. Figure 1C). It should be noted, however, that SGRs
do not account for whole-chromosome or chromosome arm-level
events, which may lead to the underestimation of the total geno-
mic structural variations in a tumor. Nevertheless, these correla-
tions suggest that nCNV scores reflect tumor DNA damage and
genomic rearrangements, strong characteristics of CIN.

The distributions of CIN scores (nCNV) across tumor types
(Figure 1(a)) was similar to the distributions of tumor aneu-
ploidy scores from the pan-cancer TCGA analyses17 (Supp.
Figure2A). In line with the previous report, we detected
a substantial negative correlation of CIN with tumor T-cell
infiltration, as judged by the expression of the T-cell receptor
gene CD3E in the bulk tumor (Figure 1(b)). A similar correla-
tion was observed with the number of structural genomic rear-
rangements (SGRs) identified from whole genome sequencing of
tumor samples (Figure1(c)). Importantly, CIN was a stronger
predictor of TLI than non-synonymous mutational burden
(Figure 1(d)). The strong correlation between CIN and TLI
was corroborated in colon adenocarcinomas (COAD), especially
within the category of microsatellite instability (MSI)- tumors,
and less so for MSI+ cancers, the latter being characterized by
exceptionally high mutational load and TLI (Supp. Figure 2B).
Altogether this indicates that, contrary to an earlier seminal
report,8 CIN is the main predictor of TLI in human tumors.

Immune and stromal cell types in CIN+ tumors

To examine how CIN and mutational load affect the composi-
tion of immune and non-immune cell infiltrates in tumors, we
employed the powerful multivariate regression method

Structural Equation Modeling (SEM), which combines confir-
matory factor analysis with path analyses, thus allowing to ana-
lyze complex structural regression models with unobserved
latent variables (e.g. immune infiltrates).18 Using a set of cell
type-specific markers for cytotoxic T cells (CTL), B cells (BC),
macrophages (MAF), cancer-associated fibroblasts (CAF) and
endothelial cells (EC) from a recent single-cell RNAseq analysis
of melanoma tumor tissues,19 we constructed a latent variable
model that captured each cell-type specific expression pattern
(Supp.Figure 3A). Beyond these cell types, we defined “active
CTL” as another latent variable to measure activated effector cell
content in tumors, based on several markers of activated effector
cells, such as GZMB, IFNG, PRF1 and CD38. Importantly, our
SEM model could accurately capture each cell type-specific
marker (Supp. Figure 3B), indicating that our latent variables
denote the molecular correlates associated with the different
immune cell types. The final SEM model is illustrated in
(Figure 1(e)), which we used to model the correlation of CIN
(measured by nCNV) and the non-synonymousmutational load
with the 6 types of infiltrating cells in tumors. In our model, we
also included tumor purity (measured by CHAT20) to control for
potential confounding effects.

We applied SEM to several cancer type specific datasets
(urothelial bladder carcinoma, BLCA; colon adenocarci-
noma, COAD; head and neck squamous carcinoma, HNSC;
lung adenocarcinoma. LUAD and cutaneous melanoma,
SKCM), where the nCNV – TLI correlation was strong (see
Figure 1(b)). The nCNV values strongly correlated with CTL
in all five cancers as shown above (Figure 1(e)). Interestingly
however, nCNV most strongly correlated with CTL, and
much less so with the presence of macrophages (MAF) and
fibroblasts (CAF) in the tumor bed. Intriguingly, although
nonsynonymous mutation load was not a significant factor
in controlling TLI, it did strongly correlate with local CTL
activation in BLCA, COAD and LUAD (Figure 1(e)), as also
indicated by high levels of cleaved (i.e. active) caspase 7,
indicative of apoptotic cell death (Supp. Figure 3C). These
observations suggest that CIN negatively affects CTL infil-
tration, while mutational load may contribute to CTL
activation.

Molecular correlates of CIN in cancer tissues and cell lines

The finding that TLI is suppressed in CIN+ tumors counters
our current understanding, as CIN has been shown to evoke
anti-tumor immunity through proteotoxic stress14 and innate
cytoplasmic DNA sensing.12,15 Indeed, genomic instability
leads to the accumulation of damaged DNA in the cytoplasm,
where it triggers the cGAS/STING pathway and a subsequent
type I interferon response, thus eliciting an efficient anti-
tumor immune surveillance.21 The finding that human
tumors display a strongly opposite phenotype suggests that
tumors employ secondary mechanisms to suppress TLI and
evade anti-tumor immune surveillance.

In order to identify the potential mechanisms of suppres-
sion of TLI by CIN+ tumors, we analyzed the global mRNA-
and protein-level correlates of CIN (i.e. CIN signatures) in
tumor clinical samples (from TCGA) and in cancer cell lines
(from CCLE). The distribution of nCNV values in cancer cell
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lines shows a wide distribution, similar to clinical samples
(Figure 2(a)). The comparison of transcriptomic CIN signa-
tures between the cancer tissues and cell lines showed
a significant concordance between some, though not all, can-
cer cell lines and tissues (Figure 2(b)). Although the transcrip-
tomic CIN signatures were highly similar among all the
cancer tissues, except for LAML (myeloid leukemias), only
the cancer cell lines from lung, breast, skin, bone and upper
aerodigestive tract showed the correlation profiles that were
highly consistent with those in the tissues (Figure 2(b)).
Similar findings were obtained for the proteomic CIN signa-
tures obtained from the reverse-phase protein array (RPPA)
data (Supp. Figure 4A), where the cancer cell lines of lung,
bone, breast and skin, but not upper aerodigestive tract,

displayed CIN signatures that were consistent with those in
human cancer tissues. These observations suggest that the
cancer cell lines of these lineages are acceptable in vitro mod-
els to study the mechanisms associated with CIN in cancers.

The MHC-I antigen presentation pathway is suppressed in
CIN+ tumors

The analyses of proteomic CIN signatures that were consistent
among the cancer tissues and cell lines revealed a widespread
upregulation of proteins related to DNA damage response, such
as p53BP1 (p53-binding protein), the Ku80 subunit of DNA-
dependent protein kinase, CHK2 (checkpoint kinase 2), MSH2
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Figure 1. Chromosomal instability (CIN) correlates with reduced T-lymphocyte infiltration (TLI) in human cancers. a) The distribution of CIN scores (nCNV) across human cancers.
b) Correlation of CIN scores with TLI, asmeasured by themRNA expression of CD3E in the bulk tumor, in the respective cancres (Spearman’s ρ values shown). c) Correlation of the
number of structural genomic rearrangements (SGR) in each tumor sample sample with TLI. SGRs were identified from thewhole-genome sequencing studies by a prior study.16

d) A plot of non-synonymous (N.S.) mutation burden and nCNV values in lung adenocarcinoma (LUAD) samples. Each point represents a tumor sample, and its coloring reflects
TLI according to the color key. e) Top: the diagram of the SEM model tested. MAF (macrophage), CTL (cytotoxic CD8 + T-cells), CTL* (active CTLs), BC (B-cells), CAF (tumor
fibroblasts) and EC (endothelial cells) were defined as latent variables, and themutational load, nCNV and tumor purity were used as predictors (exogenous variables) to predict
their individual partial effects on each of the latent variables (also see Supp. Figure 3A). Bottom: heatmaps showing partial effects (z-scores) of nCNV and mutational burden on
each of the factors in the indicated cancers. Red: significant positive impact, Blue: significant negative impact. A z-score of |1.96| corresponds to a p-value of 0.05, so one would
expect the pairs that are <-2 or >2 to be significant at P < .05 in this heatmap. The abbreviations of TCGA cancer types are explained in Supplementary Table 1.
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and MSH6 (Supp. Figure 4B). These are expected correlations, as
CIN is associated with extensive DNA damage in cells. The
consistently suppressed proteins included LCK, a lymphocyte-
specific kinase and stress kinases (p38 and JNK).

For the functional analyses of transcriptomic CIN signatures,
we chose to employ a pathway-based scoring scheme exploiting
the prior knowledge of functional gene-gene interactions to facil-
itate the mechanistic interpretations. We performed NetWalk-
based scoring of pathways22,23 based on the CIN signatures, and
prioritized the best-scoring pathways for each tissue in a clustered
heatmap (Figure 3(a)). AswithRPPA, the pathwayswith a positive
association with CIN were mostly related to the DNA damage
response and mitotic progression (Figure 3(b)), whereas those
with the most negative association were related to immune pro-
cesses. In addition, the positive-scoring pathways included mito-
chondrial metabolism, and the negative-scoring pathways
included many pathways related to extracellular matrix
remodeling.

An intriguing finding in this analysis was that both the cell lines
and the tissues revealed a significant negative association of the
MHC-I antigen processing and presentation (APP) pathway with
CIN (Figure 3(b)), such that, CIN+ tumors and cell lineswere both
characterized by extensive suppression of APP genes (Figure 3(c)).

Tumors and other tissues present their antigens on theMHC-I
complexes, which are recognized by antigen-specific T-cells
through their T-cell receptors (TCR). The MHC-I: TCR interac-
tion is crucial for effector T-cells to initiate an anti-tumor attack,
and amplify the systemic anti-tumor immune response.24 As such,
the down-regulation of the MHC-I machinery, including the

HLA, TAP1 and B2M genes, are frequently employed by cancers
to avoid the recognition by CTL.25 Therefore, the relative under-
expression of these genes in CIN+ tumors suggests a primary
culprit in the suppression of TLI in CIN+ tumors. Importantly,
the observation of this suppression in cancer cell lines shows that
the effect is tumor cell-autonomous, rather than an artifact due to
the dilution of cancer cells by tumor-infiltrating ancillary cells.

APP genes are hypermethylated in CIN+ tumors and cell
lines

The Class I HLA genes (HLA-A,B,C,E,F,G) reside on the
chromosome 6p21-22, along with TAP1 (tapasin 1), which
plays a key role in the loading of antigen peptides onto the
MHC-I complex. The 6p locus undergoes frequent copy num-
ber changes (both losses and gains) in cancers (not shown).
Therefore, it is possible that their reduced expression in CIN+
tumors reflects their copy number loss. However, we found
that the copy number changes in 6p21-22 genes of APP
exhibit no, or a positive, correlation with nCNV values in
cancers (Figure 4(a)), suggesting that copies of these genes are
frequently gained, not lost, in CIN+ tumors. Moreover, their
expression seemed to be independent of their copy number
changes in CIN+ HNSC tumors (Figure 4(b)). In contrast,
B2M (chromosome 15q21), which encodes the light chain of
the MHC-I complex, seems to be frequently lost (shallow loss)
in some CIN+ tumors (not shown). However, even in LUAD,
where the most negative association of B2M copy numbers
with nCNV is observed, B2M expression in CIN+ tumors
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seems to be suppressed regardless of its gene copy number
changes (Figure 4(c)), suggesting that the gene copy number
variations in the APP genes do not play a role in their
suppression in CIN+ tumors.

Next, we hypothesized that DNA hypermethylation may play
a role in the suppression of APP genes. Indeed, the DNAmethy-
lation of B2M showed a strong correlation with increasing
nCNV in LUAD (Figure 4(d)). Analyses of the DNA methyla-
tion profiles of the APP genes in several other cancer types
(4 where the CIN – TLI correlation was strong, and one [low
grade glioma, LGG] where the correlation was reversed) showed
a similar pattern of strong positive correlation, except for LGG,
where the pattern seemed to be reversed (Figure 4(e)). The latter
is consistent with the positive, rather than negative, correlation
of CIN with the expression of these genes (Figure 4(f)) and with
TLI in LGG (see Figure 1(b)). An analysis of the promoter DNA
methylation profiles of genes for the cancer cell lines, based on
reduced representation bisulfite sequencing (RRBS) data,
showed a similarly strong positive correlation of CIN with
some of the APP genes, though not all (Figure 4(g)), suggesting

that the effect is not as strong in the cell lines. Nevertheless, the
observations above show that APP genes are suppressed in CIN+
tumors through DNA hypermethylation.

Interestingly, the tumor type where CIN was positively
correlated with the expression of APP and with TLI was low-
grade glioma (LGG), which are also the least immune-
infiltrated of adult tumors in TCGA (see Figure 1(a)), perhaps
due to the immune-privileged status of the brain. This sug-
gests that DNA hyper-methylation of APP genes may be an
adaptive mechanism to evade anti-tumor immune surveil-
lance under immune pressure (i.e. immunoselection).
However, LGG tumors are not under immune pressure, cor-
relating with the fact that they do not downregulate APP
genes.

APP is induced by CIN, but suppressed during tumor
evolution under immune pressure

To test the hypothesis that the suppression of APP gene
expression is an adaptive mechanism of CIN+ tumors to
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Figure 3. Antigen processing and presentation is suppressed in CIN+ cancer tissues and cell lines. a) Heatmap of pathway scores calculated with genome-wide nCNV-
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evade anti-tumor immune surveillance, we took advantage
of CIN+ derivative clones of a near-diploid mouse colon
cancer cell line CT26 that were generated by transiently
exposing them to nocodazole in vitro (hyperploid clone:
HP). To mimic the tumor evolution under immune pres-
sure, we serially passaged HP cells in immune-competent
mice to obtain immunoselected clones (IC1 and IC2). As
a control, we also passaged them similarly in immune-
deficient (Rag2−/-γ−/-) mice to obtain ID clones (immune
non-selected) (Figure 5(a)). Since the CIN+ tumors that
had been immunoselected through passaging in wild-type
mice often exhibit loss of chromosomes to avoid proteo-
toxic stress and immunogenicity,14 we selected a clone (HP)
that did not exhibit any major chromosome loss and thus
retained their original hyperploidy for our subsequent ana-
lyses (Figure 5(b)).

Importantly, and as reported previously,14 induction of
CIN renders CT26 cells immunogenic, as HP cells grow
slower in immune-competent hosts in vivo (Figure 5(c)).
However, the clones obtained from serial passaging under
immune pressure (IC1 and IC2) had a significantly faster
growth rate compared to both parental and hyperploid
CT26 cells (Figure 5(c)). These observations show that,
while the induction of CIN is immunogenic, CIN+ tumor
growth under immune pressure selects for a population of
cells that gain the ability to evade anti-tumor immune
surveillance.

Intriguingly, the expression of key APP proteins was sig-
nificantly increased in hyperploid clones cultured in vitro (HP
cells, Figure 5(d)), and showed increased cell surface

expression of the MHC-I complex (Figure 5(e)). However,
in line with our hypothesis, the IC, but not ID, clones showed
a profound suppression of the expression of APP proteins
(Figure 5(d)), coupled to reduced cell surface expression of
MHC-I complex (Figure 5(e)).

In order to gain a holistic view of the molecular changes
during the evolution of CIN+ tumors, we used RNA sequen-
cing to characterize the transcriptomes of the parental CT26,
HP, IC1, IC2 and ID cells. First, we tested if the global relative
mRNA expression profiles of these cells (i.e. their signatures)
showed similarity to the transcriptomic CIN signatures from
human cancer tissues (see Figure 2(b)). Interestingly, we
found that the global transcriptional signatures of the IC1
and IC2 clones was significantly similar to the CIN signatures
of several cancers that also showed a negative CIN-TLI corre-
lation (see Figure 1(b)), while that of HP cells was highly
similar to the CIN signatures of glioblastoma multiforme
(GBM), and to a lesser degree, of LGG, where CIN correlated
with higher TLI (Figure 5(f)). These observations strongly
suggest that while the transcriptomes of CIN+ brain tumors
resemble non-immunoselected CIN+ cells, the transcriptomes
of CIN+ non-brain tumors resemble immunoselected CIN+
cells, and thus may have been shaped by immunoselection.

Next, we performed network-based pathway analyses of
these cells’ transcriptomic signatures. Strikingly, we found
that the processes related to inflammatory response, inter-
feron signaling and dsRNA sensing pathways were among
the highest-scoring processes in the HP line (Figure 5(g-h)).
However, these processes were significantly suppressed in the
IC1-2, but not ID1, clones (Figure 5(g)), suggesting that
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Figure 4. Antigen processing and presentation pathway genes are suppressed in CIN+ tumors through DNA hyper-methylation. a) Correlation of CNVs of indicated
APP genes with CIN in the indicated cancer tissues. All of these genes, except for B2M, reside on 6p21-22. b) A plot of HNSC (head and neck cancer, TCGA) samples
scattered by their TAP1 CNV (x-axis) and nCNV (y-axis). Coloring of points (samples) is by relative TAP1 mRNA expression. c) Same as in (B), for B2M in LUAD samples.
d) Same as in (C), but with the coloring of samples reflecting the relative DNA methylation of B2M. e) Left: a network plot of DNA methyl-transferase genes, with their
coloring reflecting the correlation of the expression of the respective genes with nCNV in LUAD. Right: heatmap of correlations of DNA methylation of the indicated
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prolonged tumor growth under immune pressure led to their
suppression. Accordingly, HP and ID lines exhibited
a dramatic induction of Ifnb1 (encoding Interferon β) relative
to the parental cells; but this Ifnb1 increase was suppressed in
the IC lines (Figure 5(g)).

Since the cytoplasmic DNA sensing through the STING/
TBK1 pathway has been shown to have a central role in the
induction of the immune responses to CIN,13,15 we evaluated
the expression levels of genes involved in this pathway genes.
The expression of many key players, such as Cgas, Ifi204 and
Irf7 were increased in HP, but suppressed in the IC, but not

ID, lines at the mRNA level (Figure5(i)). We observed
a similar trend at the protein level as well, where, in addition
to total levels, phosphorylated forms of the key pathway
players, such as Sting, Tbk1 and Irf3, were increased in
HP, but suppressed in IC, but not ID, cells (Figure 5(j)).
Furthermore, confirming the role of the STING/TBK1 path-
way in the pro-immunogenic state of HP lines, treating the
HP cells with a TBK1 inhibitory compound suppressed the
expression of Ifnb1, as well as of B2m and H2-Kd (MHC-I
subunit)(Figure5(k)). These results support our hypothesis
that the pro-inflammatory response to CIN, involving

Figure 5. Inflammatory response signaling and antigen presentation are suppressed in CIN+ tumors by immunoselection. a) Diagram of development of the
indicated CT26 cell clones (HP: parental hyperploid, IC: immunoselected hyperploid clone [i.e. passaged in immune-competent mice], ID: hyperploid clone passaged
in immune-deficient mice). b) Flow cytometry profiles of DNA content of the indicated cells. c) In vivo tumor growth curves of the indicated lines in immune-
competent Balb/c mice. Error bars: s.d. of two mice per group. *: P < .05 by t-test. d) Immunoblots of indicated proteins in the indicated lines. e) Distribution of cell
surface expression of H2-KD in the indicated lines as measured by flow cytometry. f) Genome-wide correlation profiles of the transcriptomic signatures of CT26 and its
derivative lines with the CIN signatures of indicated cancers from TCGA. The coloring in the heatmap reflects – log10-transformed p-values of Spearman’s rank
correlation of the corresponding signatures adjusted by the direction of correlation (i.e. negative indicates negative correlation and vice versa). g) Heatmap of
pathway scores calculated from the genome-wide transcriptomic analyses of indicated lines by NetWalker. Pathway scores reflect relative expression in the indicated
lines (red: high, blue: low). h) Network plot of the highest scoring sub-network in the HP line from NetWalk analysis. The coloring of nodes reflects their relative
expression in HP line. Inset: Ifnb2 mRNA levels measured by qPCR in the WT, HP, IC1, IC2 and ID lines normalized to β-actin. i) Left: a diagram of Sting-mediated
cytoplasmic DNA sensing pathway. Right: heatmap of relative expression of the indicated Sting pathway genes in the indicated lines. j) Immunoblot of some key
cGas/Tbk1 pathway proteins in the indicated lines. k) Top: Ifnb1 mRNA levels (qPCR) in HP cells upon treatment with the TBK inhibitor. Error bars: s.d. of two
replicates. Bottom: Immunoblot of B2m and H2-KD in HP cells before and after treatment with the increasing doses of the TBK1 inhibitor (BX795). l) Heatmap of
correlations of type I interferon response (top) and STING (bottom) pathway genes with CIN in the indicated cancers from TCGA. Western blots in the panels D, J and
K are representative of at least two independent experiments.
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STING pathway signaling, type I response and APP, is sup-
pressed during the evolution of CIN+ tumors under immune
pressure, and lead to an immunologically cold state. Finally,
in support of this hypothesis in the clinical samples, while
CIN+ brain tumors, which are not subject to immunoselec-
tion (i.e. GBM, LGG), showed an overall overexpression of
the type I interferon response and STING pathway genes,
CIN+ non-brain tumors, which evolve under strong immune
pressure, showed an overall suppression of these genes
(Figure5(l)).

Discussion

Unlike tumors with high microsatellite instability, which are
characterized by high mutational burden and immune
infiltration,8 tumors with chromosomal instability, which are
characterized by large structural aberrations, are immunolo-
gically cold.11 This is seemingly at odds with the multitude of
studies showing the pro-inflammatory effect of CIN and the
subsequent DNA damage response in tumor cells.12–15,21 Our
computational interrogation of the legacy genomic datasets
from cancer tissues and cell lines, combined with our analyses
of an experimental model of tumor aneuploidy, support
a model of CIN+ tumor evolution, where the initial induction
of CIN leads to the activation of the cGAS/STING pathway
and of pro-inflammatory signaling, leading to the induction of
MHC-I antigen presentation and a pro-immunogenic state in
the tumor. However, as tumors evolve under the immune
pressure, they suppress the innate immune response signaling
machinery and antigen presentation, and acquire an immu-
nologically cold state (Figure 6). Consistent with this hypoth-
esis, human (e.g. GBM and LGG) and mouse CIN+ tumors
(ID clones) that do not experience significant immune pres-
sure during their evolution retain their pro-inflammatory
character, and display high expression of STING, innate
response and APP pathway genes compared to genomically
more stable tumors. The suppression of pro-inflammatory
(including cGAS/STING) and APP pathway genes in CIN+
tumors is likely to be due to immune editing,3 where nascent
transformed cells with CIN that are immunogenic are

eliminated by the immune system, and only clones that sup-
press the STING/APP pathway can thrive, thus giving rise to
immunologically cold tumors.

Our analyses suggest that the suppression of APP genes is
unlikely to be due to the deletion of these genes, but rather due to
their epigenetic silencing (see Figure 4). Inactivation of tumor
suppressor genes through DNAmethylation during oncogenesis
and cancer progression is a well-characterized phenomenon,
and our analyses reveal yet another pathway targeted by this
machinery in cancers under immune pressure. Interestingly, the
expression of the DNA methyltransferase machinery is signifi-
cantly upregulated in CIN+ tumors (see Figure 4(e)). However,
this is unlikely to lead to genome-wide increases in the DNA
methylation, as the cumulative DNA methylation seems to
decrease, rather than increase, with CIN (not shown).
Therefore, the hypermethylation of APP genes might be the
result of gene locus-specific, rather than genome-wide changes,
in DNA methylation. Identifying the causal players of APP gene
suppression will be crucial to design intervention strategies to
reactivate the TLI in CIN+ tumors. In this regard, artificial
STING agonists and DNA methylation inhibitors (5-azacyti-
dine), both of which are currently in clinical trials, may be
attractive immediate candidates to test for the re-activation of
the cGAS/STING pathway and re-expression of APP genes.

Methods

Datasets

TCGA RNAseq, RPPA, CNV and Methylomic datasets were
obtained from the Broad GDAC Firehose (https://gdac.broad-
institute.org/). CCLE RNAseq, RPPA, CNV and RBBS data
were obtained from the CCLE data portal (https://portals.
broadinstitute.org/ccle/data).

Definition of CIN

We scored CIN as the number of genes that had CNV values
greater than |0.25|. This measure strongly correlated with the
aneuploidy scores from the pan-cancer TCGA study (see

Chromosomal instability
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Type I response and anti-tumor immunity

IFN, chemokines
MHC-I

IRF

T-cells

Immunoselection:
Suppression of STING/TBK1/MHC pathway

IFN, chemokines

IRF

T-cells

Tumor immune escape

Figure 6. Schematic model of the evolution of CIN+ tumors. CIN creates an immune pressure in the nascent tumor cells due to the activation of the STING pathway
and subsequent innate anti-tumor response. This immune pressure allows for the selection of CIN+ clones that have uncoupled genomic instability from the
activation of the STING pathway activation and consequent immunostimulation. The resultant tumors are thus immunologically cold.
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Supp. Figure 2A). For CCLE, we defined the threshold at |0.5|,
due to the higher purity of the cell line data. Using different
thresholds did not significantly affect the results.

Calculation of CIN signatures

We defined transcriptomic CIN signature as the vector of
correlation values (Spearman’s ρ) of each gene’s mRNA
expression with nCNV in a given cancer. Proteomic CIN
signatures were defined same way, but using RPPA data
instead of mRNA expression.

Structural equation modeling analyses

SEM analyses were conducted using the R package lavaan.
The equations were defined as described in Supp. Figure 3A,
and SEM was run using standard parameters.

Pathway analyses and scoring

To convert gene-based measures (e.g. transcriptomic CIN
signature) to pathway-based scores, we used our previously
developed method NetWalk implemented in NetWalker using
standard parameters. The interpretation of the pathway scores
are similar to the interpretation of the original correlation
values that were used to derive them: more positive values
indicate enrichment for the more positive correlation values,
and more negative values indicate higher enrichment for the
negative correlation values.

Analyses of methylation data

For TCGA, the Infinium 450k array data were used. To enable
gene-level correlations with nCNV, we summed the methyla-
tion beta-values for the probes of each gene, and used the
resultant values for correlation analyses in Figure 4. For
CCLE, the RRBS data from promoter CpG clusters were
used. Gene-level correlations were done as described above
by summing the values for each gene.

Cell culture

The HP, IC and ID clones from CT26 cells were generated as
described. All cells were cultured in DMEM supplemented with
10% FBS and 0.1% antibiotic and antimycotic (Gibco), in
a humidified atmosphere in 5% CO2 at 37°C. All cells were
regularly tested for mycoplasma contamination and were
negative.

Tumor growth assay

Balb/C mice (6–8 weeks old, Jackson Laboratories) were
injected with 1 × 106 cells of the indicated lines subcuta-
neously into the right flank. Tumor volumes were monitored
every two days up to day 24, at which point the mice were
euthanized. Animal research was approved and overseen by
The CCHMC Institutional Animal Care and Use Committee
(CCHMC IACUC).

Immunoblotting

Total proteins were extracted with RIPA buffer (Santa Cruz
Biotechnology, sc-24948), and 15µg protein from each sample
was run in a 4–18% SDS polyacrylamide gel (Bio-Rad), and
transferred onto polyvinylidene difluoride membranes. The
membranes were blocked in 5% dry milk in tris-buffered
saline–Tween 20 for 1 hour. Blocked membranes were incu-
bated overnight with primary antibodies in 5% bovine serum
albumin. After washing and incubating with the appropriate
secondary antibody, protein signals were detected with
enhanced chemiluminescence (Millipore). The normalized
quantifications of band intensities in the blots in Figure 5
are provided in Supplementary Table 3.

Antibodies

Except for B2M (Abcam) and H2-Kd (Biolegend), all the
antibodies were from Cell Signaling.

Rnaseq

Total RNA was extracted from the cells using Tri reagent
(Sigma). RNase-free DNase was used for removing all genomic
DNA contamination. The RNA was precipitated by Isopropanol
(Sigma), washed by ice cold 75% ethanol (Sigma), and air dried
prior to resuspension in 20 µl of DEPC-treated water. Purity and
concentration of RNA was measured by NanoDrops (Thermo
Scientific). The 260/280 ratio was 1.90–2.00 and the 260/230
ratio was 2.00–2.20 for all RNA Samples.

Directional polyA RNA-seq was performed by the
Genomics, Epigenomics and Sequencing Core (GESC) at the
University of Cincinnati. NEBNext Poly(A) mRNA Magnetic
Isolation Module (New England BioLabs, Ipswich, MA) was
used for polyA RNA purification with a total of 50 ng to 1 µg
of good quality total RNA as input. The Core used Apollo 324
system (WaferGen, Fremont, CA) and ran PrepX PolyA script
for automated ployA RNA isolation. NEBNext Ultra
Directional RNA Library Prep Kit (New England BioLabs,
Ipswich, MA) was used for library preparation, which used
dUTP in cDNA synthesis to maintain strand specificity. In
short, the isolated polyA RNA was Mg2+/heat fragmented
(~200 bp), reverse transcribed to 1st strand cDNA, followed
by 2nd strand cDNA synthesis labelled with dUTP. The
purified cDNA was end repaired and dA tailed, and then
ligated to adapter with a stem-loop structure. The dUTP-
labelled 2nd strand cDNA was removed by USER enzyme to
maintain strand specificity. After indexing via PCR (~12
cycles) enrichment, the amplified libraries together with
library preparation negative control were cleaned up by
AMPure XP beads for QC analysis. Libraries at the final
concentration of 15.0 pM was clustered onto a single read
(SR) flow cell using Illumina’s TruSeq SR Cluster kit v3, and
sequenced for 50 bp using TruSeq SBS kit on Illumina HiSeq
system.

The fastq files from RNA-seq data were used to quantify
gene-level expression using RSEM26 (Supp. Table 2). To
obtain transcriptomic signatures (see Figure 5(f)), the expres-
sion of each gene in each line was row-normalized by taking
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the log2-transform of the ratio of its expression to the average
in all 5 cells.
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