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Distinct thalamocortical network dynamics are
associated with the pathophysiology of chronic
low back pain
Yiheng Tu 1,2, Zening Fu3, Cuiping Mao1,4, Maryam Falahpour5, Randy L. Gollub 1, Joel Park 1,

Georgia Wilson1, Vitaly Napadow2, Jessica Gerber2, Suk-Tak Chan2, Robert R. Edwards6, Ted J. Kaptchuk 7,

Thomas Liu5, Vince Calhoun3, Bruce Rosen2 & Jian Kong 1,2✉

Thalamocortical dysrhythmia is a key pathology of chronic neuropathic pain, but few studies

have investigated thalamocortical networks in chronic low back pain (cLBP) given its non-

specific etiology and complexity. Using fMRI, we propose an analytical pipeline to identify

abnormal thalamocortical network dynamics in cLBP patients and validate the findings in two

independent cohorts. We first identify two reoccurring dynamic connectivity states and their

associations with chronic and temporary pain. Further analyses show that cLBP patients have

abnormal connectivity between the ventral lateral/posterolateral nucleus (VL/VPL) and

postcentral gyrus (PoCG) and between the dorsal/ventral medial nucleus and insula in the

less frequent connectivity state, and temporary pain exacerbation alters connectivity between

the VL/VPL and PoCG and the default mode network in the more frequent connectivity state.

These results extend current findings on thalamocortical dysfunction and dysrhythmia in

chronic pain and demonstrate that cLBP pathophysiology and clinical pain intensity are

associated with distinct thalamocortical network dynamics.
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Chronic low back pain (cLBP) is the number one cause of
disability globally1, and the problem is worsening due to
an aging and increasing world population2. Current

treatment regimens are ineffective in a significant number of
individuals, and few nonopioid and nonaddictive pain medica-
tions have been developed over the past five decades3. cLBP is
characterized by a range of biophysical, psychological, and social
factors with extreme variability in genesis4. This complexity and
the limited understanding of the neural mechanisms responsible
for the development, maintenance, and experience of cLBP hin-
der the development of new treatments.

The brain of the chronic pain patient is continuously proces-
sing background pain by integrating information between mul-
tiple brain regions related to sensory, cognitive, and emotional
functions5. Multiple lines of evidence suggest a critical role of the
thalamus in chronic pain processing. Electrophysiological studies
have shown altered thalamocortical rhythm, termed thalamo-
cortical dysrhythmia (TCD)6, in chronic pain7–9. The abnormal,
internally generated low-frequency oscillations in the thalamo-
cortico-thalamic network disrupts the normal state-dependent
flow of information between the thalamus and cortex. This in
turn leads to disturbances of sensation, motor performance, and
cognition in patients with chronic pain7. Studies using functional
magnetic resonance imaging (fMRI) have also demonstrated that
abnormal low-frequency oscillations and connectivity in thala-
mocortical networks underpin the constant perception of
pain10,11. However, this evidence is mainly found in neuropathic
pain (NP), and the role of thalamocortical networks in cLBP is
still unknown. Unlike NP, cLBP is not necessarily sustained by
peripheral nerve injury, and rarely can a specific cause of cLBP be
identified4. Investigating the neural mechanisms of thalamocor-
tical networks in cLBP is challenging but important for potential
therapeutic targets.

In past decades, fMRI resting-state functional connectivity has
provided high spatial resolution for studying brain networks.
Challenging the conventional assumption that functional inter-
actions remain constant throughout the entire resting-state scan,
recent studies have shown that rsFC can vary considerably in
different temporal scales12–15, and such time-varying character-
istics may represent spontaneous alterations in the underlying
networks and thus may reveal neural mechanisms that cannot be
discovered through static rsFC alone16–18.

In this study, we examined dynamic rsFC in 90 cLBP patients
and 74 healthy controls (HCs) using fMRI. We hypothesized that
cLBP would be associated with dynamic connectivity abnormal-
ities of the thalamocortical networks, which would be correlated
with clinical symptoms. Patients underwent two resting-state
fMRI scans before and after physical maneuvers aimed to
exacerbate their spontaneous LBP. This allowed us to separate
brain patterns associated with chronic pain pathophysiology (as
compared with HCs) and temporal intensity alternations of
clinical pain (high pain vs. low pain)19,20 since previous studies
have suggested that neural dynamics discriminating cLBP
patients from HCs may be distinct from neural dynamics
sensitive to pain intensity changes20,21. We applied a novel ana-
lytical framework combining sliding-window cross-correlation,

clustering state analysis, and graph-theory methods to capture
abnormal thalamocortical network dynamics and their relation-
ships with clinical symptoms in cLBP patients under two different
conditions (i.e., low and high spontaneous LBP). The global and
local efficiency of information transfer in large scale brain net-
works was also investigated and compared between cLBP and
HCs. In addition, we tested the validity of the findings using an
independent dataset consisting of 30 cLBP patients (each patient
had two fMRI scans separated by about 2 weeks to explore
test–retest reliability) and 30 HCs. We also replicated the findings
from a dataset of 25 cLBP patients and 25 HCs with a similar
attention/vigilance level, as demonstrated by a multisource
interference task (MSIT), to rule out the confounding effect of
vigilance.

Results
Demographics and clinical scores for cLBP patients. For
exploration and validation, we used three independent cohorts of
subjects (Table 1). The first cohort (Dataset 1) consisted of 90
cLBP patients (age 34.5 ± 9.0; 38 males) and 74 HCs (age 32.4 ±
8.4; 31 males). Patients had an average pain severity (using
the Pain Bothersomeness visual analog scale [VAS] from 0, “not
at all bothersome,” to 10, “extremely bothersome”) of 5.1 ± 1.9
during the past 7 days. Pain severity was the primary clinical
measure in this study, as previous studies21,22 and our research23

have suggested that cLBP may modulate brain functions beyond
the pain system itself in ways that may be maladaptive, affecting
patients’ daily experiences and diminishing their quality of life. In
addition, patients were required to rate their current pain
intensity (numerical rating scale [NRS] from 0, “no pain,” to 100,
“worst pain imaginable”) prior to the two resting-state fMRI
scans, between which they performed pain-exacerbating man-
euvers to increase their LBP intensity. Across 90 cLBP patients,
the current pain intensities were increased from 31.7 ± 20.1 to
51.5 ± 20.1, while 14 of them had the same or decreased levels of
pain intensity. These 14 patients were excluded from the fol-
lowing fMRI analyses comparing dynamic rsFC and thalamo-
cortical networks between low-pain and exacerbated-pain
conditions. The remaining 76 patients had current pain inten-
sities increased from 31.3 ± 18.7 to 55.2 ± 19.6.

The second cohort (Dataset 2) consisted of 30 cLBP patients
(age 37.2 ± 11.0; 13 males) and 30 HCs (age 33.5 ± 7.2; 17 males).
Patients had an average pain intensity of 5.8 ± 1.5 (0–10 NRS) for
the past 7 days before the first resting-state fMRI scan, and an
average current pain intensity of 44.0 ± 23.1 and 44.1 ± 23.1
(0–100 NRS) prior to the first and second resting-state fMRI
scans, respectively (these two sessions were separated by about
2 weeks). Please note that one of the independent cohorts
measured pain severity using the Pain Bothersomeness scale over
the past 7 days (Dataset 1) and the other cohort measured pain
intensity using the NRS over the past 7 days (Dataset 2).
Although each cohort used a different measure, pain intensity
and pain severity are likely to be highly correlated and both were
used to distinguish chronic pain from acute clinical pain (i.e.,
current pain intensity).

Table 1 Demographics (mean ± SD) of cLBP and HCs.

Characteristics Dataset 1 Dataset 2 Dataset 3

cLBP (n= 90) HCs (n= 74) cLBP (n= 30) HCs (n= 30) cLBP (n= 25) HCs (n= 25)

Age (years) 34.5 ± 9.0 32.4 ± 8.4 37.2 ± 11.0 33.5 ± 7.2 48.0 ± 9.6 44.3 ± 12.2
Gender (male/female) 38/52 31/43 13/17 17/13 7/18 9/16
Pain duration (years) 6.9 ± 6.2 NA 5.9 ± 7.1 NA 6.1 ± 5.8 NA
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The third cohort (Dataset 3) consisted of 25 cLBP patients (age
48.0 ± 9.6; 7 males) and 25 HCs (age 44.3 ± 12.2; 9 males) from an
independent site that performed a MSIT24 (see “Cross-site
validation” for details). Patients had an average past pain
intensity of 6.1 ± 5.8 (0–10 NRS).

Brain parcellation and whole-brain connectivity estimation.
We parcellated the brain into regions and networks of interest
using group independent component analysis (GICA), a powerful
data-driven approach for capturing individual differences of real
functional boundaries in the brain25. Previous studies have
typically conducted GICA on the exploratory dataset and have
identified targeted independent components (ICs) as intrinsic
connectivity networks (ICNs). However, due to the differences
between datasets (e.g., sample size, data dimensions, or data
qualities), the traditional GICA-identified ICNs are variable and
not necessarily consistent across studies, which limits the
replicability of the findings. In this study, we adopted a method
capable of identifying reliable ICNs that can be compared across
datasets26. The group template of ICNs was identified from two
independent datasets (Human Connectome Project [HCP] and
Genomics Superstruct Project [GSP]) with large sample sizes
(N= 1005 for GSP and N= 823 for HCP) and different temporal
resolutions (see details in Supplementary Note 1), and was used
as a reference within a spatially constrained ICA algorithm27,28 to
compute individual spatial maps and time courses for Dataset 1,
Dataset 2, and Dataset 3. The 45 replicable ICNs were categorized
into six functional networks (Fig. 1a), including the sensorimotor
network (SMN)20,29, default mode network (DMN)30,31, fronto-
parietal network (FPN)32, subcortical network (SCN)33, visual
network (VSN)34, and auditory network22, which have been
widely studied in chronic pain. The detailed component labels
and peak coordinates of each ICN are provided in Supplementary
Figs. 1–6 and Supplementary Table 1.

Four post-processing steps were performed on time courses of
ICNs to remove remaining noise sources, including (1) detrend-
ing linear, quadratic, and cubic trends; (2) nuisance regression of
head-motion-related points detected by artifact detection toolbox

(ART) in fMRI preprocessing; (3) de-spiking detected outliers;
and (4) low-pass filtering with a cutoff frequency of 0.15 Hz. After
these additional quality control steps, we calculated 45 × 45
correlation matrices for each subject and applied the Fisher z-
transformation to each correlation coefficient, resulting in static
functional network connectivity (sFNC). We did not observe
strong thalamocortical connectivity across participants (Fig. 1b).

To further increase the validity of our study, we tested an
additional parcellation strategy of using the established and
extensively validated functional atlas by Yeo and colleagues35. In
addition to the Yeo atlas, we added six regions in the SCN
(bilateral thalamus, bilateral caudate, and bilateral putamen) and
six regions in the SMN (bilateral postcentral gyrus [PoCG],
bilateral precentral gyrus, and bilateral paracentral lobule
[ParaCL]) from the automated anatomical labeling (AAL) atlas
to match the regions identified from GICA. Details of the
parcellation can be found in Supplementary Note 2 and
Supplementary Fig. 7.

Clustering analysis and dynamic functional connectivity. We
calculated dynamic functional network connectivity (dFNC)
among ICNs using a sliding-window approach with graphical
LASSO and then conducted a k-mean clustering on the dFNC
estimates to identify recurring functional states14,36. We per-
formed a cluster number validity analysis using a silhouette
method to identify the optimal number of clusters ranging from 2
to 1037, and it was determined to be 2 (Supplementary Fig. 8).
Two highly structured dFNC states that reoccurred throughout
individual scans and across participants were identified (Fig. 2a):
a more frequent (around 75% of total occurrences) and sparsely
connected State 1, and a less frequent (around 25% of total
occurrences) and more strongly interconnected State 2. Figure 2b
shows the top 100 (as indexed by the absolute strength of dFNC)
connections in two states. In State 1, connections between ICNs
were located mainly within the SMN and VSN and between the
FPN and other networks. The connectivity pattern of State 1 was
very similar to the pattern of sFNC in Fig. 1b. In contrast, State 2
was mainly characterized by strong connectivity between the SCN

SMN
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FPN

VSN
ADN
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DMN

SCN
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VSN

ADN

0.8–0.8

Correlations (z )
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X = -5 mm Z = 27 mm Y = 1 mm Z = 1 mm

X = -42 mm Z = 1 mm X = 46 mm Z = -9 mm

Sensorimotor network Auditory network

Default mode network Subcortical network

Fronto-parietal network Visual network

a b

Fig. 1 Spatial maps of the identified intrinsic ICNs and static connectivity matrix. a 45 ICNs were identified and sorted into six resting-state networks.
Each color represents a single ICN. b Group-averaged static functional connectivity matrix. ICNs intrinsic connectivity networks, SMN sensorimotor
network, DMN default mode network, SCN subcortical network, FPN frontoparietal network, VSN visual network, ADN auditory network.
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(including the thalamus, putamen, and caudate) and SMN
(including the PoCG, precentral gyrus, and ParaCL). Details of
the connections (with labels of ICNs) in these two states can be
found in Supplementary Fig. 9. We validated this finding using
the Yeo atlas (Supplementary Fig. 10), indicating that the time-
varying characteristics of rsFC might be consistent under differ-
ent brain parcellation strategies.

Group difference of occurrences and dFNC patterns. The group
differences in occurrences (fraction rate: the proportion of time
spent in each state; dwell time: how long the participant stayed in
a certain state) are shown in Fig. 3a and Table 2. In Dataset 1,
compared with HCs, patients with cLBP had significantly lower
fraction rate and dwell time in State 1 but significantly higher
fraction rate and dwell time in State 2 in both low-pain (pre-
maneuver) and exacerbated-pain (post-maneuver) conditions
(p < 0.05 false discovery rate [FDR] corrected). We did not find
any significant differences in fraction rate and dwell time between
low-pain and exacerbated-pain conditions. The significant dif-
ferences of fraction rate and dwell time between cLBP patients (in
both Session 1 and Session 2) and HCs were also observed in
Dataset 2 (p < 0.05 FDR corrected; the dwell time of cLBP patients
in Session 2 was not significantly higher than that of HCs, p=
0.17), and the significant differences were further validated using
the Yeo parcellation strategy (Supplementary Fig. 10). Overall,
these changes suggest that in cLBP patients, the stability of the

weaker within-network dFNC (State 1) was significantly affected,
while the expression of the stronger between-network dFNC
(State 2) was proportionally increased.

In a further analysis of relationships between dFNC and
clinical symptoms in cLBP patients, we found that the fraction
rate and dwell time of State 2 were significantly correlated with
pain severity/intensity of cLBP patients in the past 7 days
(Fig. 3b), indicating that more severe cLBP may result in a higher
occurrence rate of State 2.

Figure 3c shows group-specific dFNC profiles (top 100
connections) for cLBP patients before and after the maneuver,
as well as HCs, in two different states. In general, patients and
HCs had similar patterns of connectivity in the two states (Fig. 3c,
left panel). In State 1, before performing the maneuver, cLBP
patients had significantly lower connectivity between the SMN
and DMN and higher connectivity within the DMN compared
with HCs (Fig. 3c, top right panel). In State 2, before and after
performing the maneuver, cLBP patients had significantly lower
connectivity between the SCN and SMN in State 2 compared with
HCs (Fig. 3c, bottom right panel).

Dynamic network efficiency. To investigate the topologic orga-
nizations of the dFNC states and compare them between groups
(pre-maneuver, post-maneuver, and HCs), we applied a graph-
theory analysis. Two established and widely validated measures,
global and local network efficiencies, were employed to evaluate
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local and global information transfer in functional brain net-
works38. Figure 4 shows the mean and bootstrapped 95% con-
fidence intervals as well as smoothed density histograms for the
global efficiency and local efficiency in each group. In both
Dataset 1 and Dataset 2, we observed that cLBP patients exhibited
significantly lower global efficiency than HCs in State 2 (p < 0.05
FDR corrected; two sample t-test), suggesting that the average
parallel information transfer in the brain networks of State 2 was
less efficient in patients with chronic pain. However, the global

efficiency of State 1 was not significantly different in cLBP
compared with HCs (p > 0.05 for all comparisons in State 1 for
the two datasets). In contrast to the findings of global efficiency
deficits in cLBP patients, the local efficiency, measuring the
average efficiency between critical nodes within a neighborhood,
was less affected (we found that cLBP patients in Dataset 2 had
statistically higher local efficiency in State 1, but this finding was
not validated in Dataset 1). Interestingly, direct comparisons
between patients before and after the maneuver did not show a
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significant difference of global and local efficiencies of dFNC in
the two states, indicating that temporary pain exacerbation may
not affect efficiencies of brain networks in cLBP patients.

Abnormal thalamocortical networks. The findings in the pre-
vious sections indicate that State 2 may be a critical dynamic state
underlying cLBP pathophysiology. Patients had abnormal dFNC
in State 2, particularly between the SCN and SMN. The SCN in
our study included the thalamus, putamen, and caudate. Given the
important role of the thalamus in the pathophysiology of chronic
pain and our hypothesis of abnormal thalamocortical networks in
cLBP, we used the thalamus as a seed to investigate thalamus-to-
whole-brain dFNC at each state and compared them between
groups. In GICA, we identified two ICNs for thalamic nuclei and
determined their anatomical location in the thalamus using the

MNI coordinates and the BrainNavigator atlas (http://www.
thehumanbrain.info/brain/brain_navigator.php) (see “Methods”
for details). We found that these two ICNs included the ventral
lateral/posterolateral (VL/VPL) nucleus and dorsal/ventral medial
(DM/VM) nucleus (Fig. 5a), which have been widely studied in
experimental and clinical pain settings. The VL, especially the
VPL, is the principal somatosensory nucleus of the thalamus and
has been found to be abnormal in humans39,40 and rodents41. The
DM/VM plays a critical role in cognitive functions42 and has been
found to be dysregulated in migraine43. The nucleus-based whole-
brain dFNC was estimated using seed-based correlation analysis
between the time courses of these two ICNs and time courses of
other voxels in the brain in State 1 and State 2. In addition, we also
performed conventional static seed-to-voxel connectivity analysis
using VL/VPL and DM/VM as seeds.

Table 2 Fraction rate and dwell time (mean ± SEM) for cLBP patients and HCs in two datasets.

Dataset 1 Dataset 2

Fraction rate (%) Dwell time (wins) Fraction rate (%) Dwell time (wins)

State 1 State 1
cLBP pre 71 ± 3 57 ± 3 cLBP sess 1 67 ± 5 63 ± 9
cLBP post 70 ± 3 71 ± 3 cLBP sess 2 69 ± 5 63 ± 9
HC 83 ± 3 60 ± 3 HC 83 ± 4 86 ± 7

State 2 State 2
cLBP pre 29 ± 3 19 ± 2 cLBP sess 1 33 ± 5 25 ± 5
cLBP post 30 ± 3 21 ± 3 cLBP sess 2 31 ± 5 19 ± 3
HC 17 ± 3 12 ± 2 HC 17 ± 4 13 ± 3
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Fig. 4 Topologic measures of dFNC states. Global (a) and local efficiencies (b) in the two different states are shown using violin plots for different groups
(pre-maneuver, post-maneuver, and HCs in Dataset 1, N= 90 and 74 for cLBP patients and HCs, respectively; LBP session 1, session 2, and HCs in Dataset
2, N= 30 and 30 for cLBP patients and HCs, respectively). Each dark dot represents an individual’s value and each red dot indicates the group mean.
Asterisks represent significant difference at two-sided pFDR < 0.05 for t-test. Source data are provided as a Source Data file.
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Figure 5b, c show abnormal VL/VPL and DM/VM-based
whole-brain dFNC of cLBP patients in State 2. Compared with
HCs, patients had significantly higher connectivity between the
VL/VPL and PoCG/ParaCL and lower connectivity between the
DM/VM and bilateral insula (the statistical maps were set at a
threshold of p < 0.005 at voxel level and pFDR < 0.05 at the cluster
level). These results support our hypothesis that abnormal

thalamocortical networks may underlie chronic pain pathophy-
siology in State 2.

Direct comparisons of VL/VPL and DM/VM-based whole-
brain dFNC between pre- and post-maneuver conditions showed
that cLBP patients had significantly decreased connectivity
between the VL/VPL and visual cortex (i.e., the cuneus, calcarine,
and lingual gyrus) but had increased connectivity between the
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VL/VPL and PoCG and DMN (i.e., medial prefrontal cortex,
posterior cingulate cortex, and bilateral angular gyrus) in State 1
(Fig. 5d). Therefore, temporal pain exacerbation may mainly
affect thalamocortical networks in the frequent but sparsely
connected State 1.

Using conventional static seed-to voxel connectivity, we only
found significant differences in DM/VM-based connectivity
between cLBP and HCs (Supplementary Fig. 11), but not between
pre- and post-maneuver conditions. We did not find any
significant differences of VL/VPL-based connectivity in any
comparisons.

Considering the complex functions of the thalamus, thalamo-
cortical connections from other nuclei may also account for the
connectivity difference between cLBP and HCs as well as between
pre- and post-maneuver conditions. Therefore, we performed an
exploratory analysis using the same method with the sub-
thalamic nuclei, which subdivides the thalamus based on
structural connectivity (estimated using probabilistic diffusion
tractography) into the following seven large cortical areas:
primary motor, somatosensory, occipital, prefrontal, pre-motor,
parietal, and temporal (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
Atlases)44. The findings from the sub-thalamic atlas were
consistent with those using ICA-derived nuclei, but we also
found thalamocortical connectivity differences from other nuclei
(Supplementary Note 3 and Supplementary Fig. 12).

In Fig. 5c, we also observed abnormal connectivity between the
DM/VM and putamen. Since the basal ganglia (BG) structures
(e.g., putamen and caudate) receive input from the thalamus and
thalamo-cortico-BG loops play an important role in pain
processing45, we performed an exploratory analysis using the
same method with the putamen and caudate as seeds (identified
from GICA). We observed decreased connectivity between the
putamen and several brain regions within emotional/affective
(e.g., amygdala, hippocampus) and cognitive networks (e.g.,
anterior cingulate cortex, dorsal lateral prefrontal cortex) in cLBP
patients (Supplementary Figs. 13 and 14).

Cross-site validation. To further validate our findings, and more
importantly, to account for the potential confounding effect of
vigilance on dFNC46, we performed cross-site validation on
Dataset 3 with cLBP and HCs. These groups performed an
MSIT24 before and after the MRI scan and showed similar
attention/vigilance levels (see “Methods” for the detailed experi-
mental design of MSIT).

In summary, we found that cLBP patients and HCs performed
better (higher accuracy (Acc) and shorter reaction time (RT)) in
control trials (e.g., identify “2” in Fig. 6a upper panel) compared
with interference trials (e.g., identify “2” in Fig. 6a lower panel),
but the task performance did not differ between groups (Fig. 6b,
c). Although we were not able to experimentally track vigilance
level during the resting-state fMRI scan, the MSIT (particularly
the control condition of the task) provided evidence that cLBP
patients and HCs had similar vigilance/attention levels both
before and after the fMRI scan. In this cohort, we were able to
replicate the findings obtained from Datasets 1 and 2 [i.e., cLBP
patients spent longer time (larger fraction rate and dwell time) in
State 2 compared with HCs (Fig. 6d)].

Quality control analyses. To further explore the potential effects
of vigilance/drowsiness on our results in Datasets 1 and 2, we
compared the putative vigilance levels between cLBP patients and
HCs using an fMRI-based vigilance spatial template47 and fMRI
global signal amplitudes48. We did not find that vigilance levels
differed between the two cohorts or between the two dFNC states
(Supplementary Note 4).

In addition, similar to our previous study, we extracted FC features
based on the well-established rsFC neural markers of drowsiness49

and found that these features could significantly classify cLBP patients
and HCs, as well as the two dFNC states. These results suggest that
there was no systematic difference in vigilance/drowsiness levels that
may have confounded our findings. Details of the analysis and results
are provided in Supplementary Note 4 and Supplementary Fig. 15.
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To rule out the potential effects of head motion and opioid
usage on our results, we performed quality control analyses. We
first found that head motion [as represented by the maximal
frame displacement value50] did not differ between groups and
did not show correlations with fraction rate, dwell time, or pain
severity (Supplementary Note 5 and Supplementary Fig. 16).
Second, only five cLBP patients in Dataset 1 and one cLBP patient
in Dataset 2 reported that they took opioid medications before the
scans. Given the sample sizes of the two datasets, we thus believe
that our results were not affected by opioid usage.

Discussion
Given the dynamic and condition-dependent nature (e.g., mental
states, diseases) of brain functional connectivity, even during
“rest,” time-varying characteristics of rsFC may reveal neural
mechanisms/pathophysiology that cannot be discovered through
static rsFC alone. In the present study, we identified two reoc-
curring dFNC states characterized by different connectivity pat-
terns. Of these two dFNC states, the less frequent state,
characterized by strong negative connectivity between the SCN
and SMN, is associated with the following characteristics: (1) the
occurrences of this state were significantly higher in cLBP patients
and correlated with pain severity, (2) patients exhibited sig-
nificantly lower efficiency of information transfer in functional
brain networks in this state, and (3) patients had abnormal tha-
lamocortical networks in this state. In contrast, the altered clinical
pain intensity was associated with thalamocortical networks in
the other more frequent state, which was characterized by spar-
sely connected within-network dFNC.

Recent studies have shown the neuronal origins of dynamic
rsFC51 and have suggested that temporal organization of dynamic
rsFC patterns follow specific sequential orders in awake rats and
humans52. Therefore, it is believed that rsFC brain networks may
have several reoccurring states throughout the entire fMRI scan36.
In this study, we found that both patients and HCs had two
dFNC states. State 1, the more frequent and sparsely connected
state, was characterized by within-network connectivity and was
similar to sFNC patterns. A dFNC state that resembles sFNC
patterns typically accounts for the largest percentage of windows
and time14,18,36,37,51,53. It is speculated that such a weak and
diffused state represents the average of a large number of addi-
tional states with less variability36,54 and may be associated with
self-referential processing and even drowsiness16,55. This state
may be considered a steadier state and signifies the average of less
variable rsFC, thereby sharing similar connectivity patterns
with sFNC.

State 2 was a less frequent but more strongly interconnected
state that was represented by negative connectivity between the
SCN and SMN. Patients tended to spend more time in this state,
and the state’s occurrence showed significant correlation with
pain severity. We speculated that the increased occurrence of
State 2 for cLBP patients may be due to abnormal cortical-
subcortical interaction56, and this was confirmed by our sub-
sequent analyses (i.e., topological analysis and thalamocortical
network analysis). Interestingly, a similar dFNC state was iden-
tified in previous studies on healthy and diseased populations,
including those with schizophrenia17, migraine15, bipolar dis-
order53, and Parkinson’s disease37. Although these diseases have
different pathophysiologies, they share a common TCD model6,8.
The dFNC patterns in this state were always characterized by
connectivity between the SCN and other disease-related net-
works; for example, between the SCN and VSN in migraine15,
between the SCN and SMN/VSN in schizophrenia14, and between
the SCN and SMN in chronic pain in the present study. Several
studies have shown that the temporal properties and dFNC

patterns in this state have associations with clinical symptoms
that cannot be observed between sFNC and the same clinical
scores54,57. Thus, this transient dFNC state may be better for
revealing a disease’s pathophysiology by excluding non-relevant
steady dFNC states (e.g., State 1 in this study).

The importance of State 2 in revealing cLBP pathophysiology
was further supported by reduced efficiency of global information
transfer in functional brain networks. Previous studies have found
global dysfunction of multisensory information processing and
integration in chronic pain patients58,59. In our study, we applied
topologic measures for examining the global and local efficiencies
and provided direct evidence of disrupted functional segregation
and integration in brain networks of State 2 but not in State 1.
The loss of brain efficiency in chronic pain patients in State 2 may
lead to more occurrences/time spent in this state.

Evidence from electrophysiological studies has shown aberrant
intrinsic electrical activity in the thalamocortical loop and sug-
gests that the TCD6 underlies multisensory dysfunction in
chronic NP7–9. fMRI evidence also suggests that NP is associated
with disturbed thalamocortical activity10. We demonstrated that
cLBP patients, compared with HCs, had disrupted connectivity
between the VL nucleus and PoCG/ParaCL, as well as between
the DM and insula. Interestingly, we found that the abnormalities
were only observed in State 2, not in State 1. The VL, especially
the VPL nucleus, is the principal somatosensory nucleus of the
thalamus, which sends projections to PoCG and ParaCL for
somatosensation. The dysfunction of the VL/VPL and its pro-
jections have been observed in experimentally induced pain in
humans (e.g., cold, laser stimuli)39,40 and chronic pain in rats41.
On the other hand, the DM plays a role in cognitive functions
together with other cortical brain areas (e.g., anterior cingulate,
dorsolateral prefrontal cortex, and insula)60 and is involved in the
cognitive deficits of several neurological and psychiatric dis-
orders42. These findings suggest abnormal thalamocortical net-
works of both sensory and cognitive domains in cLBP patients,
which is consistent with studies demonstrating that chronic pain
may modulate brain functions beyond the pain/somatosensory
system itself21–23.

Previous studies investigating resting-state brain activity/con-
nectivity in chronic pain patients normally lack any concomitant
experimental manipulation and therefore may mix abnormalities
stemming from intrinsic brain dysfunction and those stemming
from the intensity of clinical pain. To better understand the
specific relationships between chronic pain and thalamocortical
networks, we experimentally manipulated levels of spontaneous
LBP on patients to create two conditions: a low back pain and a
high back pain condition. Our results provide direct evidence that
increasing spontaneous back pain only alters thalamocortical
networks (between the VL/VPL nucleus and PoCG/DMN) in
State 1 but not in State 2. Taken together, our results suggest that
thalamocortical networks, which underlie chronic pain patho-
physiology, may be reflected in State 2, while clinical pain may
modulate thalamocortical networks in State 1.

It is worth mentioning that our exploratory analysis with the
putamen as a seed extended the findings from thalamocortical
networks to thalamo-cortico-BG networks. The altered func-
tion of thalamo-cortico-BG loops in chronic pain has been
reported previously45,56 and may result in altered integration of
sensorimotor responses, cognitive impairment, and emotional
processing.

There are several limitations to this study. First, although we
have performed substantial quality control analyses to rule out
the potential effect of vigilance differences between cLBP patients
and HCs, and we have included an independent dataset to vali-
date our findings, future studies could include EEG, cardiac,
respiratory, or eye-tracking data to monitor vigilance level during
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scans. Second, our present study focuses on thalamus-related
sensory system dysfunction in chronic pain (e.g., using man-
euvers to increase pain levels). Future studies with specific
experimental designs and hypotheses are needed to explore the
abnormal brain dynamics in associative and limbic systems.
Third, clinical utility was not explored in this study. Because
patients from the three cohorts exhibited consistent abnormalities
in rsFC time-varying characteristics and thalamocortical net-
works, it is plausible that they can be indicators/markers of
evaluating treatment effects, especially for those approaches tar-
geting thalamocortical networks (e.g., brain stimulation)61.

Methods
Participants. The present study included three independent datasets with a total of
274 participants. The first dataset (Dataset 1) included 90 patients diagnosed with
cLBP with a duration of at least 6 months confirmed by a clinical evaluation and 74
matched HCs. The second dataset (Dataset 2) included 30 cLBP and 30 HCs. The
third dataset (cross-site validation) included 25 cLBP and 25 HCs. All patients in
the three datasets met the same inclusion criteria and had no other chronic pain
comorbidities. Details of the inclusion criteria can be found in Supplementary
Note 6. The Institutional Review Board (IRB) of Massachusetts General Hospital
(MGH) approved the first two datasets, and the Research Ethics Committee of the
Xian Jiao Tong University approved the third dataset. All experiments were per-
formed in accordance with the guidelines set forth by the IRB for ethics and
protection of human participants. All participants gave written consent.

Experimental procedures. In the first dataset, all cLBP patients underwent two
resting-state fMRI scan sessions. After the first MRI session, patients stepped out of
the scanner and performed pain-exacerbating maneuvers to increase their LBP so
that we could investigate the brain activity/connectivity changes following tem-
porary back pain intensification. The maneuvers were tailored to each patient based
on what the patient reported would exacerbate his or her LBP, such as lumbar
flexion, extension, or rotation20,62. After the maneuvers, which took ~10–15 min,
patients entered the scanner for another identical MRI session. All patients were
required to rate their pain intensity before and after the two MRI sessions. HCs did
not perform maneuvers and underwent only one MRI session.

In the second dataset, cLBP patients did not perform maneuvers, and they
underwent two MRI sessions separated by about 2 weeks. HCs underwent only one
MRI session.

In the third dataset, cLBP patients and HCs performed a MSIT24 before and
after the MRI scan to measure and increase their attention level. The attention and
cognition components of MSIT are closely related to vigilance/arousal level63, and
other similar visual attention tasks have been used to study subjects before and
after sleep deprivation64,65, suggesting that a drowsy state/insufficient sleep may
reduce visual attention task performances. The MSIT was presented by e-prime 2.0
(Psychology Software Tools, PA, USA). In brief, subjects were given response boxes
(with numbers of 1, 2, and 3) and were required to view sets of three numbers (i.e.,
1, 2, 3, 0) in the center of the screen lasting for 1.75 s, with one number always
being different from the other two numbers. Subjects were instructed to report, via
button press, the number that was different from the other two items. There were
two different tasks: a control task in which the distractors were zeros (0) and target
numbers were always aligned with the same position as on the response box, and
an interference task in which the distractors were other numbers (i.e., 1, 2, or 3)
and target numbers were not aligned with the same position as on the response box
(Fig. 6a). Two different types of trials appeared alternately (i.e., Control-
Interference-Control-Interference) with a total of 96 trials (48 trials for each task;
completed in two blocks outside the MRI room) before resting-state MRI and a
total of 192 trials (96 trials for each task; completed in four blocks inside the MRI
room) after resting-state MRI. Stimulus and inter-stimulus intervals were 1.75 and
0 s, respectively. For all trials, subjects were instructed to answer as quickly and
accurately as possible. The RTs and Acc were used as behavioral measures to assess
subjects’ attention/vigilance level.

MRI acquisition. MRI data in the first and second datasets were acquired using a
32-channel radio frequency head coil in a 3-T Siemens scanner at the Martinos
Center for Biomedical Imaging. T2-weighted functional data encompassing the
whole brain were acquired with gradient-echo planar imaging (repetition time:
3000 ms, echo time: 30 ms, flip angle: 90°, slice thickness: 3 mm, interslice gap:
0.88 mm, FOV: 240 mm, and 44 slices). Subjects in Dataset 1 and Dataset 2 had
6-min and 8-min resting-state fMRI scans, respectively. High-resolution brain
structural images were also acquired with a T1-weighted three-dimensional multi-
echo magnetization-prepared rapid gradient-echo sequence (repetition time:
2500 ms, echo time: 1.69 ms, slice thickness: 1 mm, flip angle: 7°, FOV: 256 mm,
and 176 slices).

The MRI data in the third dataset were acquired at the First Affiliated Hospital
of Xian Jiao Tong University using an 8-channel head coil in a 3-T GE scanner

(repetition time: 2500 ms, echo time: 30 ms, flip angle: 90°, slice thickness: 3 mm,
interslice gap: 0 mm, FOV: 256 mm, and 50 slices). The structural images were
acquired with a T1-weighted 3-dimensional fast-spoiled gradient-echo sequence
(repetition time: 10.7 ms, echo time: 4.8 ms, slice thickness 1 mm, flip angle: 7°,
FOV: 256 mm, and 140 slices).

fMRI preprocessing. fMRI data were preprocessed using CONN toolbox version
17f (https://www.nitrc.org/projects/conn). The first five scans were removed for
signal equilibrium and participants’ adaptation to the scanner’s noise. Preproces-
sing steps included a standard pipeline (functional realignment and unwarp,
functional slice-timing correction, structural segmentation and normalization,
functional normalization, functional outlier detection, and functional smoothing
with a 5-mm full-width at half-maximum Gaussian kernel). ART (http://www.
nitrc.org/projects/artifact_detect/) was also applied to detect motion during the
resting-state fMRI scan. Time points in subjects’ images were marked as outliers
if the global signal exceeded three standard deviations from the mean or if scan-to-
scan motion deviation exceeded 0.5 mm. Those outliers, in addition to the
linear and polynomial trends of six head-motion parameters50, were included
as nuisance regressors during the denoising procedure in the post-processing
steps of GICA. Note that we did not perform global signal regression in the
preprocessing.

dFNC analysis. The framework for characterizing dFNC to detect atypical thala-
mocortical networks in cLBP patients is shown in Supplementary Fig. 17 and in our
previous publication15. In brief, this framework consisted of four major steps: (1)
conduct a GICA with spatial reference 54 to decompose whole-brain resting-state
fMRI data into multiple ICs and select ICNs from ICs; (2) calculate dFNC among
ICNs using a sliding-window approach with graphical LASSO; (3) conduct a k-
mean clustering on the dFNC estimates to identify distinct states (dFNC states) and
the fraction rate/dwell time; and (4) apply graph-theory measures on each dFNC
state to demonstrate the efficiency of information transfer in functional brain
networks. The technical details pertaining to each step are described in the Sup-
plementary Methods. It is worth mentioning that the global mean signal per time
point was removed as the standard step in GICA55.

Abnormal thalamocortical networks in each dFNC state. To explore the
abnormal thalamocortical networks, we performed the thalamus-to-whole-brain
connectivity analysis within each dFNC state (for VL/VPL nucleus and DM/VM
nucleus respectively; identified from GICA; threshold with t value > 10 and con-
fined by the AAL thalamus atlas). In addition to BrainNavigator, we also compared
our masks to locations of FSL sub-thalamic atlas and Morel atlas66. Given the
potential limitations of ICA technique in brain parcellation, the nuclei obtained
from ICA may cover a relatively larger area compared with parcellations based on
cyto- and myelo-architecture information67, as well as other noninvasive thalamic
parcellations using probabilistic diffusion tractography44 and using functional
connectivity-based winner-take-all strategy68. We therefore defined the nucleus
based on its most predominant anatomical location in the thalamus.

Then, we (1) calculated the correlations between the time series of the thalamus
and time series of all other voxels in the brain within each sliding window, resulting
in a connectivity map (Fisher z-transformed) for each window; (2) averaged the
connectivity maps within each state (i.e., averaged connectivity maps within all
windows corresponding to State 1/State 2); and (3) performed statistical
comparisons between different groups (i.e., cLBP patients vs. HCs; pre-maneuver
cLBP patients vs. post-maneuver cLBP patients), thresholded at p < 0.005 at voxel
level and pFDR < 0.05 at cluster level.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MRI data are from multiple sources. Not all participants gave their permission to
share their data with the public. Some datasets are part of longitudinal studies that will
generate more than one manuscript. The data will eventually be made available, with the
permission of the participants, once these manuscripts are completed. Reasonable
requests can be sent to the corresponding author (J.K.). The data used for deriving the
group template of ICNs are available from HCP website (https://www.
humanconnectome.org/) and GSP website (https://dataverse.harvard.edu/dataverse/
GSP). The group template of ICNs derived from HCP and GSP for spatially constrained
ICA can be requested from V.C. (vcalhoun@gsu.edu). Source data are provided with this
paper.

Code availability
Most MATLAB codes were included in the CONN toolbox (fMRI preprocessing and
ART), GIFT toolbox (GICA), and GRETNA toolbox (graphic measures). Other
customized codes are available in the github (https://github.com/yihengtu/Dynamic-
connectivity-for-fMRI.git).
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