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Abstract—Goal: To establish Pulse2Al as a repro-
ducible data preprocessing framework for pulsatile signals
that generate high-quality machine-learning-ready datasets
from raw wearable recordings. Methods: We proposed an
end-to-end data preprocessing framework that adapts mul-
tiple pulsatile signal modalities and generates machine-
learning-ready datasets agnostic to downstream medical
tasks. Results: a dataset preprocessed by Pulse2Al im-
proved systolic blood pressure estimation by 29.58%, from
11.41 to 8.03 mmHg in root-mean-square-error (RMSE) and
its diastolic counterpart by 26.01%, from 7.93 to 5.87 mmHg
in RMSE. For respiration rate (RR) estimation, Pulse2Al
boosted performance by 19.69%, from 1.47 to 1.18 breaths
per minute (BrPM) in mean-absolute-error (MAE). Conclu-
sion: Pulse2Al turns pulsatile signals into machine learning
(ML) ready datasets for arbitrary remote health monitoring
tasks. We tested Pulse2Al on multiple pulsatile modalities
and demonstrated its efficacy in two medical applications.
This work bridges valuable assets in remote sensing and
internet of medical things to ML-ready datasets for medical
modeling.

Index Terms—IloMT, ML for Healthcare, Bridge2Al, wear-
able pulsatile signals, signal processing.

Impact Statement— Pulse2Al standardizes pulsatile vi-
tals processing and generates Al/ML-ready datasets to en-
able high-quality medical modeling across multiple clinical
domains.
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l. INTRODUCTION

ACHINE learning (ML) and artificial intelligence (AI)

have been extensively applied in medical researches,
particularly in remote and wearable healthcare [1]. The preva-
lence of wearable sensors and the Internet of Medical Things
(IoMT) has provided abundant pulsatile biomarker recordings to
enhance remote ML for health applications (e.g., physiological
parameter estimations and continuous health monitoring). With
the deployment of these sensors in free-living environments,
however, come challenges in maintaining clean data stream.
Sensor misplacement, motion artifacts, and electromagnetic dis-
turbance introduce extensive noises and additional challenges
such as context identification [2], [3]. Noise-infused biomarkers
can significantly impact the quality of ML models and lead to
poor estimation outcomes [1], [4]. The National Institutes of
Health in the United States has identified this as a significant
area for needed growth, creating the Bridge2Al program for
seeking solutions for the capture and validation of IoMT data
in free-living environments for medical modeling and preparing
ML-ready dataset in FAIR (findable, accessible, interoperable,
and reusable) fashion [5].

A. Related Works

Denoising biomedical recordings from IoMT devices is a vital
preprocessing step toward ML-ready dataset. Adaptive filters [6]
and wavelet-based signal transformation [7], [8] remove embed-
ded noise, but inevitably distort the signal morphologies [4], [9].
To minimize signal transformation, signal quality index (SQI)
was introduced to measure and reject noises based on defined
quality thresholds [10]. Various SQI metrics were proposed:
some researchers utilized the similarity of a pulse segment versus
its consecutive neighbors to compose signal quality-driven SQI
[11]. Many believed cardiac morphologies represent cardiac
pulse quality and proposed the morphology-driven SQI metric
by rejecting signals with implausible (outlier) morphologies
with empirically defined thresholds [12], [13], [14]. Some pro-
posed deep learning (DL)-driven SQI assessments by detecting
outliers [15] or classifying noisy segments [1], [2], [3]. All three
approaches measured SQIs and reject noisy segments without
distorting clean signal.
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In contrast, many ML for healthcare applications prepro-
cessed pulsatile recordings for models by applying light fre-
quency filtering to remove noise from implausible frequencies,
and constructed complex ML architectures to handle noise by au-
tomatic feature extraction [6], [7], [8], [9], [16]. Despite success
in improving performance, ML models trained with excessive
noise often led to decreased generalizability and overfitting [1],
[4], [10], [11]. Although the above denoising methods were
proposed to improve the signal quality of wearable pulsatile
recordings captured in free-living environments, they raised
limited awareness of the downstream applications.

B. Downstream Contribution

One downstream medical application is hypertension moni-
toring through continuous blood pressure (BP) capture. Periods
of sustained, elevated BP lead to cardiovascular disease and
risk of premature death [12], [13]. Although ambulatory BP
measurements are found to be more clinically accurate and
predictive of adverse events and diagnosing difficult-to-detect
cases of adverse hypertension [17], they are often limited to in-
frequent measurements, expensive and uncomfortable, limiting
their longitudinal use [18]. To overcome these limitations, new
IoMT sensing paradigms capture BP in a remote and ambulatory
fashion without the limitations of cuff-based ambulatory BP de-
vices [19]. Cuffless wearable sensors that record blood pulsatile
activity [20] combined with ML-based BP estimations provide
a potential solution to continuous BP monitoring with comfort
and affordability to users and longer sequences and frequent
recordings for clinicians [2], [21].

Respiration rate (RR) estimation is another important medical
application as it antecedes possible physiological deterioration
[22], [23]. Invasive RR estimation methods such as capnography
and flow thermography were widely deployed in ICUs and other
emergency care settings but were too cumbersome and expensive
for general rehabilitation centers and ambulatory monitoring
[24]. Noninvasive RR estimations such as manual counting
are prone to errors and impossible for nocturnal studies [25].
IoMT sensors have drawn attention to noninvasive and mobile
RR estimation by providing abundant correlated pulsatile vitals
[22]. Therefore, various automatic RR estimation algorithms
were proposed to elevate accuracy and reliability [24], [25],
[26]. Recently, Shuzan et al. demonstrated the efficacy of ML
models by elevating the SOTA performance for RR estimation
over various algorithms [27].

However, there is a lack of a standardized preprocessing
framework that incorporates the above filtering strategies to
prepare areproducible AI/ML-ready dataset for various pulsatile
signal modalities, especially for medical modeling applications.
Towards building a standardized preprocessing paradigm and
supplying clean IoMT data for medical biomarker estimation, we
introduce Pulse2Al as an end-to-end preprocessing framework
that extracts clean cardiac cycles (heart beats) from pulsatile
signals of IoMT cardio-sensors in a time-series fashion and
supplies ML-ready feature modalities agnostic to downstream
medical applications. We explain the architecture of PulseAl
in Section II, then evaluate it in Section III on two datasets

and quantify its performance amplifications on two medical
applications.
Our contributions are as followed:
¢ Investigating the challenges in preprocessing wearable
data captured in free-living environments for downstream
ML for Healthcare models.
¢ Introducing an end-to-end parametric framework that pro-
vides ML-ready dataset for a specified downstream ML
model via automatic grid searching on noise rejection
parameters.
® Presenting an ablation study on the effectiveness of grid
searching noise rejection parameters and its impact on
the downstream applications of BP estimation and RR
estimation.

Il. MATERIALS AND METHODS

We present Pulse2Al as a ML-ready dataset maker that val-
idates remote health and IoMT signals and extract biomarkers
in Fig. 1. We first segmented signals into a list of cardiac cycles
and implemented a two-pass signal alignment to synchronize
pulsatile signals with respective references. We then formulated
three filters based on different SQI methodologies. This section
reviews our designed framework, consisting of cardiac cycle
segmentation, two-pass signal alignment and three SQI-based
noise filtering, parameterized for fine-tuning, and validation of
signal quality detection.

A. Cardiac Cycle Segmentation

We started with applying a minimum-order, zero-phase, infi-
nite impulse response (IIR) bandpass filter of (0.6-3 Hz) with
forward-backward filtering technique to preserve phase rela-
tionships while filtering out noises and harmonics. The selected
principal frequency range corresponds to cardiac cycle range of
40-180 beats per minute (BPM) and aligns with normal range
of sustained pulse rates found in previous literature [28], [29].

Then we performed signal abstraction and segmented the
cardiac cycles based on fiducial points identified in Fig. 2 [30].
We segmented the signals into sliding windows of 0.8 sec-
onds with 0.2 second overlap and identified peaks/feet from
local maxima/minima; we identified maximum slopes (shown in
Fig. 3) and inflection points via first gradients and third gradients.
For bio-impedance, the approach was similar but inverse.

With the time series sequence of segmented cardiac cycles, we
first introduced how we robustly aligned pulsatile signals with
their respective ground truth labels recorded from a reference
medical device of interest; we then proposed three SQI denoising
techniques that can be applied individually or together.

B. Two-Pass Robust Signal Alignment

ML-ready datasets require reference labels for supervised
training. Thus, a separate reference medical device collecting
physiological parameters of interest (reference labels) was re-
quired. Therefore, we presented an elevated signal alignment
method to synchronize the separately recorded reference signals
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Fig. 1. Overview of the Pulse2Al framework: the framework optimizes preprocessing specific to the dataset, confidence, and medical task. Each

filter assesses data qualities individually, a cardiac cycle will be rejected if failed to pass the threshold.
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1). ORIGINAL Plot of PPG and ABP IBI sequences in SAMPLE domain
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2). Plot in SAMPLE domain with IBI matching (FIRST shift)
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Real-world example of limitations on IBI matching. A 240-second PPG sequence found the correct segment on the arterial blood pressure

(ABP) continuous stream. Although the two IBls were closely aligned in the sample domain (upper right plot), the PPG IBI was still behind for
1 second in the time domain as shown in the lower left plot. At last, we performed the second shift via the cross-correlation phase to correct the

misalignments [41].

to our pulsatile vital signals. When the model was deployed and
reference labels were not needed, this step could be bypassed.

The first pass is inter-beat interval (IBI) matching. Since
pulsatile signals (features) and the reference cardiac signals
(label) were usually collected on separate devices. Synchroniza-
tion between the features and references was required to label
reference values for cardiac cycles. We computed IBI values
from both signal sequences to identify and remove any delays
between the two data collection.

However, IBI was calculated on “sample domain” where the
sequence was ordered purely by their temporal precedence. A
sequence is in the “time domain” when ordered by the actual
temporal distances within its members. Although an IBI se-
quence in the sample domain maintains the temporal precedence,
it’s susceptible to outliers.

Assume a person has a constant cardiac cycle of 1 Hz for
60 seconds, resulting in the ideal IBI sequence with 60 values
of 1. If 10% of cardiac fiducial points were confounded, we
instead receive a shorter sequence total of 6 values of 2 and 48
values of 1. This could be corrected by a second shift of cross-
correlation [36] in time domain. Fig. 4 illustrated a free-living
environment example that a pair IBI synchronized sequences
still carried 1 second lag. Table I demonstrated the time-domain
IBI misalignment without the second-pass realignment.

With the two-pass alignment approach, each pulsatile cardiac
cycle was more correlated to the corresponding reference cardiac
signal and robust reference labels (fiducial points and sequences)
could then be annotated depending on the modeling task.

TABLE |
A REAL-WORLD EXAMPLE DEMONSTRATING THE VARIABLE “LAGS” AFTER
IBI MATCHING WITHIN THE SAME TEST SUBJECT

IBI Bio-Z Dataset Subject 75H
difference
(seconds) Collection 1 Collection 2 Collection 3 Collection 4
Session 01 0.796 1.941 0.952 1.001
Session 02 10.044 2.047 11.490 0.991
Session 03 0.957 3.685 1.013 1.71
Session 04 8.059 0.872 1.947 0.834
Session 05 1.674 1.711 1.036 7.932

The randomness of noiseconfounded outliers introduced large uncertainties in feature labeling.
However, a second pass of IBI realigning was previously overlooked. Details of this dataset can be
found in Section IILA.L

C. Parametric SQI-Based Filtering

Once waveforms were aligned, noise rejection methods were
invoked. We designed the three following filtering techniques
and pass the cardiac cycles. The order of filtering was arbitrary
since only data marked clean by all three filters would remain in
the dataset. We passed the pulsatile signals through three filtering
processes.

Signal Quality-driven filtering: We used Signal-to-noise ratio
(SNR) in decibels (dB) as SQI criteria for cardiac cycles [31]
with the higher SNR denotes the higher SQI hence better signal
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quality. A sliding window of size ¢ cardiac cycles is constructed
to measure the SNR value assigned to the center cardiac cycle.
A threshold of x dB, that is tunable by the user, is then defined
to reject cardiac cycles whose SNR value lower than a defined
threshold.

Morphology-driven filtering: Waveform fiducial points de-
rived from signal abstraction represent the key phases of the
cardiac cycle and contain abundant information correlated to the
cardiac function. Fig. 2 illustrated the abundant cyclical informa-
tion encapsulated in various forms of pulsatile signals recorded
from wearable sensors. Morphological features extracted from
fiducial points represented key physiological events reflected by
pulsatile activities. 20 morphologies were computed from each
cardiac cycle, including: time and amplitude difference between
fiducial points of the current peak and previous peak, current
peak, and current foot, etc.

Empirically defined plausibility thresholds thus rejected
waveforms containing outlying morphologies such as IBI, rise
time, the area under the curve, amplitude, etc [32].

DL-based Data-driven filtering: Considering noises as out-
of-distribution data. A trained Variational Autoencoder (VAE)
detected abnormal data accurately with reconstruction similarity
and we utilized the encoder of a pre-trained VAE to compute
latent features from pulsatile signals [33]. Subsequently, we
used temporal clustering to cluster cardiac cycles based on
associated latent features with Gaussian mixture model (GMM)
[34]. With an empirically selected “gold standard” template
denoting an ideal and clean cardiac cycle [35], we considered
clusters whose centroids have lower normalized Dynamic Time
Warping (DTW) distance to be cleaner. Whereas clusters whose
centroids with normalized DTW distance surpassing a defined
threshold d are rejected.

Each filtering metric independently annotated SQIs of cardiac
cycles, and Pulse2 Al rejected cardiac cycles based on thresholds
converted from confidence. Disabling all filters would still pro-
vide a bandpass-filtered, robustly aligned dataset comparable to
downstream modeling tasks [36], [37].

Accessible, interoperable, and reusable datasets are now pre-
pared by Pulsa2Al and ready to use for the downstream AI/ML-
infused medical modeling.

lll. RESULTS

We examined the effectiveness of our framework to generate
data readiness by demonstrating improvement in cuffless BP
estimation. We describe the datasets used, and how the data
readiness framework is fed into a downstream BP model. We
conducted ablation studies to demonstrate performance gains.

A. Data Collection

1) Blood Pressure Data Collection: We used a BioZ_XL
device to collect both (photoplethysmography) PPG and Bio
Impedance (Bio-Z) [30] pulsatile signals, and a Finapres NOVA
to collect reference arterial BP waveforms. The reference phys-
iological parameters of interest were beat-to-beat systolic BP
(SBP) and diastolic BP (DBP), automatically reported by the
Finapres NOVA device. 20 healthy subjects (45% male), aged

from 18 to 40 years old, with normal body temperature, oxygen
saturation, and no diagnosed disease were voluntarily recruited
by the IRB through advertising for data collection (IRB2020-
0090F, Texas A&M University, approved on 05/06/2020).

To simulate the contextual and physiological variabilities of
the free-living environments, a subject completed a collection
by following an 8 minute protocol: resting for 0.5 minutes, hand-
gripping for 3 minutes to raise BP, placing a foot in ice water
for 1 minute to keep BP elevated, and resting for 3.5 minutes to
recover blood pressure [38]. Each subject completed 7 sessions
and each session contained 4 collections. Because BP would
drop suddenly for healthy subjects after hand-gripping exercise,
we used “placing a foot in ice water”, a cold pressor test, to keep
BP elevated while slowly declining, as observed in Fig. 5.

While the protocol for Bio-Z data collection did not specify
them, random motion artifacts occurred during the simulation
free-living activities. Hand-gripping generates motion artifacts
from muscular movements of wrists and arms; and performing
cold pressor generates similar motion artifacts through body
maneuvers and alters the cardiovascular physiology, too. Fig. 6
demonstrated an example of the Bio-Z dataset. In this figure,
Bio-Z1, the first Bio-Z sensor, illustrates an instance of sensor
misplacement. Conversely, motion artifacts were detected on
other sensors between 135 to 140 seconds, during the hand-
gripping maneuver.

2) Respiration Rate Data Collection: Pimentel selected 53
adult patients from the MIMIC-II dataset and randomly ex-
tracted 8 minutes of PPG recordings and respiratory signals from
each patient to formulate the BIDMC dataset [23]. The dataset
has a median age of 64.81 with a range of 19-90+ and contains
32 females. We selected PPG to predict RR in breaths per minute
(BrPM) as the reference physiological parameters of interest.

All recordings were collected during the patient’s admis-
sion to medical and surgical intensive care units. During the
recordings, the patients remained supine, committing minimal
maneuvers and therefore virtually free of motion artifacts.

B. Estimation Model

1) Evaluation Metrics: We utilized the popular root-mean-
squared-error (RMSE) and mean-absolute-error (MAE) metrics
to measure the difference between our estimations and reference
values for both datasets. A lower RMSE and MAE reflect better
estimation quality.

2) Artificial Neural Networks: Various neural network ar-
chitectures were applied to downstream medical tasks and listed
in Table II. Fully connected Artificial NNs such as Multilayer
perceptron (MLP) derives cardiac-related features from data
[7], [39]. Where recurrent NNs like LSTM preserve sequen-
tial cardiac information through memory [40]. Composite NN
architectures like CNN-LSTM further boosted prediction per-
formance [8], [9]. In addition to feature extractions, some NNs
are also employed architectures such as self-attention to perform
automatic noise rejection [7], [8], [9], [16].

To best examine the performance improvement of prepro-
cessing, we implemented a simple MLP of three linear layers in
python to downstream medical estimations. We maintained the
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Fig. 6. An example of noise in the Bio-Z dataset. Bio-Z1, the first Bio-Z sensor, experienced sensor misplacement. Additionally, motion artifacts,
another form of noise, affected the recordings on other sensors, particularly between 135 to 140 seconds.

TABLE Il
TABLE COMPARISON OF SEVERAL DOWNSTREAM MEDICAL WORKS THAT UTILIZED PULSATILE WAVEFORMS
Panwar et al Truongetal | Hsuetal | El-Hajjetal | . Chen et al Huang Pulsa2Al
18] 28] [39] [40] Lietal [9] [16] Shuzan et al [27] ctal [7] (Ours)
Bandpass Signal
. . . . Waveform Wavcif(:ujm variational model +low frequency quality
Filter used in Preprocessing? - Gaussian .. Plausibility - - -
Plausibility wavelet decomposition +Savgol +morphology|
wav +Chebyshev I +DL-cluster
Is Filter noise rejection based? - No Yes Partially - - Partially No Yes
CNN- . . .
Downstream neural network used CNN-LSTM - MLP LSTM BiLSTM CNN Compared multiple MLP-Mixer Agnostic
Incorporated filter in downstream Yes B No No Yes Yes B Yes Agnostic
deep model?
Downstream Medical Task BP BP BP BP BP BP RR BP Agnostic

All of them used ML models for downstream medical tasks except for Truong et al.



336 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

TABLE lll
ABLATION STUDY OF THE IMPACT OF PREPROCESSING FILTERING ON BP ESTIMATION USING BIO-Z DATASET, AND ON RR ESTIMATION USING BIDMC
DATASET, REPORTING RESULTS AVERAGING ACROSS ALL SUBJECTS

BP Estimation with Bio-Z Dataset RR Estimation with BIDMC Dataset
Filtered SBP Improvement (mmHg) DBP Improvement (mmHg) Filtered RR Improvement (BrPM)
Filtering Techniques Cardiac Cardiac

Cycles RMSE MAE RMSE MAE Cycles RMSE MAE
" Raw performance - 11.41 10.09 7.93 791 - 1.84 1.47

]
-;: Gaussian [28] 17.79% 10.58 9.39 7.25 7.27 2.41% 1.75 1.33
% Wavelet [40] 19.81% 10.61 9.43 7.24 7.25 12.28% 1.74 1.32
% VMD [27] 29.19% 10.04 9.15 7.27 7.27 17.73% 1.72 131
= Multi-filter [7] 33.96% 10.58 9.39 7.24 7.26 11.17% 1.74 1.32
. 25dB 23.54% 8.74 8.41 6.48 6.70 4.92% 1.67 1.32
;—% § 50 dB 32.50% 8.53 8.17 7.72 7.58 31.37% 1.58 1.25
g) 5 75 dB 38.12% 9.61 9.12 7.72 7.58 35.29% 1.60 1.26
s 100 dB 41.67% 9.91 9.70 7.88 7.85 37.25% 1.62 1.26
Softer 40.48% 10.49 9.48 7.31 7.45 1.57% 1.74 1.32
%ﬂ § Soft 46.27% 8.93 8.29 7.30 7.44 9.19% 1.79 1.40
gé Hard 50.24% 8.57 8.13 7.32 7.44 19.53% 1.74 1.32
Harder 52.48% 9.15 8.60 7.71 7.79 42.06% 1.78 1.38
2 3.71% 10.43 9.53 7.54 7.38 3.19% 1.82 1.47
g ;g 1.5 9.32% 9.49 8.65 6.16 5.85 13.91% 1.49 118
5 § 1 19.44% 9.64 8.53 5.97 6.02 16.88% 1.58 1.19
0.5 28.46% 8.03 6.83 5.87 5.67 32.05% 1.57 1.18

Results are computed using a simple MLP (Section III.B.2).

same parameters: learning rate of le-3, weight decay of le-6,
train epoch of 100, batch size of 16, and the hidden dimension
of all layers to be 128. We used adaptive moment estimation
(Adam) as the training optimizer and mean squared error (MSE)
as the loss function.

3) Experiment Setup: With the ML-ready data prepared by
the framework, we randomly split the cardiac cycle sequences
into train and test sets. We performed a randomized 80/20 split,
maintained them across models, and reported average results
via 3 repetitions for every session and subject. We prepared the
dataset similarly for baselines by disabling all SQI-based filters
but keeping the bandpass filter and robust label alignment.

C. Ablation Study of Noise Filtering

To examine the impact of our parametric data preprocessing
scheme on improving BP and RR estimation on their respective
datasets, we designed an ablation study with the following exper-
iments to measure the importance and correlation of threshold
variables of all three filtering techniques.

We defined the raw performance of MLP input by feeding
the bandpass-filtered (0.6-3 Hz) pulsatile recordings to the
downstream tasks. We implemented Gaussian [28], wavelet [40],
variational mode decomposition (VMD) [27], and multi-filter

[7] to serve as baselines because other techniques are either
incorporated in the raw performance experiment or do not apply.

For ablations on Pulse2 Al, we evaluated each filtering modal-
ity by disabling the other two. For signal quality-driven, we
empirically selected # = 5 and grid-searched the SNR thresholds
of x ~ {25, 50, 75, 100} dBs; for morphology driven, we com-
puted 4 versions of the morphology filter ranked by the tolerance
to outliers; for data-driven, we grid-searched for a normalized
DTW distance threshold of d ~ {0.5, 1.0, 1.5, 2.0}. Since the
scale of absolute errors carries different impacts in variable
downstream tasks, we evaluated improvements of filtering by
calculating the percentage decrease in RMSE and MAE over
the raw performance result and reported them in Table III.

IV. DISCUSSION
A. Blood Pressure Estimation

We selected 19 sessions from 5 subjects in the Bio-Z dataset to
perform the aforementioned experiments and measured percent-
age improvements in mmHg. The raw performance of SBP esti-
mation had 11.41 and 10.09 mmHg errors in RMSE and MAE,
respectively; the DBP estimation had 7.93 and 7.91 mmHg
errors in RMSE and MAE, respectively. All participants received
performance improvements.
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For SBP estimation, all three techniques improved RMSE by
at least 24% and MAE by at least 19%, and the DL-based data-
driven filter with a DTW distance threshold of 0.5 performed the
best with a29.58% improvement in RMSE and 32.31% in MAE.
For DBP estimation, improvements were at least 7% lower
RMSE and 6% lower MAE, and the same DL-based data-driven
filter above scored the highest improvement of 26.01% and
28.38% while filtering fewer cardiac cycles.

Among experiments with signal quality-driven noise filtering,
models perform best at the threshold of 50 dB for SBP estimation
and at 25 dB for DBP estimation. They outperformed baselines
in both SBP and DBP estimations.

While the best-performing morphology-driven filtering out-
performed all baselines on SBP estimation, it underperformed
on DBP estimation. The plausibility thresholds were empirically
defined in regard to the absolute criteria of clean waveforms in
the dataset.

Most DL-driven filters outperformed the baselines while fil-
tering fewer cardiac cycles. Preserving clusters with normalized
DTW distance <0.5 to the template pulsatile waveform report
the best performance both for DL-filter and overall.

B. Respiration Rate Estimation

We performed the same set of experiments on RR estimation
for all 53 subjects and measured the percentage improvements
in BrPM. Raw performance of MLP on RR estimation was 1.84
BrPM error in RMSE and 1.47 in MAE.

Appling the same experiments, we observed that 16 (30.2%)
subjects received performance improvements over the raw per-
formance when preprocessing filters were used. The other par-
ticipants received performance drawbacks as much as —5.40%
in RMSE and —6.95% in MAE. Because the subjects of the
BIDMC dataset were selected subsets from MIMIC-II and were
mostly in stationary supine positions during collections, they
had lower exposure to noise sources and reduced benefits from
preprocessing filters. We reported the following results on the
16 subjects with positive performance gains.

For RR estimation, all three techniques demonstrated over
10% improvement in MAE and 8% improvement and were
comparable to baselines. The DL-driven filter with a normal-
ized DTW distance of 0.5 and achieved 14.58% and 19.69%
improvements in RMSE and MAE, respectively.

The best-performing threshold for the signal quality-driven
filter was 50 dB, achieving 14.21% and 15.29% improvement
in RMSE and MAE. It also outperformed all baselines, too.

Similarly, all versions of expertly defined morphology thresh-
olds presented performance benefits while the “hard” version
gave the best improvement of 8.84% and 10.09% in RMSE and
MAE, beatings the Gaussian and wavelet filtering baselines.

As all thresholds of DL-based data-driven filters boosted
performances, thresholds with a normalized DTW distance of
0.5 provided the best performance as mentioned above, and
outperformed all of the baselines.

C. Limitations and Future Works

While our Pulse2 Al method presented overperformance over
two downstream tasks, we have yet validated its performance

and validity under online, wearable setting, such as power con-
sumption and memory stress. The study cohort of Bio-Z dataset
included mostly young and white participants and could not
represent the entire population. Conversely, the BIDMC dataset
collected from a much older cohort patients in supine positions
and could not represent the healthy populations, either. Never-
theless, we have evaluated Pulse2 Al over two medical modeling
tasks on two utterly different cohorts and proved its consistency
in achieving elevated modeling performance in FAIR fashions.

An immediate follow-up work for our study would be au-
tomating the grid-search process and converting Pulse2 Al into
a self-optimized preprocessing function. More importantly, we
identified that lacking ML-ready data streams was a bottle-
neck for medical applications introduced Pulse2Al to convert
abundant pulsatile recordings of IoMT devices into the cardiac
reservoir.

V. CONCLUSION

Remote sensors and IoMT provide abundant wearable pul-
satile recordings but bridging physiological and biomedical sig-
nals to AI/ML-ready dataremains a major limitation. Pulse2 Al is
an end-to-end preprocessing framework that adapts to different
pulsatile modalities and supplies ML-ready datasets for arbitrary
downstream medical applications. Within the framework, we
proposed an elevated signal alignment scheme and 3 SQI-based
filtering metrics to provide a preprocessed dataset for a given
downstream task.

Pulse2 Al was validated on both Bio-Z, a self-collected dataset
encompassing maneuvers on younger, healthier participants in
free-living environments, and BIDMC, a public dataset with
minimal noise and elderly, sicker patients. When coupled with
any of the three filtering metrics, Pulse2Al offered the best
performance improvements on both BP and RR estimations,
outperforming four filtering baselines. The Pulse2AI’s ability to
offer the best ML-ready dataset agnostic to downstream medical
applications is a crucial step towards bridging the valuable
assets in IoMT and ML for the healthcare community to tackle
upcoming challenges in medical modeling.
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