
Ontology Development Kit: a toolkit for building,
maintaining and standardizing biomedical ontologies
Nicolas Matentzoglu1, Damien Goutte-Gattat 2, Shawn Zheng Kai Tan 3, James P. Balhoff 4,
Seth Carbon5, Anita R. Caron3, William D. Duncan 5,6, Joe E. Flack7, Melissa Haendel 8,
Nomi L. Harris 5, William R. Hogan 6, Charles Tapley Hoyt 9, Rebecca C. Jackson 10,
HyeongSik Kim11, Huseyin Kir3, Martin Larralde12, Julie A. McMurry8, James A. Overton 13,
Bjoern Peters 14, Clare Pilgrim 2, Ray Stefancsik3, Sofia MC Robb15, Sabrina Toro8,
Nicole A Vasilevsky8, Ramona Walls16, Christopher J. Mungall 5 and David Osumi-Sutherland3,*

1Semanticly, Spaces Ermou Ermou 56, Athens 10563 ΓEMH 160976003000, Greece
2Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
3Samples Phenotypes and Ontologies Team (SPOT), European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton,
Cambridgeshire, CB10 1SD, UK
4RENCI, University of North Carolina, Chapel Hill, NC, North Carolina 27517, USA
5Berkeley Bioinformatics Open-source Projects (BBOP), Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Mailstop
977-0257, Berkeley, CA 94720, USA
6College of Dentistry; Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, William D. Duncan: 1395
Center Dr, Gainesville, William R. Hogan: 1600 SW Archer Rd, Gainesville, FL 32610, USA
7School of Medicine, Johns Hopkins University, 733 N Broadway, Baltimore, Baltimore, MD 21205, USA
8University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA
9Laboratory of Systems Pharmacology, Harvard Medical School, 200 Longwood Avenue Armenise Building Room 109, Boston, MA 02115, USA
10Bend Informatics LLC, 5305 RIVER RD NORTH, STE B, KEIZER, OR 97303, USA
11Robert Bosch LLC, Sunnyvale, CA 94085, USA
12Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, Heidelberg 69117, Germany
13Knocean Inc., Toronto, Ontario, ON M6P 2T3, Canada
14Institute for Allergy & Immunology, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
15Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
16Critical Path Institute, 1730 E River Road, Tucson, AZ 85718, USA
*Corresponding author: Tel: +44 1223 494 144; Fax: +44 1223 48 46 96; Email: davidos@ebi.ac.uk

Citation details: Matentzoglu, N., Goutte-Gattat, D., Tan, S.Z. et al. Ontology Development Kit: a toolkit for building, maintaining and standardizing
biomedical ontologies. Database (2022) Vol. 2022: article ID baac087; DOI: https://doi.org/10.1093/database/baac087

Abstract
Similar to managing software packages, managing the ontology life cycle involves multiple complex workflows such as preparing releases,
continuous quality control checking and dependency management. To manage these processes, a diverse set of tools is required, from command-
line utilities to powerful ontology-engineering environmentsr. Particularly in the biomedical domain, which has developed a set of highly diverse
yet inter-dependent ontologies, standardizing release practices and metadata and establishing shared quality standards are crucial to enable
interoperability. The Ontology Development Kit (ODK) provides a set of standardized, customizable and automatically executable workflows, and
packages all required tooling in a single Docker image. In this paper, we provide an overview of how the ODK works, show how it is used in
practice and describe how we envision it driving standardization efforts in our community.

Database URL: https://github.com/INCATools/ontology-development-kit

© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Introduction
In a time of increasing biomedical data output, ontologies
have become crucial in research, playing an important role in
making data findable, accessible, interoperable and reusable
(FAIR) (1) by providing standard identifiers (2–5), vocabulary,

metadata and machine-readable axioms (6). Developing high-
quality and scalable ontologies requires reusing parts of other
ontologies, the use of reasoning to automate classification and
extensive quality control (QC) testing. Managing develop-
ment while following this approach can be a complex process

https://orcid.org/0000-0002-6095-8718
https://orcid.org/0000-0001-7258-9596
https://orcid.org/0000-0002-8688-6599
https://orcid.org/0000-0001-9625-1899
https://orcid.org/0000-0001-9114-8737
https://orcid.org/0000-0001-6315-3707
https://orcid.org/0000-0002-9881-1017
https://orcid.org/0000-0003-4423-4370
https://orcid.org/0000-0003-4871-5569
https://orcid.org/0000-0001-5139-5557
https://orcid.org/0000-0002-8457-6693
https://orcid.org/0000-0002-1373-1705
https://orcid.org/0000-0002-6601-2165
mailto:davidos@ebi.ac.uk
https://github.com/INCATools/ontology-development-kit
https://creativecommons.org/licenses/by-nc/4.0/

2 Database , Vol. 00, Article ID baac087

involving tasks such as import management, release file com-
pilation, integration testing and QC. This difficulty is com-
pounded by the fact that ontologies in the biomedical domain
are generally under-resourced and that biologists, who need
to be an integral part of their development, are often not
trained in software engineering and therefore lack exposure
to standard best practices for software development. Further-
more, the complexity of the ontology development process is
a huge barrier to entry for the community to contribute, lim-
iting the democratization (and arguably the quality) of these
ontologies. Over the years, some ontology communities devel-
oped their own workflows for managing the ontology life
cycle using a variety of tools and technical approaches. How-
ever, given the complexity of the technologies involved, it is
very difficult for even the most experienced ontology pipeline
developers to maintain and extend these workflows.

The Open Biomedical Ontologies (OBO) Foundry aims to
unify ontologies in the biomedical domain through an evolv-
ing set of shared principles governing ontology development,
allowing interoperability between ontologies (7, 8). However,
to effectively achieve this, tools that enable standardization
of these shared principles are needed (i) to support ontology
developers (ODs) to conform to the principles (e.g. through
standardized QC as well as standardised release pipelines) and
(ii) to allow less technical ontology curators to abide by these
standards without the need for intensive engineering training.

Ontology engineering is a complex task involving many
different workflows such as:

(i) Running releases: transforming the ontology through
a variety of pipelines involving reasoning, removing
redundant content, adding versioning information and
exporting to the variety of ontology formats consumed
by users such as RDF-XML (https://www.w3.org/TR/
owl2-xml-serialization/), OBO (https://owlcollab.
github.io/oboformat/doc/GO.format.obo-1_4.html),
Turtle (https://www.w3.org/TR/2014/REC-turtle-2014
0225/), and OBO-graphs JSON (https://github.com/
geneontology/obographs)s.

(ii) Requesting changes in the form of issues on an issue
tracker and discussing the merit of the proposed
changes.

(iii) Applying changes to the ontology: adding or editing
terms, removing logical axioms or changing labels.

(iv) Reviewing change requests, usually in the form of pull
requests.

(v) QC checking: ensuring that the ontology conforms to
a variety of integrity checks, such as logical coherence,
label uniqueness and provenance standards.

(vi) Dependency management: providing methods to import
terms from other ontologies and keep those terms up-
to-date in the light of changes.

(vii) Documentation management: providing methods to
keep documentation current in the light of changes to
the ontology and the ontology workflows.

In this paper, we present the Ontology Development Kit
(ODK), a tool for managing the ontology life cycle. ODK is
currently used to maintain more than 70 ontologies, mostly in
the biomedical domain, such as the widely used Human Phe-
notype Ontology (9), the Cell ontology (CL) (10, 11), Uberon
(12), PATO (13), the Brain Data Standards Ontology and
Provisional Cell Ontology (PCL) (14).

The ODK comprises two major components: a set of exe-
cutable ontology-engineering workflows and a toolbox. It
delivers these workflows, which reflect standard best prac-
tices recommended by the OBO Foundry, as a customizable
git repository set-up including all the different files and scripts
necessary to run, for example, releases and QC tests, and
import terms from other ontologies. The toolbox is delivered
as a Docker image and includes all tools necessary to exe-
cute these workflows, from command-line utilities (sed, git
and rsync) to ontology pipeline tools such as ROBOT (15)
and dosdp-tools (16).

The ODK simplifies the process of maintaining an ontol-
ogy, allowing ODs to focus on content rather than technical
aspects of maintenance. It also allows ODs to fully lever-
age modern ‘social coding’ open-source development practices
exemplified by many GitHub repositories, such as allow-
ing community contributions via GitHub pull requests and
using cloud-based continuous integration (CI) tools to help
with QC.

Motivation
Sharing best practices
Best practices for ontology engineering evolve over time. For
example, it took years of discussions and collective learn-
ing to define the OBO Foundry principles, a set of best
practices for open, FAIR and interoperable ontology devel-
opment in the biomedical domain (8) and their refinement is
ongoing. While those practices are slowly adopted through
a mix of community engagement activities and improved
tooling such as the OBO Dashboard (8), the need for
extending those practices never stops. For example, there
is currently no agreed-upon metadata schema for reflecting
contributions to ontology terms, which is critical not only
for attribution (grant proposals and individual editors) but
more generally important for provenance-related questions
(Who wrote that definition? Who suggested that term to be
added?). To drive this forward, a group of organizations
decided to collect this information using a specific property
(http://purl.org/dc/terms/contributor) and uniquely identify-
ing Internationalized Resource Identifiers (IRIs) for contrib-
utors,such as (ORCID) Open Researcher and Contributor
IDentifier, Wikidata or (ROR) Research Organization Reg-
istry identifiers. To ensure that these metadata are captured
correctly, a schema check needs to be defined. This is typically
realized using SPARQL (https://www.w3.org/TR/rdf-sparql-
query/) in ODK and then shared across all participating
ontology repositories.

Having a centralized infrastructure like the ODK means
that when one ontology faces such an issue, tests (and fixes)
can be rolled out via the executable workflows defined by
the ODK to all ontologies using it, not just to that particu-
lar ontology. This reduces the overhead needed to fix multiple
ontologies and provides a more collaborative environment for
problem-solving.

Standardized repository architecture and release
products
Ontologies, even if built with OBO principles in mind, vary
in the forms in which they are made available. For example,
should the ontology be published with import statements or
should the imports be merged in? Should the ontology be pub-
lished with or without the logical inferences computed by a

http://purl.org/dc/terms/contributor

Database, Vol. 00, Article ID baac087 3

reasoner? Furthermore, users frequently want ontology files
in alternative formats, like RDF/XML, OBO Flatfile format,
OBO Graphs JSON or Turtle. Another problem is that the
ontology repositories are not usually standardized. Editors
who edit more than one ontology have to adjust to the idiosyn-
crasies of each repository: Which files to edit? How to run
tests? How to provide versioned releases? How to add new
terms? To address some of these issues, the ODK can auto-
matically generate a standardized file and directory structure
that is delivered as a git repository.

Git has become the most widely used version control sys-
tem in the biomedical ontologies domain. Git repository
hosting providers such as GitHub and GitLab have become
powerful tools beyond simple version control that cover most
aspects of modern software (and ontology) project man-
agement, including code review, issue tracking, CI testing,
discussions and milestone planning. While not entirely tied
in with git and git hosting tools such as GitHub, the ODK is
designed in a way that leverages their capabilities. The idea is
to encourage best practices promoted by these platforms such
as creating and reviewing pull requests that are automatically
tested before applying a change, separating source files from
release files and deploying documentation pages side-by-side
with the code for ontology development.

The ODK promotes a ‘convention-over-configuration’
model by imposing a standardized repository structure where
all files are stored in predictable paths within the repos-
itory. This ensures that ontology editors are on familiar
ground even if they work on multiple different ontologies. The
standardized structure includes a strict separation between
‘source files’, which are manipulated by ontology editors and
from which the ontology is built (OWL files, files containing
DOSDP patterns or SPARQL queries, helper scripts, etc.), and
‘release files’, which result from running the release workflow
and are intended for downstream users.

The released version of an ontology can take several forms,
depending for example on whether the ontology has been
reasoned over or whether it contains imported axioms from
foreign ontologies. To facilitate interoperability and modu-
lar reuse of ontologies, the ODK defines a few standardized
release products, such as the ‘base’ product, which contains
only native axioms and the ‘full’ product, which in addition
also includes imported axioms and axioms inferred by logical
reasoning.

An example of implementation of the approach described
above can be found in the ODK ontologies CL and Uberon—
both ontologies have release files in OWL, OBO and JSON, in
full, base and simple formats, which are located in the main
directory and are never edited directly. Source files, which are
the files that get edited, are located separately, but in the same
location for both ontologies (e.g. the main edit file is located
in src/ontology for both ontologies).

The ODK toolbox
The ODK can be divided into two principal architectural
components:

(i) A toolbox containing everything needed to develop,
build and maintain ontologies, from Unix command-
line development tools (e.g. rsync and git) to specialized
ontology pipeline programs (e.g. ROBOT and fastobo-
validator).

(ii) A set of executable ontology-engineering workflows,
delivered as a directory of scripts, build rules (e.g. to pre-
pare releases or refresh imports) and source files. These
workflows are described in the next section.

The goal of the ODK toolbox is to provide ontology edi-
tors with all the tools they need to build, test and release their
ontologies. Tools are chosen for their ability to support the
core workflows for managing the ontology life cycle, such as
running releases and QC. A selection of tools (15–21) included
in the ODK can be found in Supplementary Table S1. As those
tools are very diverse and use different technologies, we can-
not merely provide installation instructions that work reliably
across the operating systems and computer architectures rou-
tinely used by ontology editors. We also lack the resources to
provide customized installation packages for all those systems
and architectures.

We, therefore, decided to use a Docker image (22) as a soft-
ware distribution mechanism. Docker is a tool that automates
the deployment of applications inside software containers.
While it originated on GNU (https://www.gnu.org/)/Linux
systems, it is now available on Windows and MacOS as well.
The ODK Docker image is based on the Ubuntu base image,
in which all the tools listed in Supplementary Table S1 are
already installed. All of the core ontology tools and most
of the python dependencies are explicitly versioned by the
ODK developers, and upgrading them has to be done explic-
itly, requiring extensive testing. Ontology editors just need
to install Docker itself on their platform and fetch the ODK
image from the Docker Hub (https://hub.docker.com/r/oboli-
brary/odkfull). This saves a great deal of time for both the
developers/system administrators and the editors, since the
Docker image is effectively a ‘plug and play’ application that
can run on any major operating system.

We provide two distinct Docker images. The ODK-Lite
(obolibrary/odklite) image contains only the minimal set of
tools needed by the standard workflows described in the next
section. The ODK-Full (obolibrary/odkfull) image includes
additional tools that an OD may need for some customized,
ontology-specific workflows. With one of the ODK images
available to the local Docker daemon, ontology editors can
invoke any of the provided tools inside the container, without
needing to do any additional set-up.

Executable ontology development workflows
The executable ontology-engineering workflows are deliv-
ered as an ODK-generated Makefile. Targets in that Makefile
can roughly be divided into those that provide the recipe
for generating a specific file (such as the release file of an
ontology) and those that provide simple workflows, such as
‘clean’ to delete temporary files, ‘prepare_release’ to execute
the release workflow or ‘refresh-imports’ to update the terms
in all imported ontologies. In the rest of this section, we will
discuss some of the workflows prevalent in the biomedical
ontology community and describe how they are supported
by ODK.

The initialization and update workflows
The initialization workflow is performed once in the life-
time of an ontology to create a new ODK set-up. Unlike
the other workflows, it is launched not from a Makefile

https://hub.docker.com/r/obolibrary/odkfull
https://hub.docker.com/r/obolibrary/odkfull

4 Database , Vol. 00, Article ID baac087

but from a small wrapper script that uses the ODK Docker
image to:

(i) create a new directory which contains all files necessary
for editing and managing the new ontology (impor-
tantly, this includes the automatically generated Make-
file that will pilot all the other standard workflows
described in the rest of this section);

(ii) make a Git repository of the newly created directory and
(iii) generate an initial release based on the empty ontology.

This initialization process can be parameterized using
either command-line arguments to the wrapper script or a
small, YAML (https://yaml.org/)-formatted configuration file.
Once the repository is set up, it can be pushed to a git
hosting service such as GitHub. The choice of the hosting
provider is left to the user, but when GitHub is used, the
ODK provides special support for automatically triggering a
few server-side workflows (as GitHub Actions) upon certain
conditions, e.g. to run a CI test suite whenever a pull request
is submitted.

The ODK is continually being updated with new functions,
better support and updated tooling. This allows us to be highly
adaptive to the ever-changing landscape of ontology develop-
ment and maintain relevance to the community. ODK updates
are semi-automated, with a three-step process:

(i) Update the ODK Docker image.
(ii) Run the ‘update_repo’ command.

(iii) Commit the changes into the ontology repository.

We have decided to leave the process of updating the repos-
itory to the user rather than folding the workflow into the
ODK Docker image itself. This way, the dissemination of
new features is a bit slower, but it also gives more control
to the ontology engineer to postpone the implementation of
potentially breaking changes, such as QC checks added to the
default set-up.

The editors’ workflow
Editors frequently change the contents of an ontology by
adding or obsoleting terms, revising logical axioms or updat-
ing the metadata. While there are many variants of the editors’
workflow, i.e. the sequence of actions that lead to the final
application of a change, it can be roughly divided into the
following steps:

1. The OD opens the editor’s file in their preferred ontol-
ogy development environment (e.g. Protégé) and makes
a change (e.g. adding a term and changing a label).
Alternatively, a template file (like a ROBOT tem-
plate) is edited that first needs to be transformed
into OWL.

2. The OD creates a new git branch locally, commits the
change and opens a pull request on the ontology’s public
repository on GitHub.

3. A CI test suite job configured by the ODK is executed
automatically once a pull request is created. This job
executes a series of standard and customizable tests,
such as looking for unsatisfiable classes, malformed
cross-references or missing labels.

4. If the test fails, the developer can inspect the execution
log and proceed to fix the problem.

5. Once the test passes, another member of the ontology’s
editorial team reviews the change. Depending on the
ontology, one or more approvals may be required before
a change is merged in, after which the changes will
appear in the release products when the release pipeline
is run.

The ODK plays two major roles in the workflow, applying
changes from templates and coordinating and executing the
test suite that ensures that the edit did not ‘break anything’,
i.e. violate one or more of the QC rules. Templating systems
are integrated into the ODK and will be covered in detail in the
‘Support ODK Features’ section later in the manuscript. The
test suite provides built-in QC and CI that can be customized
to the individual users’ needs.

QC and CI
Even the most experienced ontology curators make mis-
takes when editing an ontology, from simple ones such as
introducing unwanted whitespace in an ontology term label
(i.e. a trailing or leading space character), to more compli-
cated errors that lead to unintended logical consequences (e.g.
axioms that render a class unsatisfiable or that cause two dis-
tinct classes to be wrongly inferred to be equivalent). To avoid
adding such ‘breaking changes’ to the ontology, the ODK uses
continuous integration to automatically run QC tests when a
pull request is created or updated. These tests can easily be
adopted by other version control providers such as Bitbucket
and GitLab, as long as they provide a way to run Docker-
based workflows. The QC tests are on the ODK Docker image
via a Makefile target, ‘make test’.

The ODK comes with a wide range of standard QC checks
that utilize ROBOT (15), including SPARQL-based validation
and logic-based validation. ROBOT incorporates a customiz-
able validation framework for ontologies (called ROBOT
report) that performs checks like ‘illegal trailing whitespace’,
‘illegal cross-reference syntax’, ‘missing license’ and others.
These checks reflect the best practices of the OBO Foundry—
if any are not applicable to a specific ontology, they can be
skipped and other checks can be added. Custom SPARQL-
based validation provided by the ODK in addition to the
standard ROBOT checks follows the same general idea as
ROBOT report: an ‘anti-pattern’, e.g. an undesirable situ-
ation like a non-obsolete term without a label, is specified
as a SPARQL select query and then executed using ROBOT
verify. Logical checks involve running the reasoner using the
reason function in ROBOT and ensuring logical coherency
(i.e. the absence of unsatisfiable classes) and the absence of
unintended logical equivalencies (i.e. cases where a change
to the logical axioms lead to two classes being inferred as
logically equivalent that are conceptually distinct). The val-
idation framework is made to be easily customizable. For
example, an organization might have the requirement that
new terms are always signed with a (valid) ORCID (23), so
they could implement a SPARQL query which looks for terms
in the ontologies’ namespace that do not have the respective
annotation present and further checks that if the annotation
is present, the annotation value is a valid ORCID.

An example of QC implemented in ODK can be found in
CL, which has both standard QC checks that come with the

Database, Vol. 00, Article ID baac087 5

ODK like that mentioned above and also custom checks like
‘no label check’, ‘pmid not in dbxref’, ‘illegal annotation prop-
erty’ and others. A list of custom checks is included in the
ODK yaml set-up file, with corresponding SPARQL query files
of the same name in a separate folder called ‘sparql’.

The release workflow
Generating release versions of the ontology, including differ-
ent syntaxes (e.g. JSON, OBO and RDF/XML) and variants
(see Section X) is entirely automated as part of an ODK
workflow called ‘prepare release’. To execute this workflow,
the OD simply runs a single command on the command
line (sh run.sh make prepare_release). The release workflow
executes the following steps:

1. Ensure that any automatically generated components
[such as portions of the ontology managed as ROBOT
or Dead Simple Ontology Design Patterns (DOSDP)
templates] are converted into OWL.

2. Ensure that dynamically imported terms are up-to-date.
3. Generate all release variants, such as the ‘base’, ‘full’ and

‘simple’ variants using standardized ROBOT pipelines.
This includes serializing these release variants into all
configured formats such as RDF/XML and OBO format
and adding versioning information.

4. Execute all QC tests and generate QC reports.

Under the hood, ‘make prepare_release’ builds all release
targets (release file variants which are configured as Make-
file targets) by loading the editors file and performing (mostly
ROBOT-based) transformation pipelines such as merging,
reasoning and adding version information. These release tar-
gets in turn depend on others, such as up-to-date imports,
which are executed as part of the pipeline. After all the release
files (also called release assets) are generated, the OD will
usually commit the release files to a branch and optionally
ask for a review to ensure that all the changes to the release
files are intended. Depending on how releases are being man-
aged, which differs from ontology to ontology, the last step
in the release workflow is to publish the release, which usu-
ally involves merging the release to the ‘main’ or production
branch and publishing a release (e.g. GitHub release). There
are some experimental workflows in ODK that automate even
this last part of the release process, but in our experience,
ontology curators value the opportunity for a ‘final check’
before an ontology release is published.

Dependency management: importing and reusing
existing ontologies
Ontologies, just like software, can be developed in a modular
fashion. Many ontologies make use of an external ontol-
ogy to provide logical definitions. Previously the ontology
community has had a wide range of practices for manag-
ing these kinds of inter-ontology dependencies, ranging from
copying-and-pasting external terms into an ontology, mak-
ing duplicative terms in their own ID space or using the
owl:imports mechanism. Using imports is considered best
practice, but even here there is a range of different practices.
Some ontologies import an external ontology in its entirety,
while others import subsets of external ontologies, with a

diverse range of methods for creating these subsets. Import-
ing an entire ontology can lead to scalability issues, especially
when the external ontology is large (e.g. CHEBI(24)). Import-
ing subsets of external ontologies can also be problematic,
since these may be transitively imported by other ontologies.
Additionally, external subsets can get stale.

The ODK supports what is considered best practice in
OBO and aims to make it easy for ontology editors to man-
age imports. An OD can list the external terms they require
in a text file managed in git. They can then trigger an
ODK workflow that uses ROBOT to generate an ‘import
module’ using the appropriate ontology modularization
method, such as syntactic-locality-based module extraction
(SLME) (25).

ODK will also take care of making special releases of
ontologies that avoid the stale subset problem. A special
reusable component release called a base ontology is created.
This component includes any terms belonging to the ontol-
ogy natively and all their axioms, but does not include any
of the imported axioms. This base module can then be used
as a modular component by other ontologies. Examples of
ontologies that import base files are CL, PATO and PCL.
The ODK will continue to evolve with best practices in this
area.

Support ODK features
Using template-based workflows for ontology editing
The ODK supports templating systems such as DOSDP (16)
and ROBOT templates (15), which allow ontology content to
be curated in the form of spreadsheets, which could include
new terms, axioms or annotations. These spreadsheets are
compiled by the ODK into their OWL representation using
a simple pattern. Many such patterns have been developed
in recent years and are available to be reused. Increasing
commitment to patterns will ensure consistent axiomatization
in a scalable manner and increase interoperability and reuse
between open ontologies. DOSDP configuration files and tem-
plates can be placed in fixed folders in the standard ODK
set-up, which will then be automatically integrated into the
ontology during the build process.

Auto-generated documentation
Given the complexity of the entire development life cycle of
an ontology, it is important to carefully document all work-
flows. This documentation includes instructions on how to
contribute, how to run a release and how to refresh an import.
The ODK repository generation process generates a template
for such a documentation system and auto-generates docu-
mentation of the most important ontology workflows tailored
to the ontology. For example, rather than providing generic
examples of which files to edit during the editors workflow,
the specific files used by the ontology (e.g. cl-edit.owl for the
Cell Ontology) are mentioned. The documentation system is
based on mkdocs (26) and is easily extensible to accommodate
the documentation of custom workflows. When using GitHub
as the git hosting provider, updates to the documentation can
be automatically deployed using GitHub actions. In addition
to auto-generated documentation, we have written a number
of tutorials on how to set up a new repository or update an
existing one (https://oboacademy.github.io/obook/).

https://oboacademy.github.io/obook/

6 Database , Vol. 00, Article ID baac087

Governance, community requests, QC and releases
The core ODK team selected and centralized the tools required
to optimally support the executable workflows described
above. In addition to the core tools required (such as
ROBOT (15)), we include a wide range of other tools that are
useful for processing of ontologies. The ODK is set up as a
community-driven resource in which tool requests and sugges-
tions are encouraged on the issue tracker (https://github.com/
INCATools/ontology-development-kit). The possible addition
of tools is assessed by the core team. In addition to being open
source and free to use, tools should be demonstrably useful for
managing some part of the ontology life cycle.

The workflows available in the ODK and reported here
were designed with OBO principles in mind. We are also
working with members of the FAIR semantics (27) commu-
nity to incorporate practices beyond the OBO standards (for
example, by including the owl:versionInfo property as part of
the ontology metadata).

Any change to the ODK Docker image, in particular
upgrading the tools in the ODK toolbox, is carefully evaluated
by a large set of integration tests, which are executed every
time a new feature or upgrade is proposed in a pull request
and just before every ODK release. These tests include build-
ing and running a large variety of different configurations of
ontologies, as well as testing the integrity of some of the sup-
port tools directly using a shell script which is executed as part
of the build process.

The ODK is scheduled for a new release every 3 months,
but occasionally, an additional release is required to update a
tool that has implemented a critical bug fix. Overall, more
than 30 releases were created in the last 3 years. All new
tool additions are documented in the changelog of each
release. Users can subscribe to be informed about new releases
through GitHub’s ‘Notification’ feature.

Use across OBO and beyond
The ODK is designed to allow use at different levels of ‘buy in’.
Some ontologies are entirely automated using ODK. Others
have partial adoption, such as using the ODK container to
run custom-built workflows/checks.

We evaluated the use of ODK using a number of methods,
but we do not claim to provide a full account of the usage, just
a lower bound. We first gathered some of the ontologies that
we already knew were using ODK. We also performed GitHub
searches to see which additional repositories were using ODK
(using search terms like ‘ontology development kit’ or ‘ontol-
ogy starter kit’). Lastly, we performed an informal user survey
targeting the OBO ontology community (distributed via the
obo-discuss mailing list), which got 35 responses, 23 of which
had used the ODK. Among the surveyed ontologies, 61.3%
were in the OBO Foundry.

The ODK Docker image was pulled 74 611 times from
Docker Hub at the time of this writing (22.06.2022). Note
that this merely establishes a lower bound, as the Docker
image is cached locally, and therefore does not need to be
pulled more than once per 3 months by most developers. Most
of these pulls are probably generated by various continu-
ous integration tools, which are difficult to differentiate from
human users. A table of all ODK-based ontology repositories
and a summary of ODK versions used can be found in the

supplemental materials (Supplementary Table S2, Supplemen-
tary Figure S1).

Related work
The ODK is not the only ontology development toolkit used
by ODs. In this section, we will highlight some popular tools
that are currently being used and how the ODK compares
with them.

Firstly, arguably the most popular ontology development
tool is Protégé. Protégé (28) is a visual ontology editor that
is free and open source. Protégé has a few key features that
make it a highly useful tool. Firstly, it has a graphical user
interface that is relatively easy to use and navigate, making it
highly accessible to non-technical users. It also has a library
of plugins that can further extend its functionality, and since
it is open source, it is possible to develop new custom plugins.
The ODK was developed not as a replacement for Protégé,
but rather a complement to it. The ODK is not aimed at the
actual process of ontology editing and therefore lacks any sup-
port for data entry (such as visual editors). Protégé also has
a lightweight cloud-based version (webProtégé) (29) that can
be accessed either through their or a hosted server, allow-
ing better support for simultaneous collaborative editing of
OWL ontologies. The ODK does not currently integrate with
WebProtégé editing workflows, but exploring this integration
is on our list for the future.

The OntoAnimal set of tools in conjunction with the eXten-
sible ontology development (XOD) principles (30) is another
toolkit that is widely used across OBO. Our work builds
upon the general XOD principles, such as ‘reuse’ and ‘bulk-
import’, and we hope to reconcile some of our workflows over
the coming years. There are some differences to overcome.
Firstly, the OntoAnimals toolkit does not provide standard-
ized executable workflows (releases workflows and dynamic
imports for an entire project), which is at the heart of the
ODK design. Some of the OntoAnimals best practices could
therefore simply be integrated into the ODK workflow sys-
tem. Additionally, the preferred way to extract modules in
the wider OntoAnimals culture is to use (MIREOT) Mini-
mum Information to Reference an External Ontology Term
(31) modules through a web service. This is different from
the ODK culture in two ways: (i) one key design decision
of ODK is to go straight to a source ontology from which
to import terms, download it and extract a module from the
file, while the OntoAnimals approach tends to use the Onto-
Fox web service to extract terms. We prefer our approach
because of the lack of intermediary (the imports are less often
out-of-date when not using an intermediary) and less pro-
nounced network dependency (the web service might become
unavailable or a network could be down). For example, we
can extract a module from a ‘mirror’ over and over without
downloading the mirror again. However, there are down-
sides to our approach: the often quite large ontologies require
large amounts of resources (memory and Central Processing
Unit (CPU) usage). The best approach has not been defini-
tively determined, but it should be mentioned that OntoAn-
imals module extraction workflows can be easily integrated
into the ODK through its customization features. (ii) A sec-
ond conceptual ‘conflict’ between OntoFox and ODK is the
use of MIREOT modules vs. SLME (syntactic-locality-based

https://github.com/INCATools/ontology-development-kit
https://github.com/INCATools/ontology-development-kit

Database, Vol. 00, Article ID baac087 7

modules). MIREOT modules are often more intuitive for
downstream consumers of the ontology, because they only
expose the terms that are deliberately imported by the OD,
while SLME-based modules import all terms that are neces-
sary to preserve the semantics of the source ontology (which
is usually a lot). While we believe that SLME modules are
necessary to ensure that our ontology is logically compatible
with our dependencies at development time, we believe that
neither MIREOT nor SLME modules are sufficient for down-
stream users. We are currently designing a module extraction
algorithm that not only traverses the subclass hierarchy (like
MIREOT does) but also takes into account other kinds of
relationships like mereological ones (part of, has part) which
are, for biological use cases, equally important (often more
important).

The NeOn Toolkit (32) is an open-source ontology-
engineering environment, built on the code base of
OntoStudio (33) (formally known as OntoEdit (34)), that
aims to provide comprehensive support for the entire engi-
neering lifecycle by providing an extensive set of plugins. It
organizes projects in a workspace; each project can contain
multiple ontologies that can be edited in a graphical user
interface, which requires more knowledge than Protégé as
much of the interface is pretty technical. A major advantage
of the NeOn Toolkit is an open platform to which anybody
can contribute, hence allowing for a wide variety of plugins
developed by the community.

WebODE (35) is an extensible ontology-engineering suite
developed over 16 years ago that aimed to be a common
workbench for ontology development and management, mid-
dleware services (such as access and query services) and
ontology-based application development. WebODE has many
functionalities including a simple user interface, complete con-
sistency checks, edition through a form-based user interface
or a graphical editor and term import. However, WebODE
was built to support ontology languages that are no longer
in use. Support for the tool was discontinued in 2006, and
while it remains open source, no support will be provided
when problems are encountered.

Limitations
The dependency on Docker is one of the most significant lim-
itations of the ODK architecture. While Docker itself is not
needed to run a Docker container (Docker containers can be
run with other container systems such as singularity, which
are also widely supported), the non-availability of Docker for
some of our users with (i) older Windows machines or (ii) no
access to admin privileges on their work machines has been
challenging. To mitigate this, we have worked on integrat-
ing many of the workflows as GitHub actions. For example,
rather than running the command to build and deploy the
documentation manually, a GitHub action can be launched
to do this. The problem with doing the same for other key
workflows like ontology import management or releases is
that GitHub actions are limited in how much memory they
can use (7 GB at the time of writing), which is often exceeded,
especially for larger ontologies.

Discussion and conclusions
Creating and managing biomedical ontologies are complex
tasks that require deep technical knowledge. Developing an

ontology that is standardized to other ontologies and reuses
them compounds this difficulty. This is often prohibitively dif-
ficult for many biologists and domain experts whose input is
needed to make biomedical ontologies accurate and useful.
The ODK provides tools and features that allow non-experts
to build and edit ontologies with minimal training. The ODK
helps ontologies conform to basic standards and sets users
up with structures and documentation for good ontology-
engineering practices. The import management system allows
non-technical users to reuse existing ontologies, which would
otherwise be incredibly complex. The ODK’s built-in tools,
such as templating systems, further enhance the users’ tool
belt, allowing highly powerful automation with minimal tech-
nical knowledge. Overall, the simplification achieved through
the ODK allows users and developers to focus on the con-
tent while standardizing good practices and democratizing
ontology development.

In a future release of the ODK, we plan to reconcile some
of its workflows with other existing frameworks such as
OntoAnimals, in particular OntoFox, and work with their
developers towards a common solution for, at least, biomed-
ical ontologies. Furthermore, there is a great need for bet-
ter module extraction techniques for downstream usages as
both SLME and MIREOT (the most prevalent approaches)
fall short in various ways. Lastly, the ODK does not cur-
rently prevent bad ontology modelling—we hope to be able
to make stronger use of design pattern-based validation and
advanced semantic validation techniques such as (SHACL)
Shapes Constraint Language; https://www.w3.org/TR/shacl/,
(SHEX) Shape Expression; http://shex.io/ or (LinkML) Linked
Open Data Modelling Language; https://linkml.io/ to further
reduce the potential for human error.

We have already observed significantly lower error rates
in many of the ontologies that use the ODK, thanks to the
ability of the automated testing system provided by the ODK
to catch errors early on. We hope to be able to roll out ever
more useful tests to ever wider circles of ontologies to con-
tribute to a community-wide increase in ontology quality. Our
update system allows us to rapidly roll out new features, such
as new quality tests and improved pipelines, to all our users
by pulling the new Docker image from Docker Hub and run-
ning the ‘update repo’ workflow. Lastly, we seek to harmonize
the representation of ontology release files through the use of
standard release workflows, which result in standard release
serializations (RDF/XML, OBO Flat File and OBO Graphs
JSON) and metadata (version IRIs, licence information and
more) to make ontologies more FAIR and interoperable.

Supplementary data
Supplementary data are available at Database Online.
All code described in this manuscript can be found at
https://github.com/INCATools/ontology-development-kit

Funding
Office of the Director, National Institutes of Health
(R24-OD011883); National Human Genome Research
Institute, ‘Phenomics First’ (RM1HG010860 to D.O-S.,
N.M., R.S. and A.R.C.); National Institutes of Mental
Health (1RF1MH123220-01 to S.Z-K.T., H.K. and D.O-S.);
National Heart, Lung, and Blood Institute 5U01HG009453-
03; UK Biotechnology and Biological Sciences Research

https://www.w3.org/TR/shacl/
http://shex.io/
https://linkml.io/
https://academic.oup.com/database/article-lookup/doi/10.1093/database/baac087#supplementary-data

8 Database , Vol. 00, Article ID baac087

Council/US National Science Foundation Directorate of Bio-
logical Sciences (BBSRC-NSF/BIO BB/T014008/1); The Well-
come Trust, ‘Virtual Fly Brain’ (105023MA); Director, Office
of Science, Office of Basic Energy Sciences, of the US Depart-
ment of Energy (DE-AC0205CH11231 to C.J.M.); European
Molecular Biology Laboratory - European Bioinformatics
Institute core funds (D.O-S., R.S., A.R.C., S.Z-K.T. and H.K.,
in part).

Conflict of interest
None declared.

References
1. Wilkinson,M.D., Dumontier,M., Aalbersberg,I.J.J. et al. (2016)

The FAIR guiding principles for scientific data management and
stewardship. Sci. Data, 3, 160018.

2. Haendel,M., Su,A. and McMurry,J. (2016) FAIR-TLC: metrics to
assess value of biomedical digital repositories: response to RFI
NOT-OD-16-133; (2016).

3. Goodman,A., Pepe,A., Blocker,A.W. et al. (2014) Ten simple rules
for the care and feeding of scientific data. PLoS Comput. Biol., 10,
e1003542.

4. Tang,Y.A., Pichler,K., Füllgrabe,A. et al. (2019) Ten quick tips for
biocuration. PLoS Comput. Biol., 15, e1006906.

5. McMurry,J.A., Juty,N., Blomberg,N. et al. (2017) Identifiers for
the twenty-first century: how to design, provision, and reuse persis-
tent identifiers to maximize utility and impact of life science data.
PLoS Biol., 15, e2001414.

6. Hoehndorf,R., Schofield,P.N. and Gkoutos,G.V. (2015) The role
of ontologies in biological and biomedical research: a functional
perspective. Brief. Bioinform., 16, 1069–1080.

7. Smith,B., Ashburner,M., Rosse,C. et al. (2007) The OBO Foundry:
coordinated evolution of ontologies to support biomedical data
integration. Nat. Biotechnol., 25, 1251–1255.

8. Jackson,R., Matentzoglu,N., Overton,J.A. et al. (2021) OBO
Foundry in 2021: operationalizing open data principles to evaluate
ontologies. Database, 2021.

9. Köhler,S., Gargano,M., Matentzoglu,N. et al. (2021) The
human phenotype ontology in 2021. Nucleic Acids Res., 49,
D1207–D1217.

10. Bard,J., Rhee,S.Y. and Ashburner,M. (2005) An ontology for cell
types. Genome Biol., 6, R21.

11. Diehl,A.D., Meehan,T.F., Bradford,Y.M. et al. (2016) The cell
ontology 2016: enhanced content, modularization, and ontology
interoperability. J. Biomed. Semant., 7, 44.

12. Mungall,C.J., Torniai,C., Gkoutos,G.V. et al. (2012) Uberon, an
integrative multi-species anatomy ontology. Genome Biol., 13, R5.

13. Gkoutos,G.V., Green,E.C.J., Mallon,A.-M. et al. (2005) Using
ontologies to describe mouse phenotypes. Genome Biol., 6, R8.

14. Tan,S.Z.K., Kir,H., Aevermann,B. et al. (2021) Brain Data
Standards Ontology: a data-driven ontology of transcriptomi-
cally defined cell types in the primary motor cortex. bioRxiv.
10.1101/2021.10.10.463703.

15. Jackson,R.C., Balhoff,J.P., Douglass,E. et al. (2019) ROBOT:
A tool for automating ontology workflows. BMC Bioinform.,
20, 407.

16. Osumi-Sutherland,D., Courtot,M., Balhoff,J.P. et al. (2017) Dead
simple OWL design patterns. J. Biomed. Semant., 8, 18.

17. Mungall,C., fbastian, kltm, Douglass,E. et al. (2020) owlcol-
lab/owltools: 2020-04-06.

18. Steigmiller,A., Liebig,T. and Glimm,B. (2014) Konclude: system
description. J. Web Semant., 27–28, 78–85.

19. Jordan,H., Scholz,B. and Suboti ́c,P. (2016) Soufflé: on synthe-
sis of program analyzers Toronto, ON, Canada . In: Com-
puter Aided Verification. Springer International Publishing, pp.
422–430.

20. Mungall,C., Hegde,H., Kalita,P. et al. (2022) INCATools/
ontology-access-kit: v0.1.22.

21. Matentzoglu,N., Balhoff,J.P., Bello,S.M. et al. (2022) A simple
standard for sharing ontological mappings (SSSOM). Database,
2022.

22. Merkel,D. (2014) Docker: lightweight Linux containers for consis-
tent development and deployment. Linux J.

23. (2009) Credit where credit is due. Nature, 462, 825.
24. Hastings J et al 2012 The ChEBI reference database and ontology

for biologically relevant chemistry: enhancements for 2013 Nucleic
Acids Research 41, D456–D463. 10.1093/nar/gks1146.

25. Grau,H., Horrocks,I., Kazakov,Y. et al. 2008 Modular reuse of
ontologies: theory and practice. J. Artif . Intell. 31, 273–318.

26. Christie,T. (2014) MkDocs. Project documentation with Mark-
Down.

27. Franc,Y.L., Coen,G., Essen,J.P. et al. (2020) D2.2 FAIR semantics:
first recommendations.

28. Musen,M.A. and Protégé Team. (2015) The Protégé project: a look
back and a look forward. AI Matters, 1, 4–12.

29. Horridge,M., Gonçalves,R.S., Nyulas,C.I. et al. (2019) WebPro-
tégé: a cloud-based ontology editor. In: Companion Proceed-
ings of the 2019 World Wide Web Conference, WWW ’19.
Association for Computing Machinery, New York, USA, pp.
686–689.

30. He,Y., Xiang,Z., Zheng,J. et al. (2018) The eXtensible ontol-
ogy development (XOD) principles and tool implementation to
support ontology interoperability. J. Biomed. Semant., 9, 3.

31. Courtot M, Courtot M, Gibson F, Lister A, Malone J, Schober
D, Brinkman R and Ruttenberg A 2009 MIREOT: the Mini-
mum Information to Reference an External Ontology Term Nature
Precedings. 10.1038/npre.2009.3576.

32. Erdmann,M. and Waterfeld,W. (2012) Overview of the NeOn
Toolkit. In: Suárez-Figueroa MC, Gómez-Pérez A, Motta E et al.
(eds). Ontology Engineering in a Networked World. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 281–301.

33. Weiten,M. (2009) OntoSTUDIO® as a ontology engineer-
ing environment. In: Davies J, Grobelnik M, Mladeni ́c D
(eds). Semantic Knowledge Management: Integrating Ontol-
ogy Management, Knowledge Discovery, and Human Language
Technologies. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 51–60.

34. Sure,Y., Erdmann,M., Angele,J. et al. (2002) OntoEdit: collabora-
tive ontology development for the semantic web Sardinia, Italy. In:
The Semantic Web—ISWC 2002. Springer Berlin Heidelberg, pp.
221–235.

35. Arpírez,J.C., Corcho,O., Fernández-López,M. et al. (2001)
WebODE: a scalable workbench for ontological engineering. In:
Proceedings of the 1st international conference on Knowledge cap-
ture, K-CAP ’01. Association for Computing Machinery, New
York, USA, pp. 6–13.

https://doi.org/10.1101/2021.10.10.463703
https://doi.org/10.1093/nar/gks1146
https://doi.org/10.1038/npre.2009.3576

	Ontology Development Kit: a toolkit for building, maintaining and standardizing biomedical ontologies
	 Introduction
	 Motivation
	 Sharing best practices
	 Standardized repository architecture and release products

	 The ODK toolbox
	 Executable ontology development workflows
	 The initialization and update workflows
	 The editors' workflow
	 QC and CI
	 The release workflow
	 Dependency management: importing and reusing existing ontologies
	 Support ODK features
	 Using template-based workflows for ontology editing
	 Auto-generated documentation

	 Governance, community requests, QC and releases

	 Use across OBO and beyond
	 Related work
	 Limitations
	 Discussion and conclusions
	Supplementary data
	Funding
	Conflict of interest
	References

