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Abstract
Similar to managing software packages, managing the ontology life cycle involves multiple complex workflows such as preparing releases, 
continuous quality control checking and dependency management. To manage these processes, a diverse set of tools is required, from command-
line utilities to powerful ontology-engineering environmentsr. Particularly in the biomedical domain, which has developed a set of highly diverse 
yet inter-dependent ontologies, standardizing release practices and metadata and establishing shared quality standards are crucial to enable 
interoperability. The Ontology Development Kit (ODK) provides a set of standardized, customizable and automatically executable workflows, and 
packages all required tooling in a single Docker image. In this paper, we provide an overview of how the ODK works, show how it is used in 
practice and describe how we envision it driving standardization efforts in our community.
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Introduction
In a time of increasing biomedical data output, ontologies 
have become crucial in research, playing an important role in 
making data findable, accessible, interoperable and reusable 
(FAIR) (1) by providing standard identifiers (2–5), vocabulary, 

metadata and machine-readable axioms (6). Developing high-
quality and scalable ontologies requires reusing parts of other 
ontologies, the use of reasoning to automate classification and 
extensive quality control (QC) testing. Managing develop-
ment while following this approach can be a complex process 
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involving tasks such as import management, release file com-
pilation, integration testing and QC. This difficulty is com-
pounded by the fact that ontologies in the biomedical domain 
are generally under-resourced and that biologists, who need 
to be an integral part of their development, are often not 
trained in software engineering and therefore lack exposure 
to standard best practices for software development. Further-
more, the complexity of the ontology development process is 
a huge barrier to entry for the community to contribute, lim-
iting the democratization (and arguably the quality) of these 
ontologies. Over the years, some ontology communities devel-
oped their own workflows for managing the ontology life 
cycle using a variety of tools and technical approaches. How-
ever, given the complexity of the technologies involved, it is 
very difficult for even the most experienced ontology pipeline 
developers to maintain and extend these workflows.

The Open Biomedical Ontologies (OBO) Foundry aims to 
unify ontologies in the biomedical domain through an evolv-
ing set of shared principles governing ontology development, 
allowing interoperability between ontologies (7, 8). However, 
to effectively achieve this, tools that enable standardization 
of these shared principles are needed (i) to support ontology 
developers (ODs) to conform to the principles (e.g. through 
standardized QC as well as standardised release pipelines) and 
(ii) to allow less technical ontology curators to abide by these 
standards without the need for intensive engineering training.

Ontology engineering is a complex task involving many 
different workflows such as:

(i) Running releases: transforming the ontology through 
a variety of pipelines involving reasoning, removing 
redundant content, adding versioning information and 
exporting to the variety of ontology formats consumed 
by users such as RDF-XML (https://www.w3.org/TR/
owl2-xml-serialization/), OBO (https://owlcollab.
github.io/oboformat/doc/GO.format.obo-1_4.html),
Turtle (https://www.w3.org/TR/2014/REC-turtle-2014
0225/), and OBO-graphs JSON (https://github.com/
geneontology/obographs)s.

(ii) Requesting changes in the form of issues on an issue 
tracker and discussing the merit of the proposed 
changes.

(iii) Applying changes to the ontology: adding or editing 
terms, removing logical axioms or changing labels.

(iv) Reviewing change requests, usually in the form of pull 
requests.

(v) QC checking: ensuring that the ontology conforms to 
a variety of integrity checks, such as logical coherence, 
label uniqueness and provenance standards.

(vi) Dependency management: providing methods to import 
terms from other ontologies and keep those terms up-
to-date in the light of changes.

(vii) Documentation management: providing methods to 
keep documentation current in the light of changes to 
the ontology and the ontology workflows.

In this paper, we present the Ontology Development Kit 
(ODK), a tool for managing the ontology life cycle. ODK is 
currently used to maintain more than 70 ontologies, mostly in 
the biomedical domain, such as the widely used Human Phe-
notype Ontology (9), the Cell ontology (CL) (10, 11), Uberon 
(12), PATO (13), the Brain Data Standards Ontology and 
Provisional Cell Ontology (PCL) (14).

The ODK comprises two major components: a set of exe-
cutable ontology-engineering workflows and a toolbox. It 
delivers these workflows, which reflect standard best prac-
tices recommended by the OBO Foundry, as a customizable 
git repository set-up including all the different files and scripts 
necessary to run, for example, releases and QC tests, and 
import terms from other ontologies. The toolbox is delivered 
as a Docker image and includes all tools necessary to exe-
cute these workflows, from command-line utilities (sed, git 
and rsync) to ontology pipeline tools such as ROBOT (15) 
and dosdp-tools (16).

The ODK simplifies the process of maintaining an ontol-
ogy, allowing ODs to focus on content rather than technical 
aspects of maintenance. It also allows ODs to fully lever-
age modern ‘social coding’ open-source development practices 
exemplified by many GitHub repositories, such as allow-
ing community contributions via GitHub pull requests and 
using cloud-based continuous integration (CI) tools to help
with QC.

Motivation
Sharing best practices
Best practices for ontology engineering evolve over time. For 
example, it took years of discussions and collective learn-
ing to define the OBO Foundry principles, a set of best 
practices for open, FAIR and interoperable ontology devel-
opment in the biomedical domain (8) and their refinement is 
ongoing. While those practices are slowly adopted through 
a mix of community engagement activities and improved 
tooling such as the OBO Dashboard (8), the need for 
extending those practices never stops. For example, there 
is currently no agreed-upon metadata schema for reflecting 
contributions to ontology terms, which is critical not only 
for attribution (grant proposals and individual editors) but 
more generally important for provenance-related questions 
(Who wrote that definition? Who suggested that term to be 
added?). To drive this forward, a group of organizations 
decided to collect this information using a specific property 
(http://purl.org/dc/terms/contributor) and uniquely identify-
ing Internationalized Resource Identifiers (IRIs) for contrib-
utors,such as (ORCID) Open Researcher and Contributor 
IDentifier, Wikidata or (ROR) Research Organization Reg-
istry identifiers. To ensure that these metadata are captured 
correctly, a schema check needs to be defined. This is typically 
realized using SPARQL (https://www.w3.org/TR/rdf-sparql-
query/) in ODK and then shared across all participating 
ontology repositories.

Having a centralized infrastructure like the ODK means 
that when one ontology faces such an issue, tests (and fixes) 
can be rolled out via the executable workflows defined by 
the ODK to all ontologies using it, not just to that particu-
lar ontology. This reduces the overhead needed to fix multiple 
ontologies and provides a more collaborative environment for 
problem-solving.

Standardized repository architecture and release 
products
Ontologies, even if built with OBO principles in mind, vary 
in the forms in which they are made available. For example, 
should the ontology be published with import statements or 
should the imports be merged in? Should the ontology be pub-
lished with or without the logical inferences computed by a 
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reasoner? Furthermore, users frequently want ontology files 
in alternative formats, like RDF/XML, OBO Flatfile format, 
OBO Graphs JSON or Turtle. Another problem is that the 
ontology repositories are not usually standardized. Editors 
who edit more than one ontology have to adjust to the idiosyn-
crasies of each repository: Which files to edit? How to run 
tests? How to provide versioned releases? How to add new 
terms? To address some of these issues, the ODK can auto-
matically generate a standardized file and directory structure 
that is delivered as a git repository.

Git has become the most widely used version control sys-
tem in the biomedical ontologies domain. Git repository 
hosting providers such as GitHub and GitLab have become 
powerful tools beyond simple version control that cover most 
aspects of modern software (and ontology) project man-
agement, including code review, issue tracking, CI testing, 
discussions and milestone planning. While not entirely tied 
in with git and git hosting tools such as GitHub, the ODK is 
designed in a way that leverages their capabilities. The idea is 
to encourage best practices promoted by these platforms such 
as creating and reviewing pull requests that are automatically 
tested before applying a change, separating source files from 
release files and deploying documentation pages side-by-side 
with the code for ontology development.

The ODK promotes a ‘convention-over-configuration’ 
model by imposing a standardized repository structure where 
all files are stored in predictable paths within the repos-
itory. This ensures that ontology editors are on familiar 
ground even if they work on multiple different ontologies. The 
standardized structure includes a strict separation between 
‘source files’, which are manipulated by ontology editors and 
from which the ontology is built (OWL files, files containing 
DOSDP patterns or SPARQL queries, helper scripts, etc.), and 
‘release files’, which result from running the release workflow 
and are intended for downstream users.

The released version of an ontology can take several forms, 
depending for example on whether the ontology has been 
reasoned over or whether it contains imported axioms from 
foreign ontologies. To facilitate interoperability and modu-
lar reuse of ontologies, the ODK defines a few standardized 
release products, such as the ‘base’ product, which contains 
only native axioms and the ‘full’ product, which in addition 
also includes imported axioms and axioms inferred by logical 
reasoning.

An example of implementation of the approach described 
above can be found in the ODK ontologies CL and Uberon—
both ontologies have release files in OWL, OBO and JSON, in 
full, base and simple formats, which are located in the main 
directory and are never edited directly. Source files, which are 
the files that get edited, are located separately, but in the same 
location for both ontologies (e.g. the main edit file is located 
in src/ontology for both ontologies).

The ODK toolbox
The ODK can be divided into two principal architectural 
components:

(i) A toolbox containing everything needed to develop, 
build and maintain ontologies, from Unix command-
line development tools (e.g. rsync and git) to specialized 
ontology pipeline programs (e.g. ROBOT and fastobo-
validator).

(ii) A set of executable ontology-engineering workflows, 
delivered as a directory of scripts, build rules (e.g. to pre-
pare releases or refresh imports) and source files. These 
workflows are described in the next section.

The goal of the ODK toolbox is to provide ontology edi-
tors with all the tools they need to build, test and release their 
ontologies. Tools are chosen for their ability to support the 
core workflows for managing the ontology life cycle, such as 
running releases and QC. A selection of tools (15–21) included 
in the ODK can be found in Supplementary Table S1. As those 
tools are very diverse and use different technologies, we can-
not merely provide installation instructions that work reliably 
across the operating systems and computer architectures rou-
tinely used by ontology editors. We also lack the resources to 
provide customized installation packages for all those systems 
and architectures.

We, therefore, decided to use a Docker image (22) as a soft-
ware distribution mechanism. Docker is a tool that automates 
the deployment of applications inside software containers. 
While it originated on GNU (https://www.gnu.org/)/Linux 
systems, it is now available on Windows and MacOS as well. 
The ODK Docker image is based on the Ubuntu base image, 
in which all the tools listed in Supplementary Table S1 are 
already installed. All of the core ontology tools and most 
of the python dependencies are explicitly versioned by the 
ODK developers, and upgrading them has to be done explic-
itly, requiring extensive testing. Ontology editors just need 
to install Docker itself on their platform and fetch the ODK 
image from the Docker Hub (https://hub.docker.com/r/oboli-
brary/odkfull). This saves a great deal of time for both the 
developers/system administrators and the editors, since the 
Docker image is effectively a ‘plug and play’ application that 
can run on any major operating system.

We provide two distinct Docker images. The ODK-Lite 
(obolibrary/odklite) image contains only the minimal set of 
tools needed by the standard workflows described in the next 
section. The ODK-Full (obolibrary/odkfull) image includes 
additional tools that an OD may need for some customized, 
ontology-specific workflows. With one of the ODK images 
available to the local Docker daemon, ontology editors can 
invoke any of the provided tools inside the container, without 
needing to do any additional set-up.

Executable ontology development workflows
The executable ontology-engineering workflows are deliv-
ered as an ODK-generated Makefile. Targets in that Makefile 
can roughly be divided into those that provide the recipe 
for generating a specific file (such as the release file of an 
ontology) and those that provide simple workflows, such as 
‘clean’ to delete temporary files, ‘prepare_release’ to execute 
the release workflow or ‘refresh-imports’ to update the terms 
in all imported ontologies. In the rest of this section, we will 
discuss some of the workflows prevalent in the biomedical 
ontology community and describe how they are supported
by ODK.

The initialization and update workflows
The initialization workflow is performed once in the life-
time of an ontology to create a new ODK set-up. Unlike 
the other workflows, it is launched not from a Makefile 
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but from a small wrapper script that uses the ODK Docker
image to:

(i) create a new directory which contains all files necessary 
for editing and managing the new ontology (impor-
tantly, this includes the automatically generated Make-
file that will pilot all the other standard workflows 
described in the rest of this section);

(ii) make a Git repository of the newly created directory and
(iii) generate an initial release based on the empty ontology.

This initialization process can be parameterized using 
either command-line arguments to the wrapper script or a 
small, YAML (https://yaml.org/)-formatted configuration file. 
Once the repository is set up, it can be pushed to a git 
hosting service such as GitHub. The choice of the hosting 
provider is left to the user, but when GitHub is used, the 
ODK provides special support for automatically triggering a 
few server-side workflows (as GitHub Actions) upon certain 
conditions, e.g. to run a CI test suite whenever a pull request 
is submitted.

The ODK is continually being updated with new functions, 
better support and updated tooling. This allows us to be highly 
adaptive to the ever-changing landscape of ontology develop-
ment and maintain relevance to the community. ODK updates 
are semi-automated, with a three-step process:

(i) Update the ODK Docker image.
(ii) Run the ‘update_repo’ command.

(iii) Commit the changes into the ontology repository.

We have decided to leave the process of updating the repos-
itory to the user rather than folding the workflow into the 
ODK Docker image itself. This way, the dissemination of 
new features is a bit slower, but it also gives more control 
to the ontology engineer to postpone the implementation of 
potentially breaking changes, such as QC checks added to the 
default set-up.

The editors’ workflow
Editors frequently change the contents of an ontology by 
adding or obsoleting terms, revising logical axioms or updat-
ing the metadata. While there are many variants of the editors’ 
workflow, i.e. the sequence of actions that lead to the final 
application of a change, it can be roughly divided into the 
following steps:

1. The OD opens the editor’s file in their preferred ontol-
ogy development environment (e.g. Protégé) and makes 
a change (e.g. adding a term and changing a label). 
Alternatively, a template file (like a ROBOT tem-
plate) is edited that first needs to be transformed
into OWL.

2. The OD creates a new git branch locally, commits the 
change and opens a pull request on the ontology’s public 
repository on GitHub.

3. A CI test suite job configured by the ODK is executed 
automatically once a pull request is created. This job 
executes a series of standard and customizable tests, 
such as looking for unsatisfiable classes, malformed 
cross-references or missing labels.

4. If the test fails, the developer can inspect the execution 
log and proceed to fix the problem.

5. Once the test passes, another member of the ontology’s 
editorial team reviews the change. Depending on the 
ontology, one or more approvals may be required before 
a change is merged in, after which the changes will 
appear in the release products when the release pipeline 
is run.

The ODK plays two major roles in the workflow, applying 
changes from templates and coordinating and executing the 
test suite that ensures that the edit did not ‘break anything’, 
i.e. violate one or more of the QC rules. Templating systems 
are integrated into the ODK and will be covered in detail in the 
‘Support ODK Features’ section later in the manuscript. The 
test suite provides built-in QC and CI that can be customized 
to the individual users’ needs.

QC and CI
Even the most experienced ontology curators make mis-
takes when editing an ontology, from simple ones such as 
introducing unwanted whitespace in an ontology term label 
(i.e. a trailing or leading space character), to more compli-
cated errors that lead to unintended logical consequences (e.g. 
axioms that render a class unsatisfiable or that cause two dis-
tinct classes to be wrongly inferred to be equivalent). To avoid 
adding such ‘breaking changes’ to the ontology, the ODK uses 
continuous integration to automatically run QC tests when a 
pull request is created or updated. These tests can easily be 
adopted by other version control providers such as Bitbucket 
and GitLab, as long as they provide a way to run Docker-
based workflows. The QC tests are on the ODK Docker image 
via a Makefile target, ‘make test’.

The ODK comes with a wide range of standard QC checks 
that utilize ROBOT (15), including SPARQL-based validation 
and logic-based validation. ROBOT incorporates a customiz-
able validation framework for ontologies (called ROBOT 
report) that performs checks like ‘illegal trailing whitespace’, 
‘illegal cross-reference syntax’, ‘missing license’ and others. 
These checks reflect the best practices of the OBO Foundry—
if any are not applicable to a specific ontology, they can be 
skipped and other checks can be added. Custom SPARQL-
based validation provided by the ODK in addition to the 
standard ROBOT checks follows the same general idea as 
ROBOT report: an ‘anti-pattern’, e.g. an undesirable situ-
ation like a non-obsolete term without a label, is specified 
as a SPARQL select query and then executed using ROBOT 
verify. Logical checks involve running the reasoner using the 
reason function in ROBOT and ensuring logical coherency 
(i.e. the absence of unsatisfiable classes) and the absence of 
unintended logical equivalencies (i.e. cases where a change 
to the logical axioms lead to two classes being inferred as 
logically equivalent that are conceptually distinct). The val-
idation framework is made to be easily customizable. For 
example, an organization might have the requirement that 
new terms are always signed with a (valid) ORCID (23), so 
they could implement a SPARQL query which looks for terms 
in the ontologies’ namespace that do not have the respective 
annotation present and further checks that if the annotation 
is present, the annotation value is a valid ORCID.

An example of QC implemented in ODK can be found in 
CL, which has both standard QC checks that come with the 
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ODK like that mentioned above and also custom checks like 
‘no label check’, ‘pmid not in dbxref’, ‘illegal annotation prop-
erty’ and others. A list of custom checks is included in the 
ODK yaml set-up file, with corresponding SPARQL query files 
of the same name in a separate folder called ‘sparql’.

The release workflow
Generating release versions of the ontology, including differ-
ent syntaxes (e.g. JSON, OBO and RDF/XML) and variants 
(see Section X) is entirely automated as part of an ODK 
workflow called ‘prepare release’. To execute this workflow, 
the OD simply runs a single command on the command 
line (sh run.sh make prepare_release). The release workflow 
executes the following steps:

1. Ensure that any automatically generated components 
[such as portions of the ontology managed as ROBOT 
or Dead Simple Ontology Design Patterns (DOSDP) 
templates] are converted into OWL.

2. Ensure that dynamically imported terms are up-to-date.
3. Generate all release variants, such as the ‘base’, ‘full’ and 

‘simple’ variants using standardized ROBOT pipelines. 
This includes serializing these release variants into all 
configured formats such as RDF/XML and OBO format 
and adding versioning information.

4. Execute all QC tests and generate QC reports.

Under the hood, ‘make prepare_release’ builds all release 
targets (release file variants which are configured as Make-
file targets) by loading the editors file and performing (mostly 
ROBOT-based) transformation pipelines such as merging, 
reasoning and adding version information. These release tar-
gets in turn depend on others, such as up-to-date imports, 
which are executed as part of the pipeline. After all the release 
files (also called release assets) are generated, the OD will 
usually commit the release files to a branch and optionally 
ask for a review to ensure that all the changes to the release 
files are intended. Depending on how releases are being man-
aged, which differs from ontology to ontology, the last step 
in the release workflow is to publish the release, which usu-
ally involves merging the release to the ‘main’ or production 
branch and publishing a release (e.g. GitHub release). There 
are some experimental workflows in ODK that automate even 
this last part of the release process, but in our experience, 
ontology curators value the opportunity for a ‘final check’ 
before an ontology release is published.

Dependency management: importing and reusing 
existing ontologies
Ontologies, just like software, can be developed in a modular 
fashion. Many ontologies make use of an external ontol-
ogy to provide logical definitions. Previously the ontology 
community has had a wide range of practices for manag-
ing these kinds of inter-ontology dependencies, ranging from 
copying-and-pasting external terms into an ontology, mak-
ing duplicative terms in their own ID space or using the 
owl:imports mechanism. Using imports is considered best 
practice, but even here there is a range of different practices. 
Some ontologies import an external ontology in its entirety, 
while others import subsets of external ontologies, with a 

diverse range of methods for creating these subsets. Import-
ing an entire ontology can lead to scalability issues, especially 
when the external ontology is large (e.g. CHEBI(24)). Import-
ing subsets of external ontologies can also be problematic, 
since these may be transitively imported by other ontologies. 
Additionally, external subsets can get stale.

The ODK supports what is considered best practice in 
OBO and aims to make it easy for ontology editors to man-
age imports. An OD can list the external terms they require 
in a text file managed in git. They can then trigger an 
ODK workflow that uses ROBOT to generate an ‘import 
module’ using the appropriate ontology modularization 
method, such as syntactic-locality-based module extraction
(SLME) (25).

ODK will also take care of making special releases of 
ontologies that avoid the stale subset problem. A special 
reusable component release called a base ontology is created. 
This component includes any terms belonging to the ontol-
ogy natively and all their axioms, but does not include any 
of the imported axioms. This base module can then be used 
as a modular component by other ontologies. Examples of 
ontologies that import base files are CL, PATO and PCL. 
The ODK will continue to evolve with best practices in this
area.

Support ODK features
Using template-based workflows for ontology editing
The ODK supports templating systems such as DOSDP (16) 
and ROBOT templates (15), which allow ontology content to 
be curated in the form of spreadsheets, which could include 
new terms, axioms or annotations. These spreadsheets are 
compiled by the ODK into their OWL representation using 
a simple pattern. Many such patterns have been developed 
in recent years and are available to be reused. Increasing 
commitment to patterns will ensure consistent axiomatization 
in a scalable manner and increase interoperability and reuse 
between open ontologies. DOSDP configuration files and tem-
plates can be placed in fixed folders in the standard ODK 
set-up, which will then be automatically integrated into the 
ontology during the build process.

Auto-generated documentation
Given the complexity of the entire development life cycle of 
an ontology, it is important to carefully document all work-
flows. This documentation includes instructions on how to 
contribute, how to run a release and how to refresh an import. 
The ODK repository generation process generates a template 
for such a documentation system and auto-generates docu-
mentation of the most important ontology workflows tailored 
to the ontology. For example, rather than providing generic 
examples of which files to edit during the editors workflow, 
the specific files used by the ontology (e.g. cl-edit.owl for the 
Cell Ontology) are mentioned. The documentation system is 
based on mkdocs (26) and is easily extensible to accommodate 
the documentation of custom workflows. When using GitHub 
as the git hosting provider, updates to the documentation can 
be automatically deployed using GitHub actions. In addition 
to auto-generated documentation, we have written a number 
of tutorials on how to set up a new repository or update an 
existing one (https://oboacademy.github.io/obook/).

https://oboacademy.github.io/obook/
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Governance, community requests, QC and releases
The core ODK team selected and centralized the tools required 
to optimally support the executable workflows described 
above. In addition to the core tools required (such as 
ROBOT (15)), we include a wide range of other tools that are 
useful for processing of ontologies. The ODK is set up as a 
community-driven resource in which tool requests and sugges-
tions are encouraged on the issue tracker (https://github.com/
INCATools/ontology-development-kit). The possible addition 
of tools is assessed by the core team. In addition to being open 
source and free to use, tools should be demonstrably useful for 
managing some part of the ontology life cycle.

The workflows available in the ODK and reported here 
were designed with OBO principles in mind. We are also 
working with members of the FAIR semantics (27) commu-
nity to incorporate practices beyond the OBO standards (for 
example, by including the owl:versionInfo property as part of 
the ontology metadata).

Any change to the ODK Docker image, in particular 
upgrading the tools in the ODK toolbox, is carefully evaluated 
by a large set of integration tests, which are executed every 
time a new feature or upgrade is proposed in a pull request 
and just before every ODK release. These tests include build-
ing and running a large variety of different configurations of 
ontologies, as well as testing the integrity of some of the sup-
port tools directly using a shell script which is executed as part 
of the build process.

The ODK is scheduled for a new release every 3 months, 
but occasionally, an additional release is required to update a 
tool that has implemented a critical bug fix. Overall, more 
than 30 releases were created in the last 3 years. All new 
tool additions are documented in the changelog of each 
release. Users can subscribe to be informed about new releases 
through GitHub’s ‘Notification’ feature.

Use across OBO and beyond
The ODK is designed to allow use at different levels of ‘buy in’. 
Some ontologies are entirely automated using ODK. Others 
have partial adoption, such as using the ODK container to 
run custom-built workflows/checks.

We evaluated the use of ODK using a number of methods, 
but we do not claim to provide a full account of the usage, just 
a lower bound. We first gathered some of the ontologies that 
we already knew were using ODK. We also performed GitHub 
searches to see which additional repositories were using ODK 
(using search terms like ‘ontology development kit’ or ‘ontol-
ogy starter kit’). Lastly, we performed an informal user survey 
targeting the OBO ontology community (distributed via the 
obo-discuss mailing list), which got 35 responses, 23 of which 
had used the ODK. Among the surveyed ontologies, 61.3% 
were in the OBO Foundry.

The ODK Docker image was pulled 74 611 times from 
Docker Hub at the time of this writing (22.06.2022). Note 
that this merely establishes a lower bound, as the Docker 
image is cached locally, and therefore does not need to be 
pulled more than once per 3 months by most developers. Most 
of these pulls are probably generated by various continu-
ous integration tools, which are difficult to differentiate from 
human users. A table of all ODK-based ontology repositories 
and a summary of ODK versions used can be found in the

supplemental materials (Supplementary Table S2, Supplemen-
tary Figure S1).

Related work
The ODK is not the only ontology development toolkit used 
by ODs. In this section, we will highlight some popular tools 
that are currently being used and how the ODK compares 
with them.

Firstly, arguably the most popular ontology development 
tool is Protégé. Protégé (28) is a visual ontology editor that 
is free and open source. Protégé has a few key features that 
make it a highly useful tool. Firstly, it has a graphical user 
interface that is relatively easy to use and navigate, making it 
highly accessible to non-technical users. It also has a library 
of plugins that can further extend its functionality, and since 
it is open source, it is possible to develop new custom plugins. 
The ODK was developed not as a replacement for Protégé, 
but rather a complement to it. The ODK is not aimed at the 
actual process of ontology editing and therefore lacks any sup-
port for data entry (such as visual editors). Protégé also has 
a lightweight cloud-based version (webProtégé) (29) that can 
be accessed either through their or a hosted server, allow-
ing better support for simultaneous collaborative editing of 
OWL ontologies. The ODK does not currently integrate with 
WebProtégé editing workflows, but exploring this integration 
is on our list for the future.

The OntoAnimal set of tools in conjunction with the eXten-
sible ontology development (XOD) principles (30) is another 
toolkit that is widely used across OBO. Our work builds 
upon the general XOD principles, such as ‘reuse’ and ‘bulk-
import’, and we hope to reconcile some of our workflows over 
the coming years. There are some differences to overcome. 
Firstly, the OntoAnimals toolkit does not provide standard-
ized executable workflows (releases workflows and dynamic 
imports for an entire project), which is at the heart of the 
ODK design. Some of the OntoAnimals best practices could 
therefore simply be integrated into the ODK workflow sys-
tem. Additionally, the preferred way to extract modules in 
the wider OntoAnimals culture is to use (MIREOT) Mini-
mum Information to Reference an External Ontology Term 
(31) modules through a web service. This is different from 
the ODK culture in two ways: (i) one key design decision 
of ODK is to go straight to a source ontology from which 
to import terms, download it and extract a module from the 
file, while the OntoAnimals approach tends to use the Onto-
Fox web service to extract terms. We prefer our approach 
because of the lack of intermediary (the imports are less often 
out-of-date when not using an intermediary) and less pro-
nounced network dependency (the web service might become 
unavailable or a network could be down). For example, we 
can extract a module from a ‘mirror’ over and over without 
downloading the mirror again. However, there are down-
sides to our approach: the often quite large ontologies require 
large amounts of resources (memory and Central Processing 
Unit (CPU) usage). The best approach has not been defini-
tively determined, but it should be mentioned that OntoAn-
imals module extraction workflows can be easily integrated 
into the ODK through its customization features. (ii) A sec-
ond conceptual ‘conflict’ between OntoFox and ODK is the 
use of MIREOT modules vs. SLME (syntactic-locality-based 

https://github.com/INCATools/ontology-development-kit
https://github.com/INCATools/ontology-development-kit
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modules). MIREOT modules are often more intuitive for 
downstream consumers of the ontology, because they only 
expose the terms that are deliberately imported by the OD, 
while SLME-based modules import all terms that are neces-
sary to preserve the semantics of the source ontology (which 
is usually a lot). While we believe that SLME modules are 
necessary to ensure that our ontology is logically compatible 
with our dependencies at development time, we believe that 
neither MIREOT nor SLME modules are sufficient for down-
stream users. We are currently designing a module extraction 
algorithm that not only traverses the subclass hierarchy (like 
MIREOT does) but also takes into account other kinds of 
relationships like mereological ones (part of, has part) which 
are, for biological use cases, equally important (often more 
important).

The NeOn Toolkit (32) is an open-source ontology-
engineering environment, built on the code base of 
OntoStudio (33) (formally known as OntoEdit (34)), that 
aims to provide comprehensive support for the entire engi-
neering lifecycle by providing an extensive set of plugins. It 
organizes projects in a workspace; each project can contain 
multiple ontologies that can be edited in a graphical user 
interface, which requires more knowledge than Protégé as 
much of the interface is pretty technical. A major advantage 
of the NeOn Toolkit is an open platform to which anybody 
can contribute, hence allowing for a wide variety of plugins 
developed by the community.

WebODE (35) is an extensible ontology-engineering suite 
developed over 16 years ago that aimed to be a common 
workbench for ontology development and management, mid-
dleware services (such as access and query services) and 
ontology-based application development. WebODE has many 
functionalities including a simple user interface, complete con-
sistency checks, edition through a form-based user interface 
or a graphical editor and term import. However, WebODE 
was built to support ontology languages that are no longer 
in use. Support for the tool was discontinued in 2006, and 
while it remains open source, no support will be provided 
when problems are encountered.

Limitations
The dependency on Docker is one of the most significant lim-
itations of the ODK architecture. While Docker itself is not 
needed to run a Docker container (Docker containers can be 
run with other container systems such as singularity, which 
are also widely supported), the non-availability of Docker for 
some of our users with (i) older Windows machines or (ii) no 
access to admin privileges on their work machines has been 
challenging. To mitigate this, we have worked on integrat-
ing many of the workflows as GitHub actions. For example, 
rather than running the command to build and deploy the 
documentation manually, a GitHub action can be launched 
to do this. The problem with doing the same for other key 
workflows like ontology import management or releases is 
that GitHub actions are limited in how much memory they 
can use (7 GB at the time of writing), which is often exceeded, 
especially for larger ontologies.

Discussion and conclusions
Creating and managing biomedical ontologies are complex 
tasks that require deep technical knowledge. Developing an 

ontology that is standardized to other ontologies and reuses 
them compounds this difficulty. This is often prohibitively dif-
ficult for many biologists and domain experts whose input is 
needed to make biomedical ontologies accurate and useful. 
The ODK provides tools and features that allow non-experts 
to build and edit ontologies with minimal training. The ODK 
helps ontologies conform to basic standards and sets users 
up with structures and documentation for good ontology-
engineering practices. The import management system allows 
non-technical users to reuse existing ontologies, which would 
otherwise be incredibly complex. The ODK’s built-in tools, 
such as templating systems, further enhance the users’ tool 
belt, allowing highly powerful automation with minimal tech-
nical knowledge. Overall, the simplification achieved through 
the ODK allows users and developers to focus on the con-
tent while standardizing good practices and democratizing 
ontology development.

In a future release of the ODK, we plan to reconcile some 
of its workflows with other existing frameworks such as 
OntoAnimals, in particular OntoFox, and work with their 
developers towards a common solution for, at least, biomed-
ical ontologies. Furthermore, there is a great need for bet-
ter module extraction techniques for downstream usages as 
both SLME and MIREOT (the most prevalent approaches) 
fall short in various ways. Lastly, the ODK does not cur-
rently prevent bad ontology modelling—we hope to be able 
to make stronger use of design pattern-based validation and 
advanced semantic validation techniques such as (SHACL) 
Shapes Constraint Language; https://www.w3.org/TR/shacl/, 
(SHEX) Shape Expression; http://shex.io/ or (LinkML) Linked 
Open Data Modelling Language; https://linkml.io/ to further 
reduce the potential for human error.

We have already observed significantly lower error rates 
in many of the ontologies that use the ODK, thanks to the 
ability of the automated testing system provided by the ODK 
to catch errors early on. We hope to be able to roll out ever 
more useful tests to ever wider circles of ontologies to con-
tribute to a community-wide increase in ontology quality. Our 
update system allows us to rapidly roll out new features, such 
as new quality tests and improved pipelines, to all our users 
by pulling the new Docker image from Docker Hub and run-
ning the ‘update repo’ workflow. Lastly, we seek to harmonize 
the representation of ontology release files through the use of 
standard release workflows, which result in standard release 
serializations (RDF/XML, OBO Flat File and OBO Graphs 
JSON) and metadata (version IRIs, licence information and 
more) to make ontologies more FAIR and interoperable.

Supplementary data
Supplementary data are available at Database Online. 
All code described in this manuscript can be found at 
https://github.com/INCATools/ontology-development-kit
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