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Abstract
Protein and lipid kinases are deregulated in most, if not all, cancers and are
among the most valuable therapeutic targets in these diseases. Despite the
introduction of dozens of effective kinase inhibitors into clinical practice, the
development of drug resistance remains a major barrier to treatment because
of adaption of cellular signaling pathways to bypass targeted kinases. So that
the basal and adaptive responses of kinases in cancer can be better
understood, new methods have emerged that allow simultaneous and unbiased
measurement of the activation state of a substantial fraction of the entire
kinome. Here, we discuss such kinome-profiling methodologies, emphasizing
the relative strengths and weaknesses of each approach.
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Introduction
Cancer is a genetic disease caused by mutational damage to DNA 
or by aberrant epigenetic events, but the properties associated with 
malignant cells are mediated by subsequent changes in the activity 
and organization of signaling proteins that directly regulate cell pro-
liferation, survival, secretion, and the ability to invade and metas-
tasize. Among these signaling proteins, none plays a more central 
role in cancer than the protein and lipid kinases, which regulate 
a vast number of cellular processes. For this reason, determining 
kinase activities and identifying drugs that suppress or, more rarely, 
activate these enzymes have become the subjects of intense interest, 
and many small-molecule kinase modulators have made significant 
impact as cancer therapeutics1–3.

Although the significance of altered kinase signaling to carcino-
genesis and to drug resistance is widely recognized, our ability to 
determine the signaling status of cells lags behind our ability to 
sequence, quantitate, and interpret changes in DNA and RNA. There 
are important limitations to our current methods to analyze kinase-
driven signaling pathways because, unlike nucleic acid sequence 
analysis, the study of enzymes is not intrinsically digital, and there 
are no generalized, gold-standard methods to measure the activ-
ity of kinases en masse. As such, we not only lack knowledge of 
the baseline signaling state in tumors but also cannot conveniently 
measure how signaling pathways adapt and rewire as cells become 
resistant to a given targeted therapy. This inability in turn limits 
our ability to predict how tumors will respond to drugs designed to 
modulate kinase activity and how best to combine such agents in a 
given tumor to overcome resistance.

Current methods used to study the kinome
The mammalian genome encodes more than 500 protein and lipid 
kinases (collectively termed the kinome), of which several hundred 
may be expressed in a given cell type4. Two general approaches 
have emerged to assess the activity and architecture of the kinome in 
cells: one based on activation state-specific antibodies and another 
based on mass-spectroscopic analysis of phosphorylated substrates 
or of kinases captured in their activated state on inhibitor-coated 
beads5. These methods each have particular strengths and weak-
nesses, and their use will be dictated by the particulars of experi-
mental design, as described below.

Antibody-based arrays
When activated, almost all protein kinases are phosphorylated at 
one or more key residues within the activation loop, resulting in 
rearrangement of the catalytic site into an active conformation6,7. 
For this reason, assays employing recognition by phospho-specific 
antibodies directed against these activation loop sites have been 
widely used as surrogates for kinase activity assays. In forward-
phase protein arrays, well-characterized activation state-specific 
antibodies, usually clustered by signaling pathways, are spotted 
in a matrix on a solid support and incubated with cellular lysates, 
and bound proteins are detected either by a fluorescent secondary 
antibody or by a previously attached fluorescent tag. Reverse-phase 
protein arrays use a similar overall design, but in this case it is the 
cellular lysates that are immobilized on an array platform, which 
then are probed with specific phospho-antibodies8. Such assays 
have been used to analyze kinase activity in a variety of cancers and 

offer a relatively low-cost and potentially high-throughput method 
to assess the kinome9; however, these methods are limited by  
antibody specificity, sensitivity, and availability. In addition, the 
activity of some protein kinases cannot be assessed by phospho 
-antibodies, as they are constitutively phosphorylated in the  
activation loop (for example, PKA, PAK4, PKCζ, and PKCθ)10–12.

Mass spectrometry-based assays
The use of mass spectrometry (MS)-based approaches to investi-
gate the activity of the kinome is an increasingly viable alterna-
tive to using antibody-based methods. Here, we will restrict our 
comments to the use of MS to assess kinase activity directly, as 
opposed to its use to identify cellular phosphoproteins in general, 
as the latter dataset provides, at best, an indirect map to the activity 
of individual kinases.

Kinase activity assay for kinome profiling
Kinase activity assay for kinome profiling (KAYAK) methodology 
relies on the known substrate preferences of various protein kinases 
that are dictated by motifs surrounding the site of phosphorylation. 
In the most recent incarnation of this method, libraries of peptides 
representing many well-characterized substrate motifs for kinases 
of interest are incubated with a cell lysate in the presence of ATP, 
then mixed with matching phosphorylated, SILAC (stable isotope 
labeling with amino acids in cell culture)-labeled “heavy” pep-
tides, and analyzed by liquid chromatography/MS. The activity of 
kinases in the lysate is inferred from the peptides that are phospho-
rylated. The advantages of this assay are its ease of deployment and 
its semi-quantitative nature. These strengths are counterbalanced 
by its relatively low sensitivity and a reliance on the assumption 
that a given peptide accurately reports on the activity of its match-
ing kinase. As the substrate preferences for many kinases are not 
known, this assumption may not prove valid in certain cases, so 
the results of this method need to be interpreted with appropriate  
caution13,14 (Figure 1A).

KiNativ™ platform
Various kinase capture methods have been used in tandem with 
MS to assess kinase activity. For example, the KiNativ™ platform 
uses specific ActivX beads to pull down kinases. This method takes 
advantage of the conserved lysine residue that is present in the ATP-
binding site of all kinases. The KiNativ™ method uses a probe that 
has an acyl phosphate group bound to a biotin tag. The lysine in 
the ATP pocket of the bound kinase forms a covalent bond with the 
acyl group. Owing to the apposition of active biotin to nearby lysine 
residues in the catalytic cleft, the kinase is labeled by the biotin tag 
and subsequently can be identified by MS15 (Figure 1B). In a fur-
ther improvement of the assay, Adachi et al. used an ATP and ATP 
probe-competitive approach that increased the specificity of kinases 
bound to ActivX beads16.

One drawback of the ActivX format, an otherwise useful method, is 
that it binds equally to active and inactive protein kinases and thus 
cannot be used alone to assess the activity status of these enzymes. 
Also, quantitative MS can be difficult to achieve because of vari-
ations in peak intensity or peak area that also vary with primary 
protein structure or sample complexity. To overcome this hurdle, 
an automated algorithm has been developed and employed to aid 
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Figure 1. Mass spectrometry-based assays for kinome profiling. (A) Kinase activity assay for kinome profiling (KAYAK) methodology 
compares phosphorylation of a defined peptide substrate library upon incubation with cell lysates with a set of identical phosphorylated 
“heavy” standards. (B) KiNativ™ platform enriches kinases present in a cell lysate by capturing the conserved lysine of kinases on beads 
harboring an acyl phosphate group bound to biotin. (C) Multiplexed inhibitor beads (MIBs) are multilayered kinase inhibitor beads that are 
able to bind active kinases while enriching for the low-expressed kinases present in a cell lysate mixture. LC, liquid chromatography; MS, 
mass spectrometry.

in quantitating MS peaks obtained from tagged kinases in the pres-
ence and absence of inhibitors17,18. Even with this advance, the main 
utility of ActivX is for kinase enrichment rather than for measuring 
kinase activity.

Multiplexed kinase inhibitor beads
A different approach to kinome profiling involves the use of beads 
linked to kinase inhibitors, sometimes termed “kinobeads”19 or 
“multiplexed inhibitor beads” (MIBs)5,20–29. MIBs are arranged in 
layers on the basis of kinase specificity: specific kinase inhibitors in 
the first layer capture the more abundant kinases, whereas the less 
abundant kinases are captured in subsequent layers by pan-kinase 
inhibitors. For both kinobeads and MIBs, the immobilized type I 
ATP-like protein kinase inhibitors act as traps for activated kinases 
present in the protein lysate under study. Although such beads cap-
ture ATP-binding proteins in general, subsequent MS analysis can 
determine which peptides derive from protein kinases. The key 
advantage of this method is that, for the majority of kinases, the 
immobilized inhibitors bind these enzymes only when they are 
in the “DFG-in” active conformation20,21. However, it should be 
remembered that several factors affect kinase capture, including 
overall kinase expression levels and the affinity of the immobilized 
probes30. For these reasons, it is essential to confirm the identified 

activated kinases by secondary methods. Despite these caveats, 
MIB technology has proven to be a useful approach, as it bypasses 
the limitations of antibody-based arrays and it requires no a priori 
knowledge of candidate kinases and no specialized reagents other 
than the inhibitor beads, which are uniform and can be mass pro-
duced. Another important advantage of this method is that one can 
measure endogenous kinase activity in minimally processed lysates. 
To date, optimized versions of this procedure have been used to 
capture more than half of all human kinases in a single assay27,31.

The MIB assay has been used successfully to study the adaptive 
response of the kinome following drug exposure27,28. The versatility, 
high throughput, and ability to monitor the dynamic nature of the 
kinome in response to drug treatment or any other type of external 
stimuli make the use of MIBs a valuable option in screening for 
drug resistance events. MIB kinase enrichment has also been used 
successfully with an improved chromatography detection using 
C18 silica columns to provide insights into modulations in signal-
ing pathway activity following exposure to various inhibitors32.

Attempts to introduce a more accurate quantitation to the  
MIB procedure include the use of SILAC-labeled kinase standards 
and isobaric tags such as isobaric tags for relative and absolute 
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quantitation (iTRAQ) labeling20,21,33,34. These methods are currently  
the most common quantitative MS approaches used for proteomic 
and kinomic studies in combination with chemical proteomic 
assays35.

A look forward
To date, most attempts to target anti-neoplastic agents to individual 
cancers have relied on genomic or transcriptomic analyses. How-
ever, recent advances in proteomic technologies suggest that a more 
complete picture of tumors is feasible and potentially useful in can-
cer diagnosis and therapy. Already, combining genomic with quan-
titative proteomic analyses has proven to be a powerful approach in 
triple-negative breast cancers, ovarian cancers, and other malignan-
cies. In some cases, such “proteogenomic” approaches have identi-
fied tumor vulnerabilities that could not have been predicted on the 
basis of genomic analysis alone36–39. It is to be hoped that the addi-
tion of kinome profiling to existing nucleic acid-based methods will 
help address important, unanswered questions in oncology, such as 
why some patients become resistant to therapy whereas others do 
not, why oncogenic mutations drive different pathways in different 
cancers, and what groups best benefit from which targeted therapies.

As sensitivity improves, it is also likely that kinome and phos-
pho-proteome profiling will be available with minute amounts of  
biological material, such that serial screening of a tumor’s pro-
teome can detect reprograming events and predict drug sensitivity 
in small samples such as needle aspirates or circulating tumor cells.  
Single-cell proteomics have advanced significantly40 and are yet 

another possible alternative to better understanding the activation-
inactivation balance in signaling pathways in small sample sizes. 
However, whatever technical improvements are made, there will 
remain a need for a more in-depth understanding of the biochemi-
cal and structural characteristics of kinases that drive cancers and 
other disorders, such as their modes of regulation and substrate  
specificity.

Finally, we believe that a combination of advanced proteomic and 
functional assays in tandem with computational models will serve 
as the new platform to better identify and target driver kinases, and 
the signaling networks they support, in cancer and other diseases. 
This will allow additional and increasingly more specific therapies 
that are directed at the activated networks or signaling hubs that 
sustain pathologic activity.
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