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The main pathophysiological abnormalities in type 2 diabetes (T2D) include pancreatic β-cell dysfunction and insulin resistance.
Due to hyperglycemia, patients receive long-term treatment. However, side effects and drug tolerance usually lead to treatment
failure. GuaLouQuMaiWan (GLQMW), a common traditional Chinese medicine (TCM) prescription, has positive effects on
controlling blood sugar and improving quality of life, but the mechanism is still unclear. To decipher their molecular
mechanisms, we used a novel computational systems pharmacology-based approach consisting of bioinformatics analysis,
network pharmacology, and drug similarity comparison. We divided the participants into nondisease (ND), impaired glucose
tolerance (IGT), and type 2 diabetes groups according to the WHO’s recommendations for diabetes. By analyzing the gene
expression profile of the ND-IGT-T2D (ND to IGT to T2D) process, we found that the function of downregulated genes in the
whole process was mainly related to insulin secretion, while the upregulated genes were related to inflammation. Furthermore,
other genes in the ND-IGT (ND to IGT) process are mainly related to inflammation and lipid metabolic disorders. We
speculate that 17 genes with a consistent trend may play a key role in the process of ND-IGT-T2D. We further performed
target prediction for 50 compounds in GLQMW that met the screening criteria and intersected the differentially expressed
genes of the T2D process with the compounds of GLQMW; a total of 18 proteins proved potential targets for GLQMW.
Among these, RBP4 is considerably related to insulin resistance. GO/KEGG enrichment analyses of the target genes of
GLQMW showed enrichment in inflammation- and T2D therapy-related pathways. Based on the RDKit tool and the
DrugBank database, we speculate that (-)-taxifolin, dialoside A_qt, spinasterol, isofucosterol, and 11,14-eicosadienoic acid can
be used as potential drugs for T2D via molecular docking and drug similarity comparison.

1. Background

Type II diabetes (T2D) is a chronic disease characterized pri-
marily by abnormally high blood sugar levels. The number
of patients, a high proportion of whom are young adults,
suffering from T2D is increasing annually [1]. The World
Health Organization (WHO) recommends that T2D be

divided into two pathological states, impaired glucose toler-
ance (IGT) and T2D [2, 3], upon which doctors can adjust
treatment strategies. The pathophysiological characteristics
of T2D include insulin resistance and insulin deficiency
[4]. Obesity due to disordered glucose and lipid metabolism
is a common cause of T2D. Insulin deficiency is mainly
related to glucose toxicity [5] and lipotoxicity [6], which
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result in pancreatic β-cell dysfunction. After an irregular
diet, an imperceptible and cumulative increase in fasting
and 2h postprandial blood glucose levels occurs [5], which
is known as glucotoxicity. Glucose toxicity can cause pan-
creatic β-cell dysfunction and senescence. Moreover, com-
pared with the loss of β-cells, supplementation through
the differentiation of islet stem/progenitor cells [7] and
self-replication of pancreatic β-cells [8] is insignificant,
which leads to insufficient insulin secretion and abnormal
blood sugar levels. In a cohort study of T2D, researchers
measured the quality of various parts of the pancreatic tis-
sue and found that the β-cell content of T2D and IGT
patients showed a downward trend [9]. Insulin resistance
refers to a phenomenon in which the biological effects of
insulin in muscle tissue and the liver, such as promoting
the production of muscle glycogen and liver glycogen,
are reduced [10]. Insulin can regulate blood glucose
homeostasis by stimulating the phosphatidylinositol 3-
kinase (PI3K)-independent pathway through binding and
activating membrane-localized receptors using tyrosine
kinase activity [11]. Similarly, insulin has a regulatory
effect on lipids and glycogen, including lipid conversion,
glycogen decomposition and synthesis, and glucose trans-
porters activity increase on the cell surface, affecting
mRNA synthesis, cell proliferation, and survival [12]. In
insulin resistance, tyrosine kinase receptor (the main insu-
lin receptor) cannot adequately activate downstream reac-
tions because the expression of protein-tyrosine
phosphatase 1B (PTP1B) tends to be upregulated, exerting
a dephosphorylation effect that counteracts the biological
effects of insulin [13]. Moreover, insulin resistance can
cause chronic inflammation and a decrease in cell surface
receptors. First, members of the cytokine signaling inhibi-
tor protein family activate degradation of the cell mem-
brane surface insulin receptor substrate through the
ubiquitin-proteasome pathway [14]. Second, the massive
release of free fatty acids and cellular inflammatory factors,
such as tumor necrosis factor (TNF) and interleukin-6
(IL6), also has a negative impact on the biological effects
of insulin [15, 16]. These factors accelerate T2D
progression.

In China, GuaLouQuMaiWan (GLQMW), a traditional
prescription, synergizes with antidiabetic drugs in T2D
treatment by reducing drug resistance [17] and stabilizing
blood sugar [18]. GLQMW, which is composed of Tricho-
santhis Radix (THF), Aconiti Lateralis Radix Praeparata
(FZ), Poria Cocos (Schw.) Wolf. (FL), Dianthi Herba (QM),
and Rhizoma Dioscoreae (SY), can invigorate the spleen
and kidney and eliminate dampness and diuresis, according
to the principles of TCM for T2D. SY and FL proved to be
effective in intervening blood glucose and blood lipid levels
in animal models [19, 20], and QM has an anti-
inflammatory effect [21]. Although recent research has
shown that some components of GLQMW are beneficial to
T2D, there has been no research to interpret the specific
molecular mechanism of GLQMW intervention in the pro-
gression of T2D.

T2D is a nonmutated disease, hence, its progression is
laboriously illustrated through the change of a single gene.

However, the changes in gene expression profiles during dis-
ease progression can be identified and visualized by tran-
scriptome sequencing analysis [22], providing insight on
potential therapeutic targets. TCM is a multitarget and
multipath process for the treatment of diseases, so we need
to separate and analyze natural compounds in herbs that
meet potential drug standards. We can summarize the
effective compounds of GLQMW in the Traditional Chi-
nese Medicine Systems Pharmacology Database and Anal-
ysis Platform (TCMSP) as it collects the herbs contained
in the Chinese Pharmacopoeia and the basic physical
and chemical properties of their related compounds [23].
However, we must choose the PharmMapper server, a tool
based on the pharmacophore mapping algorithm [24], to
predict potential targets of the compound since TCMSP
only includes the confirmed information for the herbal
compound. The PharmMapper server is designed to iden-
tify potential target candidates for the given probe small
molecules (drugs, natural products, or other newly discov-
ered compounds with binding targets unidentified) using a
pharmacophore mapping approach in the pharmacophore
database (PharmTargetDB) and lists the annotation and
classification of the predicted target [25]. The principle
of drug similarity means that the structure of a compound
determines its basic properties, therefore, the more similar
the structure of a compound, the more similar the basic
properties, such as physical and chemical properties and
physiological metabolism [26]. This principle helps us to
further decipher the potential pharmacological activities
of compounds that are not included in the PharmMapper
server. Furthermore, RDKit can help us compare the
structure of small molecule compounds, especially in the
field of pharmacological identification of TCM [27]. Based
on the Python environment, RDKit, an open-source
toolkit suitable for chemical informatics [27], can convert
2D/3D to 3D/2D compound structures, generate com-
pound fingerprints, and calculate the structure of com-
pound similarity via machine learning methods [28].
Following RDKit processing, we deduced that GLQMW
contains small-molecule compounds that interfere with
the process of T2D progression. Finally, molecular docking
and LIGPLOT can predict binding poses and affinities
through the interactions between receptors and drug
molecular ligands, which involve spatial matching and
energy matching between molecules [29]. These methods
are powerful tools for pharmacological mechanistic and
drug research and development. Therefore, transcriptomic
analysis, network pharmacology, and molecular docking
were used to explore the pharmacological targets and
mechanisms of GLQMW against T2D.

2. Materials and Methods

The overall process of the research is shown in Figure 1.

2.1. Raw Data. RNA-seq data of T2D (including 411 islet tissue
samples) and the corresponding clinical data were downloaded
from GEO dataset. By filtering out the sample missing diagno-
sis, the expression data for 326 islet tissue were kept for
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downstream analysis. Four cohort used in this study as valida-
tion datasets (GSE38642, GSE50397, GSE76894, and
GSE76895) were downloaded from the GEO database (https://
www.ncbi.nlm.nih.gov/geo). Compounds of GLQMW and its’
target proteins origin from TCMSP (https://tcmspw.com/)
and PharmMapper server, respectively.

2.2. Type 2 Diabetes Process Classification. Using the diag-
nostic criteria (ND < 5:7%, IGT5.7%-6.4%, T2D : >6:4%)
which is recommended by WHO, we distinguished the
T2D process of diabetic patients via glycosylated hemoglo-
bin (HbA1c), and divided the samples into 3 groups (includ-
ing 193 ND, 56 IGT, and 77 T2D islet tissue samples).

2.3. Differential Gene Expression Analysis. Differential
expression analysis was conducted using the R package
“limma”. The screening conditions for the differential genes
were jlog 2FoldChangej > 0:3, p:adj < 0:05. Heatmaps of dif-
ferential genes were drawn using the R package “pheatmap”.
For process-specific genes, only genes with significant differ-
ences and consistent trend in expression ðjlog 2FCj > 0:3, p:
adj < 0:05Þ in all three possible comparisons were considered
T2D-specific genes.

2.4. Weighted Gene Coexpression Network Analysis (WNGCA)
and Identification of Clinically SignificantModules.We use the
R package “WGCNA” to construct a gene-weighted coexpres-
sion network, when R package “limma” has processed the gene
expression data of removing the batches. First, compared to
the Pearson method, we chose the biweight midcorrelation
method to construct the adjacency matrix to describe the cor-
relation strength between nodes. Subsequently, choosing the
soft threshold β = 4 (scale free R2 = 0:85), we convert the adja-
cency matrix to a topological overlap matrix (TOM), and set
the type of TOM to a signed network. Next, we perform hier-
archical clustering to identify modules which contains at least
30 genes (minModuleSize = 30), calculated feature genes, hier-
archically clustered the modules, and merged similar modules.

The module feature gene (ME) is the first principal com-
ponent of the module and represents the expression pattern
of the module in each sample. The degree of module mem-
bership (MM) refers to the correlation coefficient between
genes and the characteristic genes of the module, which is
used to describe the reliability of the gene belonging to the
module. Based on ME and MM, we calculated the correla-
tion between modules and clinical data to determine impor-
tant clinical modules. Finally, we selected the modules whose
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interactions analysis

Molecular docking

Drug similarity analysis

Protein-protein interaction
network analysis

Weighted gene co-expression network
analysis (WGCNA) Differential gene expression analysis Construction of active compound-target

network

Prediction of potential target proteins

Active compounds screening

Chemical ingredients of GLQMWRNA-seq and clinical data of T2D from
GEO database (n = 411)
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Figure 1: Experimental design for elucidating the mechanisms of action of GLQMW in the treatment of T2D.
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Figure 2: Volcano plots, heatmaps, and gene expression profiles of DEGs in ND-T2D. (a) Number and distribution of up and
downregulated genes. (b) Heatmap for DEGs generated by comparison in ND and T2D. Row is the gene, and column name is the
samples, which is not shown in plot. DEGs were determined by Wilcoxon rank sum test with q < 0:05 and log 2FC > 0:3 as the
significance threshold. (c) Expression levels of some DEGs in ND and T2D.
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Figure 3: Venn diagrams and heatmaps of intersecting genes in ND-IGT-T2D. (a) Venn plots showing common upregulated and
downregulated DEGs shared by ND-IGT, IGT-T2D, and ND-T2D. (b) The expression level of common up and downregulated DEGs in
ND, IGT, and T2D.
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expression changes were in line with the process of ND-
IGT-T2D, and extracted the hub gene and core genes which
were further analyzed.

2.5. GO and KEGG Enrichment Analysis. GO and KEGG
enrichment analyses were performed with the aid of R pack-
ages “clusterProfiler,” “enrichplot,” and “ggplot2.” Only
terms with both p and q value of < 0:05 were considered sig-
nificantly enriched. For T2D, GO and KEGG enrichment

analyses were based on upregulated and downregulated
expressed genes. For GLQMW, we used “http://org.hs.eg
.db/” to convert the target protein into a gene, and then per-
formed GO and KEGG enrichment analysis.

2.6. Active Compounds Screening. All of the chemical ingre-
dients of GLQMW were obtained from TCMSP. The active
compounds of GLQMW were mainly filtered with oral bio-
availability (OB), drug-likeness (DL), and Caco-2
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Figure 4: GO analysis of the up/downregulated DEGs involved in ND-T2D regarding biological process, cellular component, and molecular
function.
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Figure 6: Continued.
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permeability (Caco-2), while those compounds in GLQMW
with OB ≥ 30%, DL ≥ 0:18, and Caco − 2 ≥ −0:4 were pre-
served [30]. But, we selected 5 compounds with reports of
pharmacological activity to join the results, and those com-
pounds’ OB and DL meet the threshold but Caco-2 does not.

2.7. Network Pharmacology Analysis. Download the 3D
structure of the GLQMW compound from TCMSP. The
PharmMapper server recognizes the pharmacophore of the
compound, and uses the pharmacophore as the recognition
group of given probe molecule to predict potential target
proteins. PharmMapper server output results, including tar-
get name and protein number, among which z-score is an
important basis for target fit. We choose 1.0 as the threshold,
and extract all protein targets greater than the threshold for
subsequent analysis. Based on cytoscape, we construct an
active compound-target network, and select compounds
with a larger number of nodes for key analysis.

2.8. Drug Similarity Analysis. Download the “full database”
document from the DrugBank database (https://go.drugbank
.com/) [31], which contains all the drug details. In the process
of processing the document, select the drug information
whose type is “small molecule,” and remove the drug whose

category is protein, due to focusing on small molecule com-
pounds in GLQMW.

RDkit generates compound descriptors and compound
fingerprints, and calculates the similarity of compound
structures, based on the 2D and 3D structure of compounds.

Our study compares active compounds in GLQMW and
small molecule drugs in the DrugBank database, and outputs
information on the top 10 drugs with drug similarity.

2.9. Molecular Docking and LIGPLOT. The 3D structure of
protein: RBP4 (PDB ID:2WR6, Uniprot:P02753), PLAT
(PDB ID:1A5H, Uniprot:P00750), MET (PDB ID:2ZGH, Uni-
prot:P51124), KIT (PDB ID:4U0i, Uniprot:P10721), C1S
(PDB ID:5UBM, Uniprot:P09871), and HSD11B (PDB
ID:2RBE, Uniprot:P28845) were downloaded from the protein
data bank (PDB) database (https://www.rcsb.org/). The ligand
and water macromolecule in these targets were removed, and
the hydrogen atoms were added with pymol2.3. The targets
were set to rigid and saved as pdbqt file format by AutoDock
Tools 1.5.6. Finally, molecular docking was performed using
Vina. Based on the top one minimal binding energy of each
target, compounds in GLQMWwere selected for further anal-
ysis of their binding mode, binding affinity, and critical inter-
actions using PyMOL2.3 and LIGPLOT2.2.
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Figure 6: WGCNA in ND-IGT-T2D. (a) Analysis of network topology for various soft-thresholding powers. (b) Module–trait associations.
Each row corresponds to a module, and each column corresponds to a trait. Each cell contains the corresponding correlation and p value.
The table is color-coded by correlation according to the color legend. (c) Clustering dendrogram of genes, with dissimilarity based on
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3. Results

3.1. Remove Different Batch Effect. This study included high-
throughput gene expression profiling data of 326 pancreatic
islet tissue samples from 4 datasets. Since the data comes
from different sequencing platforms, the data has a relatively
obvious batch effect, which will adversely affect the results of
subsequent analysis. Therefore, we eliminate the batch effect
on the combined data, and the results are shown in Supple-
mentary Figure 1.

3.2. Identification of Type 2 Diabetes Progress Important
DEGs by Transcriptome Analysis. Using ND as the control,
520 differential genes were identified in the ND-T2D group,
of which 259 were upregulated and 261 were downregulated.
Using ND as the control, 58 upregulated genes and 42
downregulated genes were identified in the IGT group. In
the comparison between the IGT-T2D groups and IGT as
the control, there were 156 upregulated genes and 70 down-
regulated genes in T2D. Figure 2 shows DEGs expression in
ND-T2D, Supplementary Figures 2 and 3 show DEGs
expression in ND-IGT and IGT-T2D, respectively.

In ND-T2D, themost significantly upregulated and down-
regulated genes were APOD (logFC = 0:77, p:adj < 0:05) and
SLC2A2 (logFC = −1:45, p:adj < 0:05), respectively. In the
ND-IGT, the most significantly upregulated and downregu-

lated genes were PTGS2 (logFC = 0:58, p:adj < 0:05) and
TMED6 (logFC = −0:68, p:adj < 0:05), respectively. In IGT-
T2D, the most significantly upregulated and downregulated
genes were CEACAM7 (logFC = 0:91, p:adj < 0:05) and
SLC2A2 (logFC = −0:99, p:adj < 0:05), respectively.

We found that the number of DEGs decreased among the
three groups of ND-T2D (520), IGT-T2D (226), and ND-IGT
(100), Figure 3. This phenomenon coincides with the clinical
observation that the states of ND and IGT are somewhat sim-
ilar. However, T2D is often difficult to reverse, so the tran-
scriptome difference is higher than that in other states. There
were 17 DEGs that met the DEGs screening criteria in all dis-
ease stages and had the same disease expression trend (Supple-
mentary Table 1). Thus, these genes may play a central role in
T2D progression. Moreover, 61% of the DEGs in the ND-IGT
process were also identified in ND-T2D, indicating that the
DEGs of the predisease progression, such as the
inflammation-related genes IL1RL1 and IL6, may continue
to affect disease progression, providing evidence that
inflammation is a risk factor for disease progression.
Similarly, in the process of IGT-T2D, in addition to
inflammation-related genes, glucose transport-related genes
such as SLC2A2 and SLC26A4 also had different expression
levels, which show that the development of T2D into an
irreversible state is related to the imbalance of the glucose
transport system.
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4. GO/KEGG Enrichment Analysis for ND-IGT-
T2D DEGs and WGCNA

4.1. GO Enrichment Analysis. The degrees of ND-T2D pro-
gression were grouped according to upregulated and down-
regulated expression, after which GO enrichment analysis
was performed (p < 0:01). For GO enrichment results, a total
of 409 GO entries of upregulated genes were obtained,
including 354 BP, 33 MF, and 22 CC, and 115 GO entries
of downregulated genes were obtained, including 72 BP, 12
MF, and 31 CC.

The BP entry (p:adj < 0:01) of upregulated genes in ND-
T2D mainly included regulatory response to injury, regula-
tion of inflammatory response, regulation of cell adhesion,
and acute inflammatory response regulation (Figure 4(a)),
which may prove that the inflammatory response or inflam-
matory environment in the pancreatic islets is one of the rea-
sons for the accelerated consumption of pancreatic islet β-

cells. The BP entries enriched by downregulated genes
(p:adj < 0:01) were mainly related to peptide hormone secre-
tion, insulin secretion, protein secretion, etc. (Figure 4(b)).
This result is consistent with the pathological phenotype of
T2D; insulin secretion is reduced, and the ability of tissues
to use insulin is downregulated.

GO-MF enrichment results showed that upregulated
genes (p.adj<0.01) were mainly mapped to glycosaminogly-
can binding, cytokine binding, cytokine activity, integrin
binding, and other pathways related to immune stress,
which matched the BP results (Figure 4(c)). Downregulated
genes mainly enriched gated channel activity, ion channel
activity, passive transmembrane transport protein activity,
etc. (Figure 4(d)), all of which is related to the utilization
of glucose by tissues due to downregulation, causing an
imbalance in glucose transport. The enrichment analysis
results for GO-CC (p:adj < 0:01) are shown in Figures 4(e)
and 4(f).
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Figure 11: Drug similarity between compounds and drugs of DrugBank. The two-way line represents the comparative relationship between
the compound and the drug, and the numbers represent the drug similarity. (a) drug similarity of (-)-taxifolin; (b) drug similarity of
isofucosterol; (c) drug similarity of 11,14-eicosadienoic acid; (d) drug similarity of dianoside A_qt; (e) drug similarity of spinasterol.
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In the ND-IGT process, the two physiological statuses
are similar, and the number of DEGs is small. The GO
enrichment results were included in ND-T2D and IGT-
T2D, indicating that inflammation and decreased insulin
secretion are two factors that accelerate the process in the
early stage of T2D. For BP terms in the IGT-T2D process,
upregulated genes were enriched in the humoral immune
response, neutrophil activation-mediated immune response,
immune response effector, lymphocyte-mediated immune
response, and leukocyte-mediated immune response. This
shows that during the progression of IGT to T2D, the
inflammatory response that accelerates the consumption of
pancreatic islet β-cells is an important factor leading to the
progression of T2D. Downregulated genes are enriched in
pathways such as insulin secretion, positive feedback of hor-
mone secretion, positive regulation of insulin secretion, hor-
mone transport, and lipid digestion and utilization. Contrary
to the ND-T2D process, IGT-T2D downregulated genes are
also enriched in lipid-related pathways, which shows that
lipotoxicity may also affect the course of T2D. The results
of the CC and MF items were similar to those of the ND-
T2D enrichment analysis.

4.2. KEGG Enrichment Analysis. In the ND-T2D group, the
upregulated expression gene enrichment (p < 0:05) was
found in cytokine-cytokine receptor interaction, MAPK sig-

naling pathway, Hippo signaling pathway, TGF-beta signal-
ing pathway, TNF signaling pathway, diabetes AGE-RAGE
signaling pathway, IL-17 signaling pathway, ECM-receptor
interaction, NF-kappa B signaling pathway, Toll-like recep-
tor signaling pathway, and NOD-like receptor signaling
pathway (Figure 5(a)). The Hippo signaling pathway regu-
lates cell proliferation and apoptosis to ensure that organ
size is normal [32]. Studies have shown that the imbalance
of this pathway may be one of the reasons why T2D patients
are more likely to develop tumors [33], and the MAPK and
TGF-beta signaling pathways have also been shown to be
considerably related to cell proliferation. Cytokine-cytokine
receptor interaction, Hippo signaling pathway, TNF signal-
ing pathway, AGE-RAGE signaling pathway in diabetes,
IL-17 signaling pathway, and ECM-receptor interaction,
NF-kappa B signaling pathway, Toll-like receptor signaling
pathways, and NOD-like receptor signaling pathways are
all related to the onset of inflammation. Excessive levels of
inflammatory factors in the cellular environment accelerate
cell senescence and death, resulting in excessive consump-
tion of abnormal pancreatic islet β-cells [34]. Downregu-
lated genes were enriched in pathways such as insulin
secretion, young diabetes, and cAMP signaling
(Figure 5(b)). The results of KEGG and GO enrichment
analyses are consistent, which enhances the credibility of
the GO enrichment results and further shows that the cause
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Figure 12: The docking mode and interactions between compounds and target proteins.
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of T2D is inflammation and insufficient insulin secretion.
However, KEGG was enriched in the MAPK signaling path-
way, TGF-beta signaling pathway, and other pathways
related to cell proliferation, indicating that the cell cycle is
also affected in the process of T2D. KEGG results of ND-
IGT showed that the main signaling pathways affected were
immune-related NF-kappa B signaling pathway, cytokine-
cytokine receptor interaction, TNF signaling pathway, and
lipolysis of fat cells. The regulatory pathways of serotonin
were also enriched, which means that when the patients
progressed to the IGT stage, the lipid metabolism disorder
was a relatively apparent phenomenon. During the progres-
sion from the intermediate IGT state to the irreversible T2D
state, the cAMP signaling pathway, insulin secretion, fat
digestion and absorption, and other pathways indicated that
the level of insulin secretion, cell growth, and the ability of
the body to utilize lipids have declined.

4.3. WGCNA Analysis. The height cut-off value was set at 80,
and 2 outlier samples were excluded in our analysis (Supple-
mentary Figure 4).

Since scale independence reached 0.9 and average con-
nectivity was high (Figure 6(a)), the soft threshold power β
was set to 4 in subsequent analyses. Furthermore, we con-
structed a gene network and identified the modules. For
cluster splitting, the soft thresholding power was set to 4,
the minimum module size was set to 30, and DeepSplit
was set to 2 (which implies medium sensitivity). Finally, 45
gene coexpression modules were constructed (Figure 6(b)).

We correlated the modules with clinical characteristics
(ND/IGT/T2D) and searched for the most significant associ-
ations. The results of this analysis showed that the turquoise
and purple modules were markedly correlated with T2D
(Figure 6(c)).

We conducted GO and KEGG analyses of genes in the tur-
quoise and purple modules (Supplementary Figures 5 and 6).
The results of these analyses showed that regarding BP, the
genes of the turquoise module were mainly enriched in
synapse organization, and the genes of the purple module
were mainly enriched in the regulation of protein secretion.
As for CC, the genes of the turquoise module were mainly
enriched in microtubules, and the genes of the purple
module were mainly enriched in the extracellular exosome.
Finally, regarding MF, the genes of the turquoise module
were mainly enriched in tubulin binding, and the genes of
the purple module were mainly enriched in calcium ion
binding. We then performed KEGG analysis of the genes in
the two modules and identified the module-regulated
pathways. The results of this analysis showed that the purple
module-regulated pathways included herpes simplex virus 1
infection and amino acid degradation, but the turquoise
module was enriched for insulin resistance, glucagon
signaling pathway, and insulin secretion.

The turquoise module contained 2597 genes. Using a gene
significance (GS) over 0.2 and an MM over 0.8 as the cut-off
criteria, 158 genes were identified as hub genes (Supplemen-
tary Table 2). Using GS > 0:2 and MM> 0:6 as the cut-off
criteria, 156 genes were identified as hub genes from 225
genes in the purple module (Supplementary Table 2). There

are genes that have been reported to be associated with T2D:
TSPAN7, CNTN1, NOL4, NMNAT2, and TMEM196 in the
turquoise module, and THNSL1, ZBED8, ZNF420, ZNF512,
and KBTBD7 in the purple module.

The WGCNA results reinforce previous findings and
suggest that inflammation and islet function are responsible
for T2D because the hub genes are associated with the main
T2D phenotype.

5. Active Compounds in GLQMW

This study is based on the fact that GLQMW can stabilize
the blood glucose levels of patients with T2D in the long-
term clinical practice of TCM, and even when the patient
reduces the use of hypoglycemic drugs and exogenous insu-
lin, it can ensure that the blood glucose level of the patients
is maintained at a normal level. Therefore, in our study, we
investigated the components of GLQMW, whether its com-
pounds can have potential hypoglycemic effects. GLQMW is
composed of five herbs: THF, FZ, FL, QM, and SY. The
compounds in GLQMW that met the screening criteria were
QM 1, THF 2, and FL 15 (two compounds, poricoic acid A,
and poricoic acid B were selected to join the study based on
literature reports [35]), FZ 16 (choose 5 have been reported,
OB and DL meet the conditions but Caco-2 does not meet
the screening criteria, add the drug screening results [36,
37]), and yams 16 (add a compound that does not meet
the Caco-2 screening criteria [38]). A total of 50 compounds
were included in our study (Supplementary Table 3).

6. Target of Compounds Prediction

The PharmMapper platform was used to input the 3D struc-
ture of the drug-like compound and predict the human tar-
get protein by matching the pharmacophore. In this study,
the Z-score was used as the basis for judging the strength
of the correlation between the compound and the target pro-
tein, and the predicted targets that met the standard
(Z − score > 1:0) were included in further studies. Figure 7
shows the correspondence between drug-like compounds
and the predicted targets. We then performed a statistical
analysis on these predicted targets. Several proteins, such
as corticosteroid 11-b-dehydrogenase isoenzyme 1
(HSD11B1), estradiol 17-b-dehydrogenase 1, vitamin D3
receptor (VDR), insulin-like growth factor, glutathione S-
transferase A1, SEC14-like protein 2, mineralocorticoid
receptor, 72 kDa Type IV collagenase, oxysterol receptor
LXR-alpha, and bile acid receptor, that are frequently tar-
geted by the compounds may be the specific targets for
GLQMW in patients with T2D.

7. GO/KEGG Enrichment Analysis for
GLQMW Targets

GO enrichment analysis was performed on the target genes of
GLQMW (p:adj < 0:05). The top 30 significantly enriched
GO-BP terms are listed in Figure 8(a). The results clearly dem-
onstrate that numerous targets are involved in various biolog-
ical processes associated with fatty acidmetabolism, regulation
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of MAP kinase activity, hormone-mediated signaling path-
ways, positive regulation of protein kinase B signal transduc-
tion, and response to oxidative stress. The GO-CC
enrichment analysis results shown in Figure 8(b) demon-
strated that GLQMW acts mainly on the cell membrane,
plasmamembrane, extracellular space, and ficolin-1 rich gran-
ular cavity, which are closely related to insulin secretion. The
results of GO-MF enrichment analysis shown in Figure 8(c)
demonstrate that GLQMW targets are involved in antioxidant
activity, phosphotyrosine residue binding, protein serine/thre-
onine kinase activity, bile acid binding, and insulin receptor
binding.

KEGG analysis of the GLQMW target (p < 0:05),
Figure 8(d), showed significant enrichment in inflammation-
related pathways such as focal adhesion, chemokine signaling
pathway, NF-κB signaling pathway, NOD-like receptor signal-
ing pathways, natural killer cell-mediated cytotoxicity, IL-17
signaling pathway, relaxin signaling pathway, and T-cell
receptor signaling pathway. These pathways, as per our clini-
cal observations, regulate the levels of related inflammatory
factors in pancreatic islet tissues. Pathways related to glucose
and lipidmetabolism, such as those of type II diabetes, diabetic
cardiomyopathy, endocrine and insulin resistance, insulin sig-
naling, atherosclerosis, and adipocytokine signaling, play an
important role in insulin resistance.

8. Network Analysis of GLQMW
Active Compounds

The predicted target of GLQMW and the degrees of all
stages of T2D were intersected, and 18 target proteins were
identified (Figures 9(a) and 9(b)). The targets of GLQMW
in ND-IGT are C1S, RBP4, and C1R. Targeted genes in
IGT-T2D include KDR, HADH, HSD11B1, ALB, RBP4,
KIT, HMOX1, PLAT, and CFB. In the T2D stage, the tar-
geted genes were MET, HADH, FABP4, EGFR, C1S, RBP4,
PLAU, C1R, EPHA2, EPHX2, TGFB2, and PLAT.

Hepatocyte growth factor (HGF) binds to MET, activat-
ing signal transduction and the RAS and PI3K/Akt signaling
pathways [39] to regulate cell growth and the cell cycle. Fatty
acid-binding protein 4 (FABP4), abundantly expressed in
adipocytes, plays an important role in adipocyte differentia-
tion and lipid metabolism [40]. FABP4 in the serum is
responsible for the transport of free fatty acids and can affect
the regulation of systemic insulin sensitivity [41, 42].
Retinol-binding protein 4 (RBP4) is present in the serum
and can assist the liver in releasing retinol into the systemic
circulation to meet tissue needs, but high concentrations of
RBP4 in the serum are associated with an increased risk of
T2D [43, 44]. Doctors use vitamin A analogs such as fenre-
tinide to increase urine excretion, reduce the high expression
of RBP4 caused by a high-fat diet, and restore insulin sensi-
tivity [45]. Therefore, these may be the potential targets by
which GLQMW can treat T2D.

In our research, small-molecule compounds (Figure 10(a))
such as FZ16 and SY3, having multiple targets and a potential
therapeutic effect on them, were included in the follow-up
analysis to further interpret their mechanisms of action. Based
on previous results, we analyzed the compounds with the tar-

get proteins of clinical drugs (Figure 10(b)) and found that
THF2, FZ10, QM1, FZ16, and SY3 also act on the targets of
drug action.

9. Similarity Analysis of Active Compounds

Based on the RDKit tool, the small-molecule compounds
obtained were compared with all small-molecule drugs
released from the DrugBank database, and the top 10 drug
compounds with similarity were output. The drug similarities
of (-)-taxifolin, dihydromyricetin, silibinin, hesperetin, epicat-
echin, and epigallocatechin gallate were 0.9958, 0.8417, 0.8119,
0.7952, and 0.7227, respectively (Figure 11(a)). Dihydromyri-
cetin, a research drug, can inhibit oxidative stress, enhance
neuroprotection, and reverse cognitive impairment caused
by T2D and abnormal glucose and lipid metabolism in mouse
models [46]. Silibinin has PPARγ agonist properties, and
PPARγ is the specific target of thiazolidinedione in the treat-
ment of T2D [47]. Hesperetin can regulate glucose metabo-
lism by changing the activity of glucose-regulating enzymes
and reducing lipid levels in the serum and liver [48]. Epicate-
chin works by increasing the expression of antioxidant
enzymes, reversing the production of reactive oxygen species
(ROS) in skeletal muscle and regulating autophagy involving
mitochondria. Epicatechin can also increase the oxidation of
muscle lipids and stimulate insulin-resistant skeletal muscle
absorption of glucose [49]. Epigallocatechin gallate has a sig-
nificant insulin-like effect on erythrocyte membrane-bound
AChE to achieve a therapeutic effect [50]. The similarities
between isofucosterol and cholesterol, beta-sitosterol, 25-
hydroxycholesterol, 20-hydroxycholesterol, lanosterol, and
dihydrotachysterol were 1.0, 1.0, 0.9785, 0.8571, 0.7526, and
0.7432, respectively (Figure 11(b)). Beta-sitosterol has been
shown to lower blood sugar in clinical trials and T2D model
mice [51], inhibit the serine phosphorylation of IRS induced
by hyperlipidemia, and restore the expression of GLUT4 in
adipose tissue [52]. Kim et al. showed that 20-
hydroxycholesterol can inhibit fat formation in mice through
a hedgehog-dependent mechanism [53], which is related to
alleviating insulin resistance. 11,14-eicosadienoic acid is highly
similar to linoleic, alpha-linoleic, oleic, palmitoleic, and gamo-
lenic acids (Figure 11(c)). Linoleic acid and alpha-linoleic acid,
essential fatty acids, have been shown to improve liver fat
deposition and insulin resistance [54] and inhibit the expres-
sion of IL-1β and Toll-like receptors, exerting anti-
inflammatory effects [55]. Gamolenic acid inhibits the expres-
sion of intercellular adhesion molecule-1 (ICAM-1) and
monocyte chemoattractant protein-1 (MCP-1) to reduce the
degree of inflammatory response, and it also affects the aggre-
gation of the extracellular matrix (ECM) in patients with dia-
betic nephropathy [56]. Drugs with high similarity to
dianoside A_qt were madecassic acid, ursolic acid, and asiatic
acid (AA) (Figure 11(d)). The anti-inflammatory effect of
madecassic acid regulates the dynamic balance of Th17/Treg
cells because the low proportion of Treg cells leads to chronic
inflammation [57]. Madecassic acid restores the Th17/Treg
balance by regulating the PPARγ/AMPK/ACC1 pathway,
and therefore can reduce local inflammation [58]. Ursolic acid
inhibits α-amylase and α-glucosidase activity by binding to
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their inactivation sites and has been shown to rapidly reduce
the blood glucose concentrations 2h after a meal in animal
models [59]. AA reduces the decomposition of glycogen to
glucose and is released into the blood by inhibiting the trans-
lation of GSK-3β and glucose 6-phosphatase [60]. Particularly,
AA prevents islet dysfunction by downregulating islet fibrosis
caused by fibronectin [61]. In the results of spinasterol
(Figure 11(e)), dihydrotachysterol, a vitamin D analog has
proven that vitamin D and its analogs can be used to assist
in the treatment of T2D [62]. Androstenediol can increase
PPAR-γ DNA-binding activity, activate the PPAR-γ pathway
to inhibit IL-6 and iNOS gene expression, and achieve the pur-
pose of slowing down local inflammation [63]. 20-
hydroxycholesterol has a regulatory function of circulating
lipid levels. These compounds may serve as the basis for
GLQMW in T2D treatment.

10. Molecular Docking and LIGPLOT

The docking results of the active compounds with C1S,
HSD11B, KIT, MET, PLAT, and RBP4 are presented in Sup-
plementary Table 4. Compound (-)-taxifolin showed the
lowest binding energy with HSD11B (−7.5 kcal/mol), MET
(−7.1 kcal/mol), PLAT (−7.6 kcal/mol), and RBP4 (−6.2 kcal/
mol). Dianoside A_qt was found to have the lowest binding
energy with C1S (−8.4 kcal/mol), HSD11B (-8.8 kcal/mol),
KIT (−8.6 kcal/mol), and RBP4 (−7.5 kcal/mol). Spinasterol
had the lowest binding energy with C1S (−9.2 kcal/mol),
HSD11B (−8.5 kcal/mol), and KIT (−9.2 kcal/mol). Binding
energy analyses showed that the active compounds in
GLQMW formed stable conformations with the target
proteins. The docking analysis between the selected
compounds and target proteins is shown in Figure 12.
Compound dianoside A_qt bound to C1S, forming
hydrogen bond interactions with residues Asn466 and
Thr684; HSD11B, forming hydrogen bond interactions with
residues Arg66 and Lys68; KIT, forming hydrogen bond
interactions with residues Asp820, Asp816, Arg815, and
Ala597; and RBP4, forming hydrogen bond interactions with
residues Arg139, Ser21, Arg19, and Thr23. When binding to
HSD11B, (-)-taxifolin formed hydrogen bonds with residues
Glu94, Arg66, and Gln105. Furthermore, when binding to
RBP4, (-)-taxifolin formed hydrogen bond interactions with
residues Asn124, Thr128, MET, Lys210, Ser172, and Ala170
(Figure 12). In addition, when binding to RBP4, C1S,
HSD11B, and KIT, spinasterol formed hydrogen bond
interactions with residues Ala18, Ser21, Lys575, Arg66, and
Arg791, respectively. The ligand plot results, Supplementary
Figure 7, show the hydrophobic interaction sites of the target
protein.

11. Discussion

With societal development and improvements in living stan-
dards, T2D has become a major chronic disease that
threatens human health because of its gradually increasing
incidence. Currently, physicians tend to use drugs for T2D
control, supplemented by diet and rhythmic exercise. How-
ever, due to the continuous increase in insulin resistance in

the body, weakening of drug sensitization, and increase in
drug resistance in the body, it is often difficult for T2D
patients in the later stage to maintain normal blood glucose
ranges. The patient’s quality of life significantly deteriorates
due to constant medication and insulin injections, resulting
in decreased treatment efficacy. Therefore, it is necessary to
develop a new clinically effective treatment strategy. TCM
is a medical discipline that has been summarized and devel-
oped by the Chinese nation in long-term practice. GLQMW,
which are briefly recorded in the “JinGuiYaoLue,” have the
function of treating T2D, but no scholars have summarized
and discussed the effectiveness and treatment mechanism
of TCM prescription. It is generally believed that the devel-
opmental trend of type 2 diabetes is ND-IGT-T2D, in which
IGT is an intermediate state and not a stage of irreversible
diabetes damage [3]. Therefore, if the T2D stage can be
reverted to the IGT stage through adjustment of self-living
habits, the T2D patient can then more appropriately achieve
the purpose of curing T2D. In our study, during IGT, we
found that inflammation and lipid metabolism disorders
played a significant role in the process of ND-IGT. For the
treatment of patients with IGT, focus on fighting inflamma-
tion and adjusting our diet to avoid high fat and sugar intake
is mandatory. The progression of IGT to T2D involves
abnormalities in β cells, which mainly include a significant
decrease in the number of pancreatic β-cells and a decrease
in the function of β-cells to secrete and synthesize insulin.
The decrease in the number of pancreatic β-cells is related
to the disorder of the β-cell cycle [64], but the decrease or
loss of islet β-cell function is associated with islet β-cell
dedifferentiation, glucotoxicity caused by high concentra-
tions of glucose [65], lipotoxicity caused by free fatty acids
and their related products [6], and chronic inflammation
in islet tissue [66] to a certain extent. Accordingly, doctors
can design rational drug regimens according to the etiology
of patients with T2D.

Based on the results of gene expression profiling and
WGCNA, we derived the disease patterns and key targets
of T2D. IL1RL1, a membrane receptor whose expression is
continuously upregulated during the progression of T2D,
can bind to IL-33 to activate the TH2 inflammatory response
and eosinophilia [67]. IL-33 is also markedly upregulated in
the T2D stage, which can competitively inhibit angiotensin
II and phenylephrine, and over-activate the NF-κB and
MAPK signaling pathways [68]; thus, the IL-33 and IL1RL1
complex can sustainably induce local inflammation in islet
tissue during ND-T2D progression. Similarly, IL-17, pro-
duced by Th17 cells, can effectively mediate neutrophil
mobilization and acts as a proinflammatory factor that
causes an inflammatory storm and enhances the intensity
of the inflammatory response [69]. However, high expres-
sion levels of IL-17 cause chronic inflammation in pancre-
atic islets [70]. According to the results of WGCNA,
RRAGD, PPM1E, PFKFB2, and CHL1 were hub genes in
the major modules of T2D, and the expression of these genes
continued to be downregulated with the prolongation of the
disease course. RRAGD, a monomeric guanine nucleotide-
binding protein, plays a crucial role in the regulation of the
mTORC1 signaling cascade, promoting growth in response
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to growth factors, energy levels, and amino acids [71]. When
the expression of RRAGD is reduced, mTORC1 signaling
pathway function is dysregulated, which affects insulin sen-
sitivity [72]. PPM1E is in cAMP-activated protein kinase
(AMPK) phosphatases and is a potential antidiabetic drug
target [73]. PFKFB2 is one of the key enzymes of glycolysis,
and its low expression will inevitably reduce glucose utiliza-
tion, while CHL1 affects the migration and cell cycle of islet
β-cells. Therefore, the results in this study further explain
the pathogenesis of T2D from the molecular mechanism
and provide new strategies for treatment, such as specifically
reducing the degree of inflammation in the pancreatic islets.
According to the results of the Connectivity map (CMap)
database (Supplementary Figure 8), the HDAC inhibitor
[74] may be a promising drug that can antagonize the ND-
T2D process (Supplementary Table 5), and the spleen
tyrosine kinase (SYK) inhibitor, fostamatinib [75], can
reverse the progression of IGT-T2D (Supplementary
Table 6).

In the results of network pharmacology, the main tar-
gets of the active ingredients of GLQMW were HSD11B1,
VDR, TGR5, FXR, and RBP4, all of which mainly related
to T2D. Such finding may be the basis for the therapeutic
effectiveness of GLQMW. According to the GO/KEGG
results of GLQMW targets, in addition to inflammation-
related and diabetes phenotype-related pathways,
GLQMW was shown to be involved in pathways related
to cell proliferation, such as the MAPK, JAK-STAT, Ras,
and PI3K-Akt signaling pathways. GLQMW may restore
the number of β-cells and restore islet function based on
its effect on cell proliferation. This is in line with the clin-
ical observation that GLQMW is effective in T2D patients
with failed insulin control; based on anti-inflammatory
and insulin resistance properties, GLQMW stimulates the
proliferation of β-cells to achieve therapeutic purposes.
In the results of drug similarity analysis, we found that
compounds in GLQMW, including spinasterol, isofucos-
terol, dianoside A_qt, 11,14-eicosadienoic acid, and
(-)-taxifolin, have potential therapeutic functions in T2D.
We can isolate compounds for further experimental vali-
dation to determine whether they can be used as parents
for new T2D drugs. Therefore, in the future, purified nat-
ural compounds can be prepared with a composition ratio
similar to that of TCM prescriptions to replace existing
decoction application methods [76]. Although some of
the compounds involved in this study have demonstrated
pharmacological activity, the efficacy of GLQMW in T2D
has not been fully explained. In order to further improve
the reliability of the study, we still need to comprehen-
sively verify the effectiveness of GLQMW from cells, ani-
mals, and clinics, and enhance its efficacy.

12. Conclusion

GLQMW treat T2D by anti-inflammatory and restoring islet
cell function, and its potential therapeutically active com-
pounds are (-)-taxifolin, dianoside A_qt, isofucosterol,
11,14-eicosadienoic acid, and spinasterol.
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