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During metastasis, cancer cells can invade extracellular matrix (ECM) through a process
mediated by matrix-degrading protrusions of the plasmamembrane, termed invadopodia.
Formation of invadopodia correlates with cells’ invasive and metastatic potential, and thus
presents a potential target for therapeutic approaches to target metastatic progression.
Invadopodia formation is dependent on the recruitment of proteins involved in intracellular
signaling, actin cytoskeleton remodeling, and proteolytic matrix modification. The latter
includes matrix degrading enzymes such as MT1-MMP, MMP2, and MMP9. These
essential invadopodium-associated enzymes are required for localized matrix
degradation, and their localization at invadopodia is central to invadopodium-based
cancer cell invasion. Soluble N-ethylmaleimide-sensitive factor attachment protein
receptors (SNAREs) facilitate intracellular vesicle traffic, including that involved in the
transport of invadopodium-associated proteins, and in so doing promote modification of
ECM and modulation of signaling pathways involved in the movement of cancer cells.
Specific SNARE complexes have been found to support invadopodia formation, and
these complexes are, in turn, regulated by associated proteins that interact specifically
with SNAREs. Targeting SNARE regulatory proteins thus provides a possible approach to
disrupt SNARE-dependent delivery of invadopodial proteins, including MT1-MMP, to sites
of ECM modification. Here, we review recent studies of SNARE regulators that hold
potential as targets for the development of anti-metastatic therapies for patients burdened
with invadopodia-forming cancer types.
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INVADOPODIA AND METASTATIC PROGRESSION

Metastatic progression is one of the most clinically challenging aspects of cancer, ultimately
contributing to significant mortality (1). Much of the development of anti-cancer therapeutics has
focused on anti-proliferative drugs to attenuate or shrink tumor growth. Treatment options that
function to target the invasion and metastasis of cancer cells are extremely limited, however, and
warrant further investigation (2). A better understanding of the cellular and molecular mechanisms
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involved in cancer cell invasion is necessary to advance the
development of anti-invasion drugs, as agents to mitigate
metastatic progression of cancer and increase survival
of patients.

Invadopodia are sub-cellular, membrane-associated
structures that mediate cancer cell invasion and facilitate
metastasis. These cancer-specific protrusions function to
degrade the extracellular matrix (ECM), allowing cancerous
cells to invade through these barriers, breach tissue
compartments, intravasate into blood and lymphatic systems,
extravasate and subsequently colonize secondary tissue sites
(3–5). The primary tumors of many metastatic cancers display
increased expression of key proteins involved in invadopodia
formation (e.g. Tks5, EGFR), compared to non-metastatic
cancers (6–8). Furthermore, the invasive and metastatic
potential of primary tumors often correlates with their ability
to form invadopodia (9). Invadopodia thus represent attractive
targets for the inhibition of cancer cell invasion as part of the
metastatic cascade.

Invadopodia contain an F-actin core, which is enriched in
actin modeling proteins such as Arp2/3, N-WASP, Tks5, and
cortactin. Formation of invadopodia is also dependent on the
localization and activation of epidermal growth factor receptor
(EGFR) and integrins, which elicit intracellular signaling cascades
that recruit and activate signaling molecules such as FAK and Src
kinase (10, 11). Together, these proteins make up the core
structure of invadopodia, integrate signaling pathways to induce
localized actin polymerization within invadopodia pre-cursors,
and support the formation of membrane protrusions. The
microtubule network is also crucial to invadopodia formation
and maturation (12, 13). Microtubules have been shown to have
important roles in the regulation of MT1-MMP activity at
invadopodia (14). As well, microtubules and microtubule-
regulating proteins have been implicated in the modulation of
focal adhesion dynamics and cell-ECM interaction at
invadopodia (15, 16). Maturation of invadopodia corresponds
with the delivery of matrix metalloproteinases MT1-MMP,
MMP-2, and MMP-9, which gives these distinct structures their
degradative phenotype by initiating ECM remodeling (17, 18).
The delivery and localization of all invadopodia-associated
proteins is essential for invadopodia formation and function,
and is mediated by soluble N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs).
SNARE-MEDIATED VESICLE TRAFFIC
AND INVADOPODIUM FORMATION

SNAREs are mediators of vesicle-based trafficking in cells and are
central to both constitutive and regulated trafficking pathways.
SNAREs form complexes between vesicle and target membranes,
leading to fusion of the membranes and allowing delivery of
vesicle contents to target compartment. In this manner, SNAREs
contribute to the biosynthetic secretary pathway, endocytic
recycling pathways, and regulated membrane traffic such as
Frontiers in Oncology | www.frontiersin.org 2
neurosecretion or insulin release. While much is known about
SNARE-mediated membrane trafficking in some systems, our
understanding of the membrane traffic in the context of cancer
cells has significantly increased in recent years. SNARE-mediated
trafficking of invadopodial proteins, to and from the plasma
membrane, contributes to the remodeling of membranes and the
localized enrichment of signaling components, adhesion
receptors, and ECM degrading enzymes at sites where
invadopodia form (Figure 1). Several studies point toward the
role of specific SNAREs in trafficking invadopodium-associated
proteins to promote cellular invasion and migration of malignant
cancer cells (19–22).

The localization and activation of EGFR and b1 integrin to
sites of cell-ECM attachment are important for invadopodia
formation and function. Membrane trafficking pathways,
involving SNAREs SNAP23 and Syntaxin13, have been shown
to contribute to invadopodium formation through the delivery of
EGFR and b1 integrin to the cell membrane (21). This trafficking
pathway also delivers Src kinase, in association with EGFR and
b1 integrin, to these sites (21). b1 integrin signaling stimulates
SNARE complex formation, involving SNAP23 and syntaxin13,
promoting the association of Src with EGFR, leading to receptor
phosphorylation and activation (21). The association of Src,
EGFR, and b1 integrin downstream of b1 integrin activation
then promotes invadopodia formation and cellular invasion (23).
Expression of SNAP23 constructs with cytoplasmic deletions and
syntaxin13 dominant-negative mutants were shown to perturb
invadopodia formation and cell invasion of ECM in vitro (21).

Secretion of MMPs correlates with the metastatic potential of
cancers (6, 17, 18), and evidence suggests that MT1-MMP is a
key protease that drives cancer cell invasion. It is clear that
vesicle-mediated delivery of MT1-MMP promotes invadopodia
maturation, and this is important for ECM remodeling and cell
invasion (20, 22). For example, using several different cell culture
models, SNARE complexes containing SNAP23, VAMP3 and
syntaxin13 (20), or SNAP23, syntaxin4, and VAMP7, have been
shown to contribute to invadopodia formation, by mediating the
trafficking of MT1-MMP (22). These studies have demonstrated
that both expression and function of the SNAREs were required
for invadopodia formation and MT1-MMP localization to
invadopodia (22). VAMP3 and syntaxin13 were also found to
be involved in the secretion of MMP2 and MMP9 during ECM
remodeling in invasive cancer cells (20). Collectively, these
studies reveal that several, possibly overlapping, SNARE-
mediated membrane trafficking pathways contribute to
invadopodium formation and function, and how these
pathways are interconnected and coordinated is an area of
active investigation.
REGULATION OF SNARE FUNCTION AS A
THERAPEUTIC TARGET

The regulated assembly of SNARE complexes is necessary for the
delivery of invadopodial proteins to the surface of cancer cells
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during cell invasion. Therapeutic targeting of SNARE proteins is
therefore a potential approach for the inhibition of invadopodia-
based invasion and subsequent metastatic spread of malignant
cells; however, the diverse roles that SNARE proteins play in
crucial physiological functions suggests that targeting SNAREs
themselves may lead to detrimental side effects. While targeting a
potential anti-SNARE therapy specifically to cancer cells is a
theoretical possibility, a more attractive strategy might be to
target regulators of SNARE function and complex formation to
more specifically disrupt membrane trafficking pathways that are
supporting invadopodium formation and invasive activity.

SNARE complex formation displays high specificity
during membrane trafficking, providing fidelity in trafficking
pathways (24), and this is achieved in part by post-translational
regulation of SNARE activity. While much is known about the
regulation of SNARE complex formation in some contexts, how
SNAREs are regulated in invasive cancer cells is just emerging.
One important mechanism for regulation of SNAREs is
phosphorylation, and this has been well described in other
systems (25, 26). In cancer cells, trafficking of MT1-MMP,
involving SNAP23 and syntaxin4, has been shown to be
modulated by phosphorylation of syntaxin4, with its
dephosphorylation correlating with increased interaction with
SNAP23 and increased invadopodium formation (22). The
kinase(s) and phosphatase(s) responsible for phosphorylation
and dephosphorylation of syntaxin4 in this context remain to
be identified.
Frontiers in Oncology | www.frontiersin.org 3
MUNC18C

SNAREs that have been implicated in cancer cell invasion have
also been shown to be regulated by accessory proteins, including
the Sec1/Munc18 (SM) family. SM family proteins are key
regulators of SNARE-mediated membrane fusion, and they
function by interacting with members of the syntaxin family of
SNARE proteins (27). In one model, the binding of an SM
protein to its cognate syntaxin is believed to modulate the
syntaxin’s conformation to a primed open state (28). The
“open” conformation of the syntaxin facilitates its association
with other SNARE proteins necessary for the formation of a
fusogenic SNARE complex. Munc18c is a known partner of
syntaxin4 (29), a SNARE involved in the delivery of MT1-MMP-
and EGFR-containing vesicles to invadopodial membranes (30).
Munc18c has been reported to promote the formation of a
syntaxin4-VAMP7-SNAP23 complex in MDA-MB-231 cells
during invadopodia formation (22). A potential method to
inhibit the delivery of invadopodial proteins to sites of
invadopodia formation was studied, whereby Munc18c binding
to endogenous syntaxin4 was perturbed. Exogenous expression
of the 29 amino acid N-terminus of syntaxin4 (Stx4-N-term),
containing the site that binds Munc18c, impaired the association
of endogenous Munc18c and syntaxin4, possibly by
competitively inhibiting syntaxin4-Munc18c binding (31). Cells
expressing Stx4-N-term demonstrated decreased levels of
syntaxin4-containing SNARE complexes, lower cell surface
A

B

C

FIGURE 1 | SNARE-mediated vesicle trafficking of invadopodium-associated proteins is essential for invadopodia formation. (A) vesicles containing invadopodial
proteins, such as MT1-MMP, EGFR, and MMP2/MMP9, are trafficked to invadopodia pre-cursor sites. (B) As the vesicle comes in proximity to the target membrane,
a SNARE complex is formed, involving t-SNAREs (Stx13, SNAP23) and v-SNAREs (VAMP7), that facilitates membrane fusion. (C) Membrane fusion results in the
localization of invadopodium-associated proteins, at sites of ECM invasion. Additional invadopodial proteins are trafficked in a similar manner, including b1- containing
integrins, which mediate downstream signaling pathways and promote invadopodia-based functions.
May 2021 | Volume 11 | Article 679955

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gorshtein et al. Blocking Invadopodium-Based Invasion
levels of MT1-MMP and EGFR, and inhibited invadopodium
formation and matrix degradation.
GELSOLIN AND SUPERVILLIN

Other Syntaxin4-regulatory molecules have been identified,
including those in the gelsolin/villin superfamily (32). Gelsolin
is a multifunctional actin-binding protein, which and can
regulate the cytoskeleton by capping and severing F-actin
filaments (33). Interestingly, gelsolin has also been found to
play a role in the regulation of insulin exocytosis in pancreatic
islet b-cells (34). Syntaxin4 mediates insulin granule docking at
the plasma membrane of b-cells, forming a complex with
SNAP25 and VAMP2 (35). Gelsolin was found to interact
directly with the HA domain (amino acids 39-70) of syntaxin4
under resting conditions, suppressing SNARE complex
formation (32). Upon glucose stimulation, gelsolin releases
from Syntaxin4, allowing for the formation of cognate SNARE
complexes necessary for insulin exocytosis. b cells
overexpressing the HA domain of syntaxin4 were observed to
secrete insulin in the absence of glucose, underscoring the
importance of gelsolin in regulating insulin granule release.

Gelsolin and supervillin (another member of the gelsolin/
villin superfamily) have been shown to localize to invadopodia
where they regulate actin dynamics (36–38). Knockdown of both
Frontiers in Oncology | www.frontiersin.org 4
proteins in COS-7 and MDA-MB-231 cells was found to
negatively affect MT1-MMP-dependent matrix degradation at
invadopodia, as well as cellular invasion (37). Downregulation of
gelsolin has also been shown to play a role in regulating the
invasion and motility of MDA-MB-231 and PC-3 cells (39).
Given gelsolin’s established role as a Syntaxin4-binding protein,
it is plausible that members of the gelsolin/villin superfamily may
be regulating SNARE complex formation to influence the
delivery of cargo to the invadopodial membrane. Further
research should be directed towards determining if gelsolin
and supervillin associate with SNAREs during invadopodium-
based cell invasion, and how perturbing their expression or
function might influence invadopodial dynamics.
CDC42

The vesicle SNARE VAMP2 also has a potentially regulated role
in invadopodia biogenesis. A complex of VAMP2-Syntaxin1A-
SNAP25 plays a well understood role in insulin exocytosis in
pancreatic b cells (40). Cdc42 can directly interact with VAMP2
in CHO-K1 cells, and this interaction promotes the formation of
a complex with Syntaxin1A (40). Expression of a VAMP2 N-
terminal peptide, corresponding to the binding site of cdc42,
resulted in decreased insulin secretion in cells stimulated with
glucose, demonstrating functional significance of VAMP2
A B

FIGURE 2 | Proposed model for inhibiting SNARE-mediated membrane trafficking at invadopodia. (A) In normal conditions, components are delivered to
invadopodia sites in a SNARE-regulated manner. (1) For example, vesicles containing MT1-MMP, EGFR and the v-SNARE Stx4 are depicted. (2) When the vesicle
reaches its destination, a SNARE complex is formed by the v-SNARE and t-SNAREs (e.g. SNAP23, VAMP7) on the target membrane. This SNARE interaction is
facilitated by the SNARE regulatory protein, Munc18c, which primes Stx4 for association with its cognate SNARE partners. (3) SNARE-mediated fusion between the
vesicle and the invadopodial membrane results in the delivery of proteins necessary for invadopodia formation and cellular invasion. (B) Potential therapeutic targeting
of a SNARE regulatory protein inhibitor. (1) As in A, vesicles containing MT1-MMP, EGFR and the v-SNARE Stx4 are depicted. (2) The presence of a Munc18c
inhibitor impairs Stx4 involvement in SNARE complex formation, which reduces membrane fusion and delivery of invadopodial proteins leading to decreased
invadopodia formation and cell invasion.
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regulation by cdc42. Additionally, VAMP2 has been shown to
have a role in regulating cancer cell invasion, as knockdown of
VAMP2 in HeLa cells resulted in decreased b1 integrin surface
expression and cell migration (41). It is possible that cdc42 plays
a role in regulating SNARE complex formation necessary for the
delivery of b1 integrin-containing vesicles to the cell surface,
possibly including sites of invadopodia formation.
CONCLUDING REMARKS

Beyond Munc18c, gelsolin, supervillin, and cdc42, other SNARE
regulatory proteins have yet to be described in the context of
invadopodia biology. Several members of the SNARE family
have been identified that mediate the fusion of vesicles
containing invadopodial proteins (e.g. MT1-MMP, Src, EGFR)
to the plasma membrane. VAMP2 (31, 41), VAMP3 (20, 42),
VAMP7 (21, 22), SNAP23 (20, 31, 43), SNAP25 (43), syntaxin1
(43), syntaxin4 (22, 31), syntaxin6 (42), and syntaxin13 (21) are
SNAREs whose expression has been shown to be upregulated in
cancerous cells or have been identified to influence cellular
invasion directly. Further investigation into proteins that
associate with these SNAREs should be pursued, as these
would represent potential druggable targets for impeding
invadopodium-driven metastatic invasion.

SNARE-dependent trafficking of proteins to invadopodia
holds potential as a point of therapeutic intervention in
Frontiers in Oncology | www.frontiersin.org 5
metastatic progression. An effective approach to interfere with
SNARE-dependent invadopodium formation and function is to
target SNARE interactions with regulatory proteins that have
been shown to be involved in invadopodia function (Figure 2).
Such an approach has already been successful in vitro in MDA-
MB-231 cells (31). These results provide a promising avenue for
the development of anti-metastatic agents targeting SNARE
regulatory molecules. Specific interactions between SNAREs
and Munc18c, gelsolin, supervillin, as well as other
unidentified SNARE regulatory proteins, represent potential
targets to combat metastasis in patients with invadopodia-
forming cancer subtypes.
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