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We found that a lectin, Datura stramonium agglutinin, induced irreversible differentiation in C6 glioma cells. The differentiated
cells had long processes, a low rate of proliferation and a high content of glial fibrillary acidic protein. When the medium was
replaced with Datura stramonium agglutinin-free medium after 1 h, cell proliferation continued to be inhibited. Experiments
with several other lectins indicated that both recognition of linear N-acetyllactosamine repeats and recognition of
multiantennary units of cell-surface glycans were required for the inhibition of C6 proliferation. Proliferation of four human glial
tumour cells was also inhibited by Datura stramonium agglutinin. Further, these differentiated human glial tumour cells had long
processes and a high content of glial fibrillary acidic protein similar to differentiated C6 glioma cells. Taken together, these
observations suggest that Datura stramonium agglutinin may be useful as a new therapy for treating glioma without side effects.
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Malignant gliomas remain one of the most incurable forms of
cancer in humans. While surgical and radiotherapeutic techniques
have improved recently, the prognosis for patients with glial
tumours still remains poor. Glial tumours are generally very highly
malignant and infiltrate widely along axons. Most gliomas show
indistinct boundaries between tumour tissue and normal tissue.
Diffuse infiltration of the adjacent brain structures is the main
reason that surgical resection is often incomplete, and even hemi-
spherectomy may not prevent glioma recurrence (Burger et al,
1991). In the cases of tumours in other organs, malignant cells
have been removed by surgical techniques, brachytherapy, and
chemotherapy. In the case of brain tumours, however, extermina-
tion of malignant cells with any one of these treatments will
cause extensive damage to normal cells and brain function, which
explains why they are rarely curable (Black, 1991).

Since immature normal cells and malignant cells share similar
characteristics, e.g. rapid proliferation, cellular migration and inva-
sion, Linskey and Gilbert (1995) proposed that oncogenesis was a
process of dedifferentiation or uncontrolled differentiation.
According to this view, knowledge and control of normal cellular
differentiation could help to understand and control malignancy.
Differentiation agents may provide a means of leading tumour cells
to re-differentiate, and thereby suppress tumour cells with minimal
toxicity to normal cells. However, differentiation agents that have
been investigated so far, such as retinoic acid, have not yet proved
useful in treating gliomas.

One of the most important findings in the past decade in devel-
opmental biology is that there are well-controlled variations of
oligosaccharides during development and differentiation. The
glycan structures of tumour cells are almost always different from
those of normal cells (Hakomori, 1985). Glycosylation of proteins

is one of many molecular changes that accompany malignant
transformation. During a malignant transformation, there are
increases in the amounts of highly branched N-glycans and poly-
N-acetyllactosamine chains (Dennis et al, 1999). In addition, term-
inal Lewis antigen sequences on highly branched N-glycans have
been observed to increase in some cancers, and to correlate with
poor prognosis (Dennis et al, 1999). Therefore, such tumour-speci-
fic glycans might be new molecular targets for treating glioma.
Since some plant lectins are known to mimic natural biological
response modulators, we examined a panel of plant lectins and
found one that bound to tumour-specific glycans. It is Datura stra-
monium agglutinin (DSA) which binds specifically to glycans
containing multiantennary and/or N-acetyllactosamine repeat units
(Cummings and Kornfeld, 1984; Yamashita et al, 1987). Recently,
we found that DSA induced differentiation of astrocytes (Sasaki
and Endo, 2000). Addition of DSA caused a morphological change
from a polygonal shape to a stellate shape with many long
processes, an increase of glial fibrillary acidic protein (GFAP)
and suppression of proliferation. Therefore, it was of interest to
determine whether DSA can inhibit cell-specific proliferation and
induce differentiation of glioma cells.

In the present study, we examined whether DSA induced differ-
entiation of C6 cells and human glioma cell lines into the mature
astrocytic phenotype and whether use of this lectin could provide a
new approach to treating glioma.

MATERIALS AND METHODS

Reagents

Datura stramonium agglutinin (DSA) and tomato lectin (TL) were
obtained from Sigma (St. Louis, MO, USA). Dolichos biflorus
agglutinin (DBA), Sambucus sieboldiana agglutinin (SSA), leucoag-
glutinin from Phaseolus vulgaris (L-PHA), and Lotus tetragonolobus
agglutinin (LTA) were obtained from Seikagaku Corp. (Tokyo,
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Japan). Kanamycin sulphate, Dulbecco’s modified Eagle’s medium
(DMEM), RPMI 1640 and foetal bovine serum (FBS) were
obtained from GIBCO BRL (Grand Island, NY, USA). Phenyl-
methylsulphonyl fluoride (PMSF), leupeptin hemisulphate,
aprotinin, bovine serum albumin (BSA), 3,3’-diaminobenzidine
(DAB) and pepstatin A were obtained from Nacalai Tesque (Kyoto,
Japan). The BCA protein assay kit was purchased from Pierce
Chemical Company (Rockford, IL, USA). Polyvinylidene difluoride
(PVDF) membrane was obtained from Millipore Corporation
(Bedford, MA, USA). Peroxidase-conjugated avidin (Vectastain
ABC kit) was purchased from Vector Laboratories Inc. (Burlin-
game, CA, USA). Anti-glial fibrillary acidic protein (GFAP)
antibody was obtained from DAKO Corp., (Carpinteria, CA,
USA). The peroxidase-linked F(ab’)2 fragment of anti-rabbit IgG
was obtained from Amersham Pharmacia Biotech Inc., (Piscataway,
NJ, USA).

Cell cultures

The rat glioma cell line C6, was obtained from Dr K Watanabe
(our institute). Cells were cultured in DMEM supplemented with
10% FBS, 0.1 mg ml-1 kanamycin, and 4 mg ml71 glucose at
378C under a humidified atmosphere of 5% CO2 795% air.
Human brain tumour-cell lines, U251 (glioblastoma), SF-539 (glio-
sarcoma), SNB-75 (astrocytoma), and SNB-78 (astrocytoma) were
cultured as described previously (Monks et al, 1991; Yamori et
al, 1999).

Morphological observations

Changes in cell morphology were assessed under a microscope
(TE300, Nikon Co. Ltd., Tokyo, Japan) with a Hoffman Modula-
tion Contrast module (Nikon Co. Ltd.). C6 cells and human
glial tumour-cell lines were seeded in 12-well plates (Asahi Techno
glass) at a density of 1.06104 cells per cm2. Cells were incubated
with 1 mM DSA or without DSA beginning 1 h after seeding. After
23 h, photographs of each cell were taken. Experiments were
performed more than five times.

Cell proliferation assay

Plated cell numbers per well in 12-well plates of C6 cells and
human tumour-cell lines (U251, SNB-75, and SNB-78) were
0.56104, 0.46104, 1.06104, and 1.06104 cells, respectively. Five
wells were used for each experimental condition. Cells were
detached with trypsin and EDTA and counted in a Bürker-Türk
haemocytometer. Values were expressed as the mean+standard
deviation.

DNA synthesis was measured as the amount of 5’-bromodeox-
yuridine (BrdU) incorporated using ‘Cell Proliferation ELISA,
BrdU (colorimetric)’. The subcultured astrocytes were seeded at a
density of 1.96104 cells per cm2 in a 96-well plate (Nippon Becton
Dickinson Co., Ltd., Tokyo, Japan).

Cell growth inhibition (percentage of growth) was calculated as:
% growth=1006{(T – T0)/(C – T0)}
where C and T are the cell number of the control and test wells,

respectively, and T0 is the cell number immediately before the
addition of DSA.

SDS – PAGE and immunoblotting

The cells in the culture dish were washed three times with ice-cold
PBS, detached in ice-cold PBS with a rubber scraper, collected by
centrifugation at 600 g for 10 min at 48C, and homogenised with
1% SDS in 10 mM Tris-HCl buffer, pH 7.4, containing 1 mM

PMSF, 10 mM leupeptin, 1 mM aprotinin, 1 mM pepstatin A and
1 mM EDTA.

SDS – PAGE (10% acrylamide) was performed essentially as
described by Laemmli (Laemmli, 1970). Protein concentration
was determined with a BCA protein assay kit. Each sample
(10 mg from C6 or 5 mg from human tumour-cell line) was
subjected to SDS – PAGE. For the immunoblot, the proteins in
the gel were transferred electrophoretically to a PVDF
membrane at 2 mA/cm2 for 2 h in 25 mM Tris, 192 mM glycine
and 20% methanol, pH 8.3, using a protein transfer system
(Bio-Rad Laboratories, Hercules, CA, USA). The PVDF
membrane was incubated with PBS containing 3% BSA at
48C for about 12 h, incubated with a solution containing the
anti-GFAP polyclonal antibody in PBS containing 1% BSA at
room temperature for 2 h with shaking, incubated with an
anti-rabbit IgG antibody conjugated with peroxidase in PBS
containing 1% BSA for 1 h, washed three times with PBS
containing 0.05% Tween 20 for 5 min, washed once with PBS
for 10 min, and incubated with the peroxidase substrate, DAB,
to detect reactive proteins. Band intensities were measured by
densitometric scanning using a densitometer and NIH Image
1.61/ppc software.

RESULTS

Effect of DSA on the proliferation of C6 cells and human
glial tumour-cell lines

To examine the effects of DSA on glioma cell proliferation, cell
numbers were counted after the addition of DSA. One mM of
DSA almost completely inhibited the proliferation of C6 cells
(Figure 1A). After 120 h, the number of control C6 cells
increased 28.9 times (Figure 1A, diamonds), but DSA-treated
cells increased only 1.14 times (Figure 1A, triangles). DSA
suppressed C6 proliferation in a dose-dependent manner (Figure
1B). After 24 h, the number of C6 cells cultured without DSA
increased 2.6 times. The corresponding values of C6 cells treated
with 250 nM, 500 nM, and 1 mM of DSA were 1.4, 1.2, and 1.1,
respectively. We confirmed the results by a different method.
Since 5’-bromodeoxyuridine (BrdU) incorporation of astrocytes
cultured with 1 mM of DSA containing medium during 12 h
culture was reduced to 4.3% in comparison with DSA free
control, we concluded that DNA synthesis was strikingly
suppressed by DSA.

After 24 h exposure to DSA, the medium was replaced with
DSA-free medium. Despite the removal of DSA, the cells continued
to proliferate at the same slow rate (Figure 1A, squares). Thus, the
effect of DSA on C6 proliferation was irreversible and not a
temporal response. These results suggested that DSA acted at an
early stage of cell proliferation.

To determine whether the inhibitory effect of DSA on cell
proliferation is limited to C6 cells, we examined the effect of
DSA on the proliferation of four human glial tumour cells
(U251, SF-539, SNB-75, and SNB-78). Exposure of each of these
cells type to 1 mM of DSA for 1 h reduced their growth rate to
14% * 49% of that of the control (Figure 1C). Under these condi-
tions, growth rate of C6 cells reduced by over 90%. These results
suggested that DSA was effective on all types of glioma cells.

Induction of morphological changes of gliomas by DSA

To assess the morphological effects of DSA, we analysed C6 cells
treated with or without DSA by microscopy (Figure 2A,B). C6 cells
had a flat epithelioidal morphology (Figure 2A), but after addition
of DSA, most of them became astrocytic with many long, thin
processes well-developed and extended radially (Figure 2B). The
lengths of some processes exceeded 200 mm. In the absence of
DSA, most cells were flattened and spindle-shaped and none of
them had thin process (Figure 2A). Since it is known that well-
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differentiated astrocytes have a stellate shape and many long
processes (Butt, 1991), the present results suggests that DSA caused
C6 cells to enter the differentiated state.

When we examined the effect of DSA on the morphological
changes of human glial tumour cells, most of them changed their
shape as follows. U251 cells were a flat epithelioidal morphology
(Figure 2C). After addition of DSA, most of them changed to a
stellate shape (Figure 2D). In the case of SNB-75, the cells were
elongated in comparison with C6 or U251 but flattened (Figure
2E). After addition of DSA, they changed to a stellate shape with
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Figure 1 Inhibition of proliferation of glioma cells by DSA. (A), Effect of
DSA on proliferation of C6 cells. Triangle, Cells exposed to 1 mM DSA after
the seeding; diamond, control cells; square, cells after DSA-containing med-
ium was replaced with DSA-free medium. Arrow indicates time of change
of medium. Cells were detached with trypsin and EDTA and counted in a
Bürker-Türk haemocytometer at the indicated times after the seeding. C6
cells were seeded in 12-well plates (Asahi Techno glass) at a density of
0.56104 cells per well and cultured in 10% FBS-supplemented media.
The data are presented as mean+s.d.; n=5 for each experimental condi-
tion. (B), Concentration-dependence of inhibition of proliferation of C6
cells. C6 cells were seeded in 12-well plates at a density of 1.06104 cells
per well and cultured in 10% FBS-supplemented media. DSA was added
3 h after the seeding of the cells at the indicated concentrations. Cell num-
bers were counted 24 h after seeding. The data are presented as
mean+s.d.; n=5 for each DSA concentration. (C), Effect of DSA on pro-
liferation of four human glial tumour cells. DSA was added 24 h after seed-
ing of the cells at a concentration of 1 mM. After 1 h exposure with DSA in
FBS-free medium, the medium was changed to DSA-free, FBS-supplemen-
ted medium. After 36 h culture, cell growth was measured. Data are ex-
pressed as a percentage of growth as described in Materials and Methods.
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Figure 2 Morphological changes of glioma cells by DSA. Plated cell num-
bers per well of C6 cells and human tumour-cell lines (U251, SNB-75, and
SNB-78) were 1.06104, 0.76104, 1.46104, and 1.46104 cells, respec-
tively. C6 cells were cultured in 10% FBS-supplemented DMEM and human
tumour-cell lines were done in 5% FBS-supplemented RPMI 1640. Cells
were incubated without (A, C, E, and G) or with (B, D, F, and H)
1 mM DSA beginning 1 h after seeding. Cells were observed 23 h after
the addition of DSA. (A and B), C6; (C and D), U251; (E and F), SNB-
75; (G and H), SNB-78. Bar in (A), 50 mm.
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well-branched processes (Figure 2F). The morphology of SNB-78
cells was similar to that of SNB-75 before addition of DSA (Figure
2G), but SNB-78 cells changed differently to a stellate shape with
longer but fewer branched processes than SNB-75 cells after addi-
tion of DSA (Figure 2H). These results indicated that DSA induced
the morphological changes of glial tumour cells from the flatten
epithelioidal shape to the stellate form bearing two or more thin
processes. It has been reported that such a stellate cell morphology
is one of characteristics of differentiated astrocytes (Bovolenta et al,
1984; Butt, 1991).

Increased expression of GFAP after addition of DSA

The malignancy of gliomas is inversely correlated with the content
of astrocyte-specific intermediate filament protein (GFAP) (Tascos
et al, 1982). Furthermore, mature astrocytes are characterised by
the expression of a large amount of GFAP (Tascos et al, 1982; Chiu
and Goldman, 1985). GFAP is expressed exclusively in astrocytes
and the expression level increases during differentiation. C6 cells
were found to produce only a small amount of GFAP due to their
malignant properties (Messens and Slegers, 1992). The immunoblot
in Figure 3 shows clearly that the expression of GFAP was
enhanced after the addition of DSA. A densitometric evaluation
of the blot indicated that the amount of GFAP after the addition
of DSA increased over hundred fold relative to the amount in
the control cells. The corresponding values of human glial tumour
cell lines were more than 12.2 times. Differentiated astrocytes are
characterised by a stellate cell morphology, increased GFAP expres-
sion, and inhibited proliferation (Butt, 1991; Bovolenta et al, 1984).
We conclude that C6 cells and human glial tumour-cell lines were
induced to differentiate by DSA.

Lectin specificity of inhibitory effect on C6 proliferation

DSA binds specifically to glycans containing multiantennary and/or
N-acetyllactosamine repeat units (Cummings and Kornfeld, 1984;
Yamashita et al, 1987). Therefore, it was of interest to determine
whether other plant lectins, which possess different carbohydrate-
binding specificities, can inhibit proliferation of C6 cells. The results
are shown in Figure 4. TL, which reacts with a linear N-acetyllacto-
samine repeat sequence of three or more units (Kilpatrick et al,
1984; Merkle and Cummings, 1987), inhibited C6 proliferation as
strongly as DSA. L-PHA which recognises multiantennary N-glycans
containing a Galb1?4GlcNAcb1?6(Galb1?4GlcNAcb1?2)Man
group (Cummings and Kornfeld, 1982), was also effective. These
results indicate that the presence of both linear N-acetyllactosamine
repeats and multiantennary units may be required for the inhibition
of C6 proliferation. It is noteworthy that DBA, which binds to core
1 O-linked oligosaccharide (Galb1?3GalNAc) (Baker et al, 1983),
did not inhibit proliferation at all. LTA, a fucose-binding lectin
(Allen et al, 1977; Petryniak et al, 1983), also did not inhibit prolif-
eration. Since SSA showed only a small effect on C6 proliferation,
glycans containing the Siaa2?6 group may not be effective
(Shibuya et al, 1989). We conclude that DSA inhibited C6 prolifera-
tion in a glycan-specific manner, via glycans containing multi-
antennary and/or N-acetyllactosamine repeat units.

DISCUSSION

During organogenesis in the central nervous system, differentiated
astrocytes are characterised by a high expression of GFAP, a change
from a polygonal shape to a stellate shape, and a low rate of prolif-
eration (Wang et al, 1994). In the present study, we showed that
DSA-treated cells express the characteristics of differentiation, i.e.,
they had a high content of GFAP, long processes, and a low rate
of proliferation. GFAP is expressed exclusively in astrocytes, and
that the amount of GFAP is closely related to the differentiation

of astrocytes (Dahl, 1981; Bovolenta et al, 1984). In addition to
being a marker of matured astrocytes, GFAP is considered to be
important for the induction and maintenance of astrocyte differen-
tiation, because introduction of GFAP to C6 cells and human
astrocytoma induced morphological changes, and suppressed their
proliferation and invasive potential (Rutka and Smith, 1993; Toda
et al, 1994).

A strategy was proposed to control glial tumours by cellular
differentiation (Linskey and Gilbert, 1995). Regulation of cell
proliferation and terminal differentiation is a critical aspect of
normal development and homeostasis (Raff, 1996), but is
frequently disrupted during tumorigenesis (Sawyers et al, 1991).
Thus, DSA may be useful for treating gliomas.

It is well known that neuronal cells, in addition to astrocytes, are
important. Therefore, it is important to avoid any effects on
neurons during treatment of glial tumours. It is desirable that
the inhibitory effect of DSA on the proliferation of glial tumour
cells continues after removal of DSA. Some agents that inhibit cell
proliferation, such as dibutyryl cyclic AMP, have only a transient
effect and thus must be continuously present. In contrast, DSA
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induced irreversible differentiation of tumour cells after a short
exposure. Thus, DSA may be useful as an anti-tumour drug
because such a short exposure may minimize the side effects on
other normal cells. Treatment with DSA once or a few times
may be enough to treat the tumour.

Many molecules on the surface of astrocytes including cell
adhesion molecules and receptors are shared by neurons. Their
effector molecules may bind to the molecules on both cells,
and then they may affect not only astrocytes but also neurons.
It is well known that the structures of glycans are specific for
each cell type (Fukuda, 1985; Kagawa et al, 1988). Since lectins
recognise specific sequences and configurations of the oligosac-
charides, they are useful tools for distinguishing glycoproteins
produced by different cells. In fact, DSA reacted strongly with
many rat astrocyte glycoproteins, but reacted with very few
neuronal glycoproteins (Sasaki and Endo, 1999). Actually, DSA
did not affect neuronal cell migration or axonal extension and
did not induce any morphological change of neurons (Sasaki
and Endo, 2000). Taken together, these results suggest that
DSA can distinguish between astrocytic and neuronal glycorecep-
tors. Previously, Jacobs and Lakes-Harlan (1997) reported that
DSA is bound to glial cells and/or glia in the surrounding extra-
cellular matrix but not to neuronal cells in the locust. These
results support the hypothesis that DSA selectively binds to
astrocytes, but not to neuronal cells. Therefore, the effect of
DSA on astrocytes may be restricted to glia in the brain. It is

of interest that DSA was effective not only on rat C6 cells but
also on four human glial tumours.

We previously found that DSA induced astrocyte differentiation
through tyrosine dephosphorylation, specifically a decrease in the
extent of tyrosine phosphorylation of a 38-kDa protein (Sasaki
and Endo, 2000). Further studies are needed to elucidate molecular
mechanism by which DSA acts on glioma cells.

In summary, we showed that DSA induced differentiation and
inhibited the proliferation of glioma cells. After addition of DSA
to glioma cells, the cells grew at a much reduced rate, they changed
from a flattened epithelioidal shape to a stellate shape having two
or more long processes, so that some of the cells resembled normal
fibrous astrocytes, and their content of GFAP was strikingly
increased. These changes showed that DSA caused glioma cells to
differentiate and thus may be useful as a new therapy for human
glioma.
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