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De novo prediction of cell-type complexity in single-cell
RNA-seq and tumor microenvironments
Jun Woo1,2 , Boris J. Winterhoff2,3 , Timothy K. Starr2,3 , Constantin Aliferis1, Jinhua Wang1,2

Recent single-cell transcriptomic studies revealed new insights
into cell-type heterogeneities in cellular microenvironments
unavailable from bulk studies. A significant drawback of currently
available algorithms is the need to use empirical parameters or
rely on indirect quality measures to estimate the degree of
complexity, i.e., the number of subgroups present in the sample.
We fill this gap with a single-cell data analysis procedure allowing
for unambiguous assessments of the depth of heterogeneity in
subclonal compositions supported by data. Our approach com-
bines nonnegative matrix factorization, which takes advantage of
the sparse and nonnegative nature of single-cell RNA count data,
with Bayesian model comparison enabling de novo prediction of
the depth of heterogeneity. We show that the method predicts
the correct number of subgroups using simulated data, primary
blood mononuclear cell, and pancreatic cell data. We applied our
approach to a collection of single-cell tumor samples and found
two qualitatively distinct classes of cell-type heterogeneity in
cancer microenvironments.
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Introduction

Gene expression heterogeneities on the level of individual cells
reflect key biological features not apparent from bulk properties,
promising novel insights into molecular mechanisms underlying,
e.g., development of neurons (Poulin et al, 2016), stem cell bi-
ology (Wen & Tang, 2016), and cancer (Navin, 2015; Winterhoff
et al, 2017; Cieślik & Chinnaiyan, 2018; Nguyen et al, 2018). Recent
advances in single-cell transcriptome profiling techniques using
RNA-sequencing (RNA-seq; Ozsolak & Milos, 2011; Ziegenhain
et al, 2017), together with customized computational methods
(Buettner et al, 2015; Bacher & Kendziorski, 2016; Ilicic et al, 2016;
Alpert et al, 2018; Edsgärd et al, 2018; Sinha et al, 2018; Soneson &
Robinson, 2018; Kiselev et al, 2019), enabled significant progress in
understanding such single-cell features (Tanay & Regev, 2017).
Particularly noteworthy is the increased throughput of single-cell

assays made possible by droplet-based barcoding technologies
(Macosko et al, 2015), with cells in a typical sample numbering
thousands or more (Zheng et al, 2017).

The ability to identify known cell types and discover novel cell
groups is key to analyzing such data. Although classical un-
supervised clustering and more recent dimensional reduction
methods have been successfully adapted to single-cell RNA-seq
data (Grün et al, 2015; Macosko et al, 2015; Bacher & Kendziorski,
2016; Li et al, 2017), a common drawback is the need to specify the
degree of complexity in clustering, either by fixing the total number
of subgroups anticipated or by choosing a resolution parameter
controlling the extent of dimensional reduction. Because the de-
gree of cell-type diversity expected from data is often unknown in
real applications, a clustering approach capable of inferring the
number of cell types present in a sample solely based on statistical
evidence would provide a significant advantage, freeing cell-type
classification and discovery process from potential resolution bias.

The question of how to determine the number of clusters in
unsupervised clustering analysis has a long history in statistical
literature (Milligan & Cooper, 1985; Tibshirani et al, 2001). Never-
theless, only a few currently available single-cell RNA-seq analysis
pipelines provide such capability (Kiselev et al, 2019): SC3 uses
principal component analysis (PCA) and compare eigenvalue dis-
tributions with that of random matrices to pick the most likely
number of principal components (Kiselev et al, 2017); SINCERA (Guo
et al, 2015) and RaceID (Grün et al, 2015) use statistics comparing
intercluster versus intracluster separations; SNN-Cliq (Xu & Su,
2015) provides an estimate within a graph-based clustering ap-
proach. These existing choices thus either rely on indirect quality
measures of multiple clustering solutions or significance tests
associated with dimensional reduction.

In Bayesian formulation of general unsupervised clustering, in
contrast, the number of clusters is just one of many hyper-
parameters, whose statistical support can rigorously be examined
via Bayesian model comparison (Held & Ott, 2018): possible choices
for the number of clusters can be compared quantitatively via
marginal likelihood (or evidence, the probability of seeing data
given a specific number of subgroups). In application point of view,
a shift to Bayesian statistics therefore enables a comprehensive
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and powerful clustering approach, where clustering depth, as-
signment of individual cells into clusters, and characteristics of
each cluster all emerge as collective analysis outcomes. To our
knowledge, Bayesian model comparison is yet to be applied to
single-cell RNA-seq analyses. Here, we developed and tested such a
method for inferring and assessing the degree of heterogeneity in
single-cell samples using Bayesian statistics and identifying the
range of most appropriate number of clusters.

For the actual subgroup identification, we chose nonnegative
matrix factorization (NMF) (Lee & Seung, 1999), an unsupervised
machine-learning method of dimensional reduction, where a high-
dimensional datamatrix with nonnegative elements is factorized into
a product of two matrices sharing a common, low dimension—the
rank (Lee & Seung, 2000). Single-cell RNA count data are inherently
nonnegative and typically sparse, making them ideal for NMF
analysis. Earlier studies of bulk data and recent single-cell appli-
cations (Brunet et al, 2004; Carmona-Saez et al, 2006; Kim & Park,
2007; Puram et al, 2017; Zhu et al, 2017; Filbin et al, 2018; Ho et al, 2018)
were all based on maximum likelihood (ML) formulation of the NMF
algorithm (Gaujoux & Seoighe, 2010). The need to resort to quality
measures of factorization (Brunet et al, 2004; Gaujoux & Seoighe,
2010) to choose its optimal value compromises the predictive power
of ML-NMF, as with other clustering methods involving adjustable
parameters controlling the degree of cell-type diversity. In contrast,
we use NMF as one of possible dimensional reduction engines fa-
cilitating Bayesian model comparison and focus instead on the
resulting capability to evaluate different choices of rank values. We
adapted the variational Bayesian formulation of NMF (Cemgil, 2009)
for barcoded single-cell RNA-seq data.

Cell-type heterogeneities in carcinoma samples pose a unique
analytic challenge, with complex interplay of immune, stromal, and
malignant epithelial cells playing key roles in the development and
homeostasis of the tumor ecosystem (Li et al, 2016). Despite its

predominance among cancer types, studies of single-cell tran-
scriptomic heterogeneities in solid tumors are still in early stages
(Jaskowiak et al, 2018). As a major application of our approach, we
present analyses of available single-cell tumor samples, charac-
terizing the range and depth of tumor microenvironment hetero-
geneities encountered in different cancer types.

Results

Optimal cell-type separation is determined by data

We implemented ML and Bayesian NMF (bNMF) algorithms for
single-cell RNA count data (see the Materials and Methods section).
Briefly, bNMF combines the NMF-based Poisson likelihood of RNA
count data with gamma-distributed prior distributions for two-
factor matrices (basis W and coefficient H) (Cemgil, 2009) (Fig
1A). The mean counts are given by the matrix product WH, with
inference optimizing both the factor matrices and hyperparameters
of the priors simultaneously. The most likely rank is determined by
comparing evidence (marginal likelihood of data conditional to
hyperparameters Θ and rank r) for a range of rank values (Fig 1B):

Θp = argmaxΘ PrðXjΘ; rÞ; (1)

ropt = argmaxr PrðXjΘp; rÞ; (2)

where X is the RNA count data. We used the log evidence per matrix
element, regarded as a function of rank, as the primary measure of
statistical significance. Its difference between two rank values can
then be related to Bayes factor (Kass & Raftery, 1995; Held & Ott,
2018): we used a conservative Bayes factor threshold 3 for statis-
tically significant model differences in determining the optimal

Figure 1. bNMF for single-cell RNA-seq clustering.
(A) RNA count matrix derived from droplet-based
single-cell RNA-seq data is modeled as a Poisson
realization of the mean given by a product of basis W
and coefficient H matrices sharing a common
dimension rank. Factorization infers these matrices for
varying rank values using gamma priors. (B) We find the
optimal rank maximizing log evidence or marginal
likelihood of hyperparameters given the data.
Heterogeneity class is determined by the shape of
evidence profile: in type I, the difference in evidence
between themaximum at rank ropt and the value at rmax
is larger than the threshold L; in type II, this difference is
within L. The threshold is given by L = ðln TÞ=m;where
T is the lower bound of Bayes factor for statistical
significance. The factorization solutions for ranks from 2
to ropt are then used to construct the subgroup tree,
which connects subgroups under successively
increasing ranks. This tree provides a global view on the
structure of cell-type heterogeneity on varying
resolution. (C) Factor matrices W and H corresponding
to the optimal rank are used to identify metagenes
(genes distinguishing a given subgroup from the
rest), characterize subgroups into known or novel cell
types, and to assign individual cells into subgroups.
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rank (Fig 1B and the Materials and Methods section). After fac-
torization, the two-factor matrices yield metagene lists and sub-
group membership of all cells (Fig 1C).

We first characterized the performance of bNMF using simulated
data (Fig 2A–D). With data sets generated from m = 100 features
(“genes”) and r = 10 subgroups of 20 cells (n = 200), we factorized the
count data with varying rank r using ML-NMF and computed two
quality measures: dispersion and cophenetic correlation (the
Materials and Methods section). Dispersion increased with in-
creasing rank, saturating at r ≈ 10 (Fig 2A). Cophenetic correlation
(Brunet et al, 2004) showed a similar behavior with amaximum at r =
10 (Fig 2B) and a narrow overall range of values close to 1.

We used bNMF to compute log evidence (Fig 2C), which increased
linearly to reach a sharp maximum at rank 10. For higher rank
values, log evidence decreased moderately. This trend remained
unchanged for larger matrices up to sizes more typical of real data
(m = 2,000 and n = 2,000; Fig 2C). In ML-NMF, likelihood is equal to the
negative generalized Kullback–Leibler (KL) divergence, a distance
measure distinct from Euclidean distance (see the Materials and
Methods section). In bNMF, the generalized KL divergence is
weighted by the prior distribution rather than minimized. As ex-
pected from this distinction, the Euclidean distance and general-
ized KL divergence both showed sharp cusps at rank 10 (Fig S1A and
B), whereas for higher ranks, their magnitudes decreased weakly
and remained similar for ML-NMF and bNMF, respectively. Thus, for
these simulated data sets with 10 subgroups, ML-NMF predicted the
correct rank well via two quality measures, and bNMF yielded a
clear and unambiguous choice of the optimal rank. We also used a
simulated data set of rank 5 to characterize how relative outlier
cells in expression counts would be classified by bNMF factoriza-
tion: the relative outliers identified by minimum covariance de-
terminant method (Hubert & Debruyne, 2010) were predominantly
located within the t-distributed Stochastic Neighbor Embedding
(tSNE) (van der Maaten & Hinton, 2008) plot near the termini of
branches separately forming individual subgroups (Fig S2), sug-
gesting that bNMF would be resistant to overclustering of moderate
outliers. As a representative choice from existing methods relying
on specification of parameter(s) controlling clustering depth, we
applied Seurat (Macosko et al, 2015) to the same simulated data
with a range of resolution parameter values. With increasing res-
olution, the number of subgroups obtained showed consecutive
jumps to reach 10 (Fig 2D).

We further tested the convergence of bNMF inference using a
different simulation scheme, where factor matrices W and H were
generated from γ priors with known hyperparameters (Fig S3). With
increasing sample size, the evidence profile converged to a shape
as in Fig 2C and the predicted optimal rank and hyperparameters
became more sharply peaked around the correct values.

We next compared these algorithms using the fresh PBMC single-
cell data set (Zheng et al, 2017; Fig S4A and Table S1). To test the
dependence of the number of subgroups on sample sizes, we used
two different subsamples (n = 34,289 and n = 6,857) derived from the
full data. We first characterized evidence profiles with the smaller
data set under ML-NMF, bNMF, and PCA (Fig 2E–H). Both dispersion
and cophenetic correlation from ML-NMF were maximal near r = 2;
dispersion increased moderately for large r, whereas cophenetic
correlation remained low for r > 10 (Fig 2E and F). The log evidence

from bNMF exhibited a sharp increase with increasing rank for 2 ≤ r ≤
6 and decreased slightly for larger ranks. The rank with maximum
evidence was r = 9. Seurat led to a monotonic increase in the
number of subgroups with increasing resolution from r = 5 to r = 21
(Fig 2H). In contrast, both Euclidean distance and KL divergence
decreased monotonically with increasing ranks under ML-NMF and
bNMF (Fig S1D and E). The bNMF evidence profile was robust against
varying sample sizes, reaching maximum at r ≈ 6 and remaining
similar or decreasing slightly for larger ranks (Fig 2G).

We further compared bNMF rank profiles with the numbers of
clusters predicted by existing algorithms for six small single-cell
data sets (Yan et al, 2013; Biase et al, 2014; Deng et al, 2014; Pollen
et al, 2014; Kolodziejczyk et al, 2015; Goolam et al, 2016) with well-
known cell-type complexity (e.g., embryonic stem cells in early
development): “gold standard” data sets used in published works
assessing SC3 (Kiselev et al, 2017) and SIMLR (Wang et al, 2017). In
many cases (Fig 2I, K, M, and N), the number of cell types expected
from experimental design coincided with the lowest rank regions
where bNMF-derived evidence profile became relatively flat. At the
same time, apparent overestimations of the number of clusters by
other methods often fell within such flat regions (Fig 2I, J, L, M, and
N), providing a possible explanation for the lack of consensus
among different methodologies: many data sets exhibit evidence
profiles that are monotonically increasing up to a certain rank,
beyond which statistical support remains similar.

In summary, although all three algorithms performed rea-
sonably well for simulated data sets with simple compositions,
NMF provided a means to assess the subtype complexity without
the need to set adjustable parameters (Fig 2A–D). The bNMF
enabled a statistically well-controlled comparison via the evi-
dence profile, which unambiguously predicted the number of
subgroups supported by PBMC data (Fig 2E–H). Derivation of
evidence profiles for benchmark single-cell data sets demon-
strated that bNMF reveals a much more comprehensive picture of
how statistical support varies with the number of clusters than in
existing computational methods estimating a single clustering
depth (Fig 2I–N).

bNMF infers depth of heterogeneity in PBMC/pancreatic cells

We next characterized bNMF cell-type separation outcome of the
PBMC (n = 34,289) using the metagenes from basis matrix W (Fig 1C)
under rank 9 (Fig 2G). Most of the top metagenes clearly distin-
guished each subgroup from the rest, whereas a small proportion of
them featured in more than one subgroups (Fig 3A). We used
correlations between the mean expression counts of subgroups
and those of purified blood cell types (Zheng et al, 2017), along with
metagene and markers (Foell et al, 2007; Walzer et al, 2007; Kallies,
2008; Quann et al, 2011; Lu et al, 2017) to annotate major compo-
nents of nine clusters (Fig 3A and B).

The bNMF inference results from rank 2 to 9 provide cell-type
separation outcomes with increasing resolution up to the optimal
rank, beyond which statistical support from data no longer im-
proves. Using cluster membership of all cells under these ranks, we
constructed a hierarchical tree relating these subgroups (Fig 3B).
The two subgroups at rank 2 separated cells into two branches, one
containing B cells, NK cells, and monocytes and the other
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containing T cells. Intermediate levels of subgrouping within the
tree revealed sub-branches linking B cells and monocytes, and
naive/helper/regulatory versus effector/memory T cells. This
global tree view under varying rank values facilitates biological

interpretation of subgroups within the framework of NMF-enabled
dimensional reduction. We applied t-SNE to the coefficient matrix H
elements and visualized the seven subgroups (Fig 3C). The proximity
of subgroups within the map closely reflected their hierarchical

Figure 2. Comparison of optimal rank determination by NMF (ML-NMF and bNMF) and other clustering methods.
(A–D) Simulated data of 100 genes and 10 subgroups of cells (20 in each subgroup; 200 in total, except noted otherwise in (C)). ML-NMF narrows down the rank into an
optimal range based on two quality measures, dispersion and cophenetic coefficient. (C) bNMF finds the correct rank 10 maximizing evidence. (D) Seurat (Macosko et al,
2015) requires specification of resolution parameter; the correct number of subgroups is reached as the upper bound with respect to resolution. (E, F) ML-NMF applied to
PBMC single-cell data (Zheng et al, 2017). (G) bNMF applied to PBMC data sets of different sizes led to the optimal rankmaximizing evidence as ropt ≈ 9: (H) PCA applied to
PBMC yielded a wide range of subgroup numbers depending on resolution. (I–N) bNMF rank profiles and the number of clusters predicted by other computational
algorithms applied to six gold standard data sets (Yan et al, 2013; Biase et al, 2014; Deng et al, 2014; Pollen et al, 2014; Kolodziejczyk et al, 2015; Goolam et al, 2016). The SC3
(Kiselev et al, 2017), SINCERA (Guo et al, 2015), and SNN-Cliq (Xu & Su, 2015) predictions are from Kiselev et al, 2017. The black dotted and red dashed lines are the number
of major cell types expected from experimental design and the optimal rank from bNMF protocol, respectively. In (I), the total number of cells was small (n = 49) so that a
large subset of factorization results in W matrices had uniform columns for r ≥ 4, implying ropt = 3.
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Figure 3. bNMF subgrouping results for PBMC and pancreas data sets.
(A–C) Results for the PBMC data set (n = 34,289). (A)Metagenes for subgroups derived from the factor matrixW under optimal rank 9 (Fig 2G). Heat map shows the relative
magnitudes of matrix elementWik for each gene i and subgroup k, rescaled such that in each row, minimum and maximum correspond to 0 and 1. Up to 10 metagenes in
addition to preselectedmarkers per subgroup are shown. (B) Subgroup tree showing hierarchical relationships between subgroups under varying ranks from the lowest (2)
to the optimal (9). Branching of a subgroup under a given rank into two under a successively larger rank was inferred by applying themajority rule (see theMaterials and
Methods section). (C) Visualization of subgroups with tSNE. Subgroup ID and composition of cells are indicated. (D, E) Comparison of cell type compositions predicted
by bNMF and bulk data deconvolutionmethod, CIBERSORT (Newman et al, 2015). Outcomes for the full fresh PBMC data and an example mixture of seven purified cell types
are shown in (D) and (E), respectively. (F) Subgrouping of human pancreas cell data (Baron et al, 2016). Colors indicate major cell types. Insulin-producing β-cells are in
yellow (see Figs S5 and S6 and Table S2). MT, metallothionein. (G) Mean RNA count of INS gene in each pancreas subgroup.
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relationships (the two branches under rank 2 in Fig 3B roughly
occupy the upper-left and lower-right portions in Fig 3C).

We further tested the capability of bNMF to identify biologically
well-characterized cell types by analyzing human pancreatic
single-cell data (Baron et al, 2016). The evidence profile indicated a
range of optimal ranks of r = 20 ~ 30 and remained similar for higher
ranks (Fig S5A). We used the metagene list under r = 25 (Fig S6) to
identify all major cell types (Fig 3F), which included two acinar cell
subgroups (1 and 2), the latter expressing REG3A, two α-cell sub-
groups (8 and 9), γ-cells (subgroup 10), δ-cells (subgroup 24 and 25),
ε-cells (subgroup 20), ductal cells (subgroup 3 and 4), endothelials
(subgroup 5), and stellate cells (subgroups 6 and 7, activated and
quiescent, respectively). Although INS featured most strongly in
subgroup 17, the distribution of insulin expression (Fig 3G) indicated
that subgroups 11–16, 19, 21–23 also comprised β-cells. These sub-
divisions were further supported by their proximity in tSNE plots (Fig
S5B–D). Notably, metagenes of subgroup 11 (HSPA5 and DDIT3) linked it
to proliferative β-cells with endoplasmic reticulum stress (Baron et al,
2016). We found one subgroup (subgroup 18) of (largely macrophage)
immune cells. Our subgroup assignment was highly concordant with
the cell type annotation by Baron et al (2016) (Table S2).

bNMF classifies known cell types with high accuracy

We next tested the robustness of bNMF clustering applied to real
data using mixtures of count data derived from purified PBMCs
(Zheng et al, 2017). We generated multiple realizations of PBMC data
sets of known composition by sampling fixed numbers of up to
seven cell types—CD8+ CTLs, B cells, monocytes, CD4+ Th, regulatory
T cells (Treg), NK, and hematopoietic stem cells (HSCs)—of equal
proportions and performed bNMF inference for each realization.
The distribution of optimal ranks gradually shifted to higher ranks
as mixtures became more complex (Fig 4A–F). It was notable that
the degree of shifts with the successive addition of new cell types
reflected the novelty in the added cell type: the addition of Tregs
and NK cells to mixtures already containing Th cells and CTLs (Fig
4C–E) led to only moderate shifts in optimal ranks to higher values,
whereas the addition of HSCs led to a more substantial jump (Fig 4E
and F). Typical shapes of evidence profiles showed two distinct
qualitative trends: for mixtures with low complexity, there was a
sharp and pronounced rank value with maximum evidence (Fig 4G)
and statistical support decreased for larger rank values (type I). For
complex mixtures, on the other hand, the evidence profile became
relatively flat, with support for broader range of rank values above a
threshold (Fig 4H; type II).

Wequantified the reliability of subgroup assignment by the following
procedure: we first determined the cell-type identities of subgroups
obtained under rank 4 inferred for four-sample mixtures (Fig 4C) using
metagenes. We then assigned cells into four subgroups using Hmatrix
elements and calculated classification score as the proportion of
correctly classified cells. We obtained a mean score of 0.82 ± 0.08 (SD;
Fig 4I). To further test identification of rare cell types, we used mixtures
containing four cell types of which two had cell counts of ~10% of the
rest, obtaining the score of 0.73 ± 0.08. Together, these tests indicated
that bNMF enabled robust determination of optimal subgrouping
depths and reliable assignment of individual cells into subgroups.

We further compared the cell-type identification of bNMF with
that of a deconvolution procedure, where reference panels of
expression patterns are used to infer cell-type compositions
from bulk data (Avila Cobos et al, 2018). We used CIBERSORT
(Newman et al, 2015) to estimate the proportion of cell types
from RNA counts averaged over fresh PBMC cells and found a
reasonable agreement with noticeable differences when com-
pared with single-cell results (Fig 3D). We further characterized
differences in cell-type proportion estimates from single-cell
and deconvolution methods with a mixture of seven purified
blood cells: the bNMF prediction (Fig 3E), where the major
discrepancy arose in discriminating Treg from Th cells (also see
Fig S7), was substantially closer to true proportions (Fig 3E),
demonstrating the advantage of explicit single-cell data anal-
ysis compared with bulk deconvolution.

Because our algorithm takes cell-count matrix as input, it can be
combined with improved quality control or preprocessing steps
alleviating challenges in single-cell capture and counting pro-
tocols. Such challenges include the overabundance of zero
counts thought to originate from incomplete sampling of low-
number RNA molecules in individual cells (Lin et al, 2017; Li & Li,
2018). To demonstrate such a combined usage, we processed the
cell-count matrix of one of the PBMC seven-cell-type mixtures in
Fig 4F with scImpute (Li & Li, 2018). Imputation did not change the
evidence profile (Fig S7A), where the optimal rank was 6 with rank
7 slightly lower but close in evidence value. The bNMF factor-
ization results of the original and imputed count matrices (Figs
S7B and 7C) showed that CD4+ Th and Treg cells were clustered
together in both cases, explaining the optimal rank of 6. Im-
putation enhanced the quality of cell-type resolution separating
Th/Treg and CTL subgroups, resulting in a closer agreement of
overall cell counts in each cluster in comparison to true cell
counts (Fig S7D).

Solid tumor cell cultures have limited heterogeneity

We next applied our algorithm to melanoma cell culture single-cell
data (Gerber et al, 2017), which contain transcriptomes of tumor
cells derived from three patients: two replicates of wild-type (WT),
BRAF mutant-NRAS WT, and BRAF WT-NRAS mutant samples. The
evidence profile of this in vitro data set (Fig 5A) showed a pro-
nounced maximum near r ~ 7, decreasing sharply for higher rank
values. This behavior was analogous to those for low complexity
mixtures of immune cells (Fig 4G; type I). The tSNE visualization of
seven subgroups closely reflected the patient of origin and mu-
tation status (Fig 5B and C): the subgroups of cells from WT patient
(subgroups 1–4) formed one major branch (Fig 5D), which in-
cluded subgroups expressing oxidative phosphorylation and other
melanoma-specific marker genes (Gerber et al, 2017) (subgroup 1), a
highly proliferative subgroup expressing cell cycle and DNA repair
genes (subgroup 2), and a stromal subgroup (subgroup 3; Fig 5E).
The BRAF-mutant cells (subgroups 5–6) showed CD34, BRAF, and
apoptosis-related genes as metagenes/markers, whereas NRAS-
mutant cells had NRAS as a marker. Overall, this outcome was
consistent with the expected low depth of heterogeneity in cultured
tumor samples.
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Tumor microenvironments in vivo show two distinct classes of
heterogeneity

We characterized the degree of cell-type heterogeneity in tumor
microenvironments in vivo with six additional solid tumor data sets
(Table S1 and Fig 6). Lavin et al (2017) studied the landscape of
innate immune cells infiltrating lung adenocarcinoma. We obtained
a rank profile with a relatively narrow range of optimal ranks (Fig
6A). The subgroups derived consisted of B cells, mast cells, NK cells,
dendritic cells, monocytes, and tumor-/normal cell-associated
macrophages (Fig S8). We also analyzed two glioma samples (oli-
godendroglioma [Tirosh et al, 2016b] and astrocytoma [Venteicher
et al, 2017]), which both exhibited rank profiles (Fig 6B and C) similar
to lung cancer immune cell results: together, these samples were
characterized by an intermediate level of heterogeneity with

optimal rank of r ~ 20 and decreasing statistical support for higher
ranks (type I; Fig 6A–C).

In contrast, the evidence profiles for three additional data
sets—melanoma (Tirosh et al, 2016a, Fig 6D), immune cells in breast
cancer (Azizi et al, 2018, Fig 6E), and head and neck squamous cell
carcinoma (HNSCC; Puram et al, 2017, Fig 6F)—showed a different
behavior, where evidence increased monotonically to reach a
maximal level and remained similar for higher ranks (type II). We
classified evidence profiles into these two classes unambiguously
by comparing maximum evidence and evidence at maximum rank
using a Bayes factor threshold (Fig 1B): although clear maxima
existed in type I data sets (Fig 6A–C), global maxima were located at
the highest rank considered in type II (Fig 6D–F). In type II data, the
lowest rank with the evidence value within the threshold around
the maximal level provides the most parsimonious description.

Figure 4. Distributions of optimal ranks from bNMF
inference applied to randomly sampled mixtures of
purified blood cells.
(A–F)Mixtures containing selections of CD8+ T cells (CTL),
B cells (B), monocytes, CD4+ T cells (Th), regulatory T
cells (Treg), NK cells (NK), and CD34+ HSCs, of varying
compositions as indicated. (G, H) Examples of rank
versus evidence profiles for mixtures of three (G) and
seven (H) blood cell types. (I) Subgroup assignment
scores (fraction of correctly assigned cells) of bNMF-
based inferences applied to mixtures of four purified
blood cell types shown in (C). Two sets of mixtures with
different compositions were sampled, one with uniform
cell counts (“uniform”) and the other where three cell
types were ~10% in count than the rest (“common +
rare”). Mean scores are 0.82 (0.08, SD) and 0.73 (0.08) for
uniform and common + rare cases, respectively.
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Figure 5. bNMF subgrouping results of melanoma cell culture transcriptome data (Gerber et al, 2017).
(A) Rank versus evidence profile. (B, C) tSNE visualizations of cells using bNMFHmatrix elements colored by sample of origin in (B) and subgroup identity under rank 7 in
(C). (D) Custer tree from rank 2 to 7. Oxphos, oxidative phosphorylation (Gerber et al, 2017). (E) Metagene map showing top five metagenes in each subgroup and marker
genes (blue). mut., mutant.
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To ensure that our classification did not depend on quality of
statistics afforded by each data set, we repeated each inference after
down-sampling, where sample sizes were reduced by a factor of 2 ~ 4.
All three cases in type I retained their shapes with the locations of
maxima shifted to lower ranks (Fig 6A–C, red dashed lines), suggesting
that the pronounced maxima in evidence profiles observed for full
data sets were statistically significant. In contrast, upon down-
sampling, all three type II samples retained their shapes of asymp-
totic monotonicity with similar locations of optimal rank (Fig 6D–F). We
additionally examinedML-NMFqualitymeasures of two representative
tumor samples, each from type I and II classes (oligodendroglioma and
breast cancer immune cells; Fig S9). The rank-dependence of dis-
persion and cophenetic coefficients were qualitatively similar to those
of PBMC (Fig 2E and F), with maxima at rank ~2, minima below rank ~20,
and monotonic increases under large rank values (Fig S9).

We further characterized the composition of HNSCC sample,
which contains primary and lymph node metastatic tumors from 18
patients (Puram et al, 2017). The subgroup tree (Fig S10A) showed a
division at r = 2 into epithelial (subgroups 1–8) and immune/
stromal branches (subgroups 9–15). Major cell type assignments
from bNMF were highly concordant with annotations by Puram et al
(2017) (Fig S10B–D).

Given the fundamental roles somatic mutations play in cell-type
heterogeneity of tumors, we reasoned that the type II–like behavior
of high-complexity cancer microenvironments would be associated
with relatively large degrees of somatic mutations. We explored
such a connection between transcriptomic and DNA-level com-
plexities using single-cell data sets from multiple myeloma (MM)
patients (Ledergor et al, 2018): we characterized three sets of
malignant plasma cell samples derived from patients at different

Figure 6. bNMF clustering outcomes for in vivo solid tumor and myeloma samples.
(A–F) Rank versus evidence profiles of data sets with accession numbers as indicated (Tirosh et al, 2016a, 2016b; Lavin et al, 2017; Puram et al, 2017; Venteicher et al, 2017;
Azizi et al, 2018). Dotted blue lines are smooth-spline fits to data. Vertical dashed lines are locations of optimal rank. (G–I) Evidence profiles of MM samples in MGUS, SMM,
and full MM stages (Ledergor et al, 2018).
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stages of disease progression: an asymptomatic, monoclonal
gammopathy of undetermined significance (MGUS), a more ad-
vanced, smoldering multiple myeloma (SMM), and full MM stages.
These disease stages exhibit progressively larger degrees of so-
matic copy number aberrations (Ledergor et al, 2018). The MGUS
sample showed a clear type I behavior with the optimal rank of 8
and a strong monotonic decrease in evidence for higher ranks (Fig
6G). The SMM sample showed a broader peak at rank 9 (Fig 6H). The
MM sample result, in contrast, was strongly indicative of a bor-
derline behavior where type I would transition into type II (Fig 6I).
This progression of evidence profiles supports the view that cancer
disease progression and increases in somatic mutation load would
typically cause a gradual replacement of type I by type II behaviors.

Discussion

Our approach for single-cell RNA-seq analysis confers a unique
capability of assessing the degree of cell-type heterogeneity via
unsupervised clustering with the number of subgroups rigorously
determined from data. We showed with simulated data sets and
existing PBMC/pancreatic single-cell data that the appropriate
depth of subgrouping is generally dictated by data at hand and is
largely independent of sample sizes. Our method allows us to not
only infer this degree of complexity but also identity cellular
subtypes with high accuracy and consistency (Figs 2, 3, and 4). In
particular, the high degree of heterogeneity we found among
pancreatic β-cells (Fig 3F and G) is consistent with existing ex-
perimental evidences (Wang & Kaestner, 2018).

The prominence of peaks signifying the optimal rank—the range
of heterogeneity most appropriate for the data set at hand—in
samples of relatively low complexity (e.g., Figs 4G, 5A, and 6A–C),
where statistical support clearly decreases for larger ranks, illus-
trates a key difference between ML approaches and bNMF: in ML
methods, larger ranks using more parameters would generally
result in better fit unless penalized. In contrast, explicit priors used
in bNMF (γ distribution in our case) prevent overfitting.

Our characterization of solid tumor microenvironments high-
lights the diversity in the degree of heterogeneity and the im-
portance of assessing it adequately in transcriptomic studies. The
highly pronounced and low value of optimal rank observed for in
vitro tumor cell culture (Fig 5A) is in contrast with in vivo tumor
microenvironments, which showed intermediate (type I, Fig 6A–C) to
high (type II, Fig 6D–F) levels of heterogeneity. The latter two classes
of heterogeneity each showed a relatively clear optimal rank and a
lower bound for subgroup number with evidence equally sup-
porting all higher depths, respectively. Although two type II samples
(melanoma and HNSCC) contained primary and metastatic tumors
from multiple patients (Table S1), which presumably contribute to
heterogeneity, the multiplicity of patient/tumor of origin com-
prising each data set did not determine heterogeneity class by
itself: the breast cancer immune cell data derived from a single
patient belonged to type II (Fig 6E), whereas two type I cases
(gliomas, Fig 6B and C) contained 6 and 10 patients, respectively.

The tumor types and their heterogeneity classes in Fig 6B–F
instead are broadly consistent with their known relative somatic
mutation loads (glioma < breast cancer < HNSCC < melanoma;

Alexandrov et al, 2013). A type II behavior in tumor samples thus
suggests extensive cell-type heterogeneities spanning a sub-
stantial range of resolution, possibly down to levels reaching in-
dividual cells. Such a complex gene expression signature spanning
multiple levels could arise from extensive diversification of tumor
cells through somatic mutation, as suggested by the progression of
MM samples in Fig 6G–I. In contrast, a single or narrow range of
optimal ranks would signify a well-defined, finite set of subgroups,
with cells in each subgroup relatively homogeneous in their ex-
pression profiles.

Although we adopted the “pooled” analysis approach for sam-
ples containing multiple tumors, one may instead seek to extract
shared molecular-level profiles independent of patient or tissue of
origin, which would require incorporation of a batch effect-removal
strategy (Dal Molin & Di Camillo, 2018; Haghverdi et al, 2018). Such
multi-sample extension may take the form of a statistical pro-
cedure deriving a consensus subgrouping depth among multiple
values optimal for each constituent sample.

Materials and Methods

ML-NMF

We implemented ML (Lee & Seung, 2000) and variational bNMF
inference with γ priors (Cemgil, 2009) for factorization of count
data. A statistical inference-based formulation of NMF regards
each element of count matrix X (m rows for gene and n columns
for cells) as a realization of the sum of r Poisson random var-
iables, Xij = �r

k = 1Sikj, where Sikj~Poissionðλ = WikHkjÞ is a “latent
source” variable. The matrices W and H are the basis and co-
efficient factor matrices, each of dimension m × r and r × n,
respectively. The intermediate dimension r (rank) typically
satisfies r � m and r � n.

Using the known property that the distribution of a sum of
Poisson random variables is Poisson with mean equal to the sum of
individual means, one has:

Xij ~ Poisson
h
λ =�kWikHkj = ðWHÞij ” Λij

i
(3)

One can then write for the likelihood of data,

ln PrðXjW;HÞ =�ijln
�
Pr
�
Xij
��W;H

��
=�ijln

h
e−ΛijΛXijij

.
Xij!

i

=�ij
�
Xij lnΛij −Λij − Xij ln Xij + Xij

�
;

(4)

where Sterling’s approximation was used in the second line. The
likelihood then takes the form of:

ln PrðXjW; HÞ =�ij

�
Xij ln

ðWHÞij
Xij

+ Xij − ðWHÞij
�

: (5)

The right-hand-side of Equation (5) is the negative of generalized
KL divergence (Lee & Seung, 2000), which is minimized upon ML
condition. An expectation–maximization treatment applied to
Equation (5) (Cemgil, 2009) leads to the iterative update rule for W
and H first derived by Lee & Seung (1999).
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We used ML inference with randomized initial conditions, where
multiple iterations were seeded by identically distributed initial
matrix elements. Convergence was tested with fractional changes
to log likelihood below a cutoff (10−5). Quality measures we con-
sidered were dispersion and cophenetic correlation. The dis-
persion was defined with respect to the consistency matrix.
Consistency matrix C is an n × n matrix with elements Cjl = EðδjlÞ,
where δjl is the Kronecker δ equal to 1 if cell j and cell l belong to
the same cluster and zero otherwise, and the mean is taken over
factorization results with different initial conditions. A given cell
j is assigned to the cluster r within a factorization outcome,
where r = argmaxkHkj. The dispersion, a measure between 0 and
1 for the consistency of cluster assignment over multiple in-
ferences, was defined as:

D = 4
n2�jl

	
Cjl −

1
2


2
= 1
n + 8

n2�j < l

	
Cjl −

1
2


2
; (6)

i.e., the mean deviation of the consistency matrix from the null
value 1/2. The factor of 4 rescales the value such that max(D) = 1,
and in the second expression, we separated the diagonal term for
which Cjj = 1; the second summation is over the upper triangular part
of C. Cophenetic correlation was defined as:

P = cor
�
1 − Cjl; hjl

�
; (7)

i.e., the correlation between consistency matrix and the height hjl
within the dendrogram from hierarchical clustering at which cell j
and cell l merge (Sokal & Rohlf, 1962; Brunet et al, 2004). The
cophenetic correlation P measures the degree to which dissimi-
larity between two cells 1 − Cjl is preserved in hierarchical clustering.
We used the “hclust” function in R with “average” method for the
computation of P.

bNMF

We used Bayesian inference, evaluating the marginal likelihood or
evidence,

PrðXjΘ; rÞ =
ð
dWdH�SPrðXjSÞPrðSjW;HÞPrðW;HjΘ; rÞ; (8)

where Θ is the set of hyperparameters for the prior distribution of
factor matrices W and H. Both hyperparameters and rank r can be
chosen by maximizing evidence [Equations (1) and (2)]. In practice,
hyperparameters are updated during iteration for a given rank and
the inference is repeated for multiple rank values. The resulting
(log) evidence values can then be compared to find ropt. We as-
sumed all matrix elements were identically distributed by γ priors
with shape α and rate β parameters:

PrðW;HjΘ; rÞ = ∏i;kGamma
	
Wik

����α = aw;β = aw
bw



∏k;jGamma

	
Hkj

����α = ah;β = ah
bh



;

(9)

such that Θ = faw; bw;ah;bhg We used update equations for the
posterior mean of latent and factor elements resulting from a

variational approximation to Equation (8) (Cemgil, 2009). We typi-
cally held hyperparameters fixed for initial 10 iterations and
updated them every step thereafter. The overall procedure of bNMF
inference is summarized as follows:

1. Choose a maximum rank rmax and consider all rank
r = 2;/; rmax: For each r,

a. Factorize count matrix X using a random initial guess for
WðpÞ and HðpÞ sampled from Equation (9) (see Algorithm 1 in
Cemgil (2009)). Store the corresponding log evidence Up (r).

b. Repeat a for a given number of different initial conditions
and find pp = argmaxpUpðrÞ: Store WðppÞ and HðppÞfor the
rank r.

2. Construct the evidence versus rank profile via
fUpp ðrÞg; r = 2;/; rmax: Find the optimal rank ropt for which
Upp ðrÞ is maximum (Fig 1B; see below).

3. Construct the subgroup tree connecting rank r = 2 and rmax (see
below).

4. Use (W, H) under rank ropt to derive metagene lists and assign
cells to subgroups (Fig 1C).

The computational requirements of bNMF inference scaled
linearly with increasing matrix dimensions (Fig S11). Because
factorizations for each rank and initial conditions are in-
dependent, computation is easily distributed into multiple cores
with linear speed-up.

Determination of optimal rank

We determined the heterogeneity class and optimal rank based on
evidence defined by Equation (8). We assumed that the support
from data for rank r9 is statistically more significant compared to
rank r if the Bayes factor satisfies:

BF = PrðXjΘp; r9Þ
PrðXjΘp; rÞ > T

n; (10)

where T is a threshold (Held & Ott, 2018). The exponent n takes
into account the fact that data X contains n samples. We used T = 3
in this work. In terms of the log evidence per matrix element
ϵðrÞ = ½ln PrðXjΘp; rÞ�=nm; we then have:

ϵðr9Þ − ϵðrÞ > L = ðln TÞ=m: (11)

The left-hand-side of Equation (11) becomes the slope of log
evidence if r9 = r + 1: We used the following procedure to classify
heterogeneity type and determine the optimal rank:

1. Replace evidence profile data ϵðrÞ for r = rmin;/; rmax by its
cubic-smoothing splined points to reduce artefacts from sta-
tistical noise. We used “smooth.spline” function in R with de-
grees of freedom d:f: = minð10; rmax − rmin + 1Þ: We used a larger
d.f. if fit was inadequate. Find rp = argmaxr ϵðrÞ:

2. If jϵðrmaxÞ − ϵðrpÞj > L, the class is type I and ropt = rp:
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3. Otherwise, the class is type II. Compute the slope:

sðrÞ =
8<
:

ϵðr + 1Þ − ϵðrÞ if r = rmin;
ϵðrÞ − ϵðr − 1Þ if r = rmax;

½ϵðr + 1Þ − ϵðr − 1Þ�=2 otherwise;
(12)

and ropt is the lowest rank for which sðrÞ < L. If no such rank exists,
ropt = rmax.

Software availability

An R package implementing the algorithm is available as a Bio-
conductor package, https://bioconductor.org/packages/ccfindR.

Simulated data

We generated simulated data to characterize rank determination of
bNMF algorithms in two different ways. First, for given numbers of
genesm, rank r, and the total number of cells n = rnc (nc = 20, r = 10 in
Fig 2, such that n = rnc = 200), we set the coefficient matrix H such
that Hkj = 1 for j = ðk − 1Þnc + 1; /; knc , k = 1; /; r; and zero
otherwise. The basis matrix W was set by dividing m rows into r
groups and assigning elements of each group of rows by sampling
from multinomial distributions of given total counts with uniform
probabilities. The count matrix X = WH was used after randomly
shuffling rows and columns. ML-NMF and bNMF inferences used 50
different initial conditions for each rank. PCA-based analysis (Fig
2D) used Seurat (Macosko et al, 2015) using 10 principal components
(Fig S1C). We varied the resolution parameter, as an input to
“FindCluster” function, with default values of other parameters. The
bNMF inference was repeated for different matrix sizes as indicated
in Fig 2C. We used a realization of simulated data generated under
rank 5 to determine the distribution of relative outlier cells (Fig S2).
The bNMF factorization results were visualized using tSNE (Fig S2B)
and relative outliers were identified using the function “cov.mcd” in
the R package “MASS” with default parameters.

We tested the convergence of bNMF by generating a second set of
simulated data using basis W and coefficient H matrices, whose el-
ements were sampled from their γ prior distributions with a given set
of hyperparameters. We chose these hyperparameter values in Fig S3
as aw = ah = 0.1 and bw = bh = 1. The number of features (“genes”) was
fixed as 100, and we considered three values for the total number of
cells (n = 10, 100, and 1,000). We computed the product of sampled
matricesW and H, whose elements were used as the mean values for
the Poisson counts. Multiple realizations (100) of these count matrices
for the single set of mean values given byWHwere generated for each
sample size, and bNMF inference was performed separately (10 dif-
ferent initial conditions per rank) to determine the log evidence versus
rank profiles, optimal rank statistics, and the distribution of final
hyperparameter values (Fig S3).

Gene selection

We applied quality control filtering to count matrix and gene/cell
annotation data to select features with high variance for

subgrouping (Fig S4). We used processed RNA count matrices of
publicly available single-cell data sets (Table S1). We computed the
variance to mean ratio (VMR) for all genes and selected genes with
VMR above a cutoff. We also used a cutoff for the number of cells
expressing each gene such that only those genes with nonzero
counts in a minimum number of cells would be included. For a
subset of samples, we further expanded the pool of genes such that
those with relatively lower variance but with potentially nontrivial
count distributions would also be included: for each gene filtered
out by the criteria above, we constructed its count distribution
histogram, which is typically peaked at zero count and mono-
tonically decreases with increasing count. For a varying fraction of
genes, this histogram contained a mode (a local maximum at a
nonzero count). We moved filtered genes back into the selection
when such a mode existed in its count distribution (Fig S4). Data
sets with unique molecular identifier counts were used without
normalization. For data sets reporting transcripts per million or
fragments per kilobase per million, we took log-transformed levels
of these quantities as pseudo-Poisson counts.

Gold standard and PBMC data sets

We used six publicly available data sets (Yan et al, 2013; Biase et al,
2014; Deng et al, 2014; Pollen et al, 2014; Kolodziejczyk et al, 2015;
Goolam et al, 2016) previously used in benchmarking SC3 (Kiselev
et al, 2017) and SIMLR (Wang et al, 2017). The accession numbers of
these data sets were GSE57249, GSE36552, E-MTAB-3321, GSE45719,
SRP041736, and E-MTAB-2600. Pollen data set was downloaded
from https://hemberg-lab.github.io/scRNA.seq.datasets/human/
tissues/. We used VMR-based and cell-count–based gene filter-
ing to obtained processed count matrices of dimensions shown in
Table S1.

We used fresh PBMC and purified blood cell data (Zheng et al, 2017)
from https://support.10xgenomics.com/single-cell-gene-expression/
datasets. We generated two samples with different sizes by
down-sampling original PBMC data set (n = 34,289 and n = 6,857;
11,212 genes). We applied ML-NMF and bNMF (Fig 2E–G) to the
smaller data set, finding the solution with ML (ML-NMF) and evi-
dence (bNMF). To annotate each cluster (Fig 3B and C), we first
computed correlations between the mean RNA counts of bNMF
subgroups and purified blood cell groups. We then used the “solve-
LSAP” function of the R package “clue” (Hornik, 2005) to find the
most likely assignment of bNMF subgroups to purified cell types.
The annotation shown in Fig 3B is a consensus of this assignment
and the metagene/marker lists (Fig 3A).

With Seurat, we used the smaller PBMC data set (n = 6,857) and
applied the quality control procedure of cell filtering with the
proportion of mitochondrial genes less than 0.08 and minimum
unique molecular identifier count of 100. Variable genes were
selected with the range of mean expression level between 0.02 and
3 and log VMR above 0.5, which yielded 1,773 genes and 6,847 cells.
We used seven principal components based on the elbow plot (Fig
S1F) and varied the resolution parameter to obtain Fig 2H.

We assessed the reliability of cell-type identification by bNMF
using random mixtures of purified blood cell data containing from
two to seven cell types (Fig 4A–F). Hundred random realizations of
up to seven cell types (CD8+ CTLs, CD19+ B cells, CD14+ monocytes,
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CD4+ Th, Treg, CD56+ NK cells, and CD34+ HSCs, each containing 100
cells, respectively) were generated by sampling columns from the
purified cell count matrices and the count matrices of each re-
alization were constructed by combining these columns. Rank
determination and metagene identification in bNMF were per-
formed for each realization after selecting genes with minimum
VMR ratio of 1 andminimum number of 10 cells expressing the gene.
Factorizations were performed for 50 different realizations of
mixture, each with 10 initial conditions. Rank values with maximum
evidence from each realization were extracted to obtain distribu-
tions shown in Fig 4A–F. Annotation scores in Fig 4I were calculated
for four-cell-type mixtures first for the case of equal composition of
Fig 4C and then for the “common + rare”mixtures containing 180, 20,
20, and 180 cells of CTLs, B cells, monocytes, and Th cells, re-
spectively. Comparison of cell-type composition prediction from
single-cell analysis and bulk data deconvolution was performed by
summing RNA counts of fresh PBMC (Fig 3D) and a realization of
seven-blood-cell mixtures (CTLs, B cells, monocytes, CD4+ Th, Treg,
NK cells, andHSCs of count n = 100, 80,,120,100, 80, 80, 80, respectively;
Fig 3E) for all genes under consideration. We used these bulk counts
as input to CIBERSORT at https://cibersort.stanford.edu/with default
parameters.

Metagene identification

To characterize subgroups derived from bNMF inference under the
optimal rank r (9 for PBMC), we took the basis matrix elements Wik

and analyzed them column by column. For each subgroup indexed
by k = 1, …, r, we rescaled the vector Wik by dividing each row (the
basis component of gene i in each subgroup k) by its geometric
mean over k, such that different genes would have basis compo-
nents that are comparable in magnitude. For k running from one to
r, we then reordered the rows ofW such that the k-th column would
have monotonically decreasing magnitudes from top to bottom. We
subsequently looked at the top m rows of the sorted matrix and
selected genes whose rows within the submatrix given by i = 1, …,m
had their maximum elements at position k. The genes corre-
sponding to these rows were defined as the metagenes of the
subgroup k. This definition avoids picking genes that feature
strongly in one subgroup but even more so in other subgroups,
instead focusing on those that help identify the given subgroup
uniquely (Carmona-Saez et al, 2006). These steps were repeated for
all k. Note that themaximum number of metagenes per subgroup is
m and we often found the actual numbers to be smaller. Marker
genes, preselected for PBMC in addition to the genes with high
variance, were considered together with m genes in the above
procedure, such that the actual maximum size of the metagene-
plus-marker set wasm plus the total number of markers. As can be
seen in Fig 3A, however, each marker gene appears only once in the
subgroup in which the marker contribution is strongest.

Subgroup tree construction

We inferred hierarchical relationships between subgroups ob-
tained under different ranks by comparing cellular subgroup
memberships of neighboring ranks. Specifically, we used the series
of coefficient matrices with elements HðrÞ

kj for rank r = 2;/; ropt;

where ropt is the optimal rank, to derive the subgroup index of cell j
under rank r given by cj;r = argmaxkH

ðrÞ
kj : For each subgroup k under

rank r + 1, we then tabulated the subgroup index cj;r of all cells j
belonging to subgroup k and defined the subgroup of origin by:

Ik;r+1 = argmaxk9�j2kδ
�
k9; cj;r

�
; (13)

where δðx; yÞ = 1 if x = y and zero otherwise and the summation is
over all cells belonging to subgroup k under rank r + 1. The subgroup
of origin Ik;r+1 is the subgroup under rank r with the highest count of
cells in the subgroup k under rank r + 1. In rare cases where there
were ties in ranking for the subgroup of origin count, we randomly
broke the tie such that Ik;r+1 would be uniquely defined for all k. We
then grew the tree at a given r by connecting the subgroup k under
rank r + 1 to the subgroup Ik;r+1 under rank r. In most cases, this step
resulted in bifurcation of a subgroup under rank r, but triple-
branching also occurred occasionally. We repeated this pro-
cedure sequentially for r = 2;/; ropt − 1 to complete the tree.

Pancreatic tissue sample

We downloaded human pancreatic tissue single-cell count matrix
(patient 1; Baron et al, 2016) via accession number GSE84133. We
used all 1,937 cells in the count matrix and selected 2,454 genes
using minimum VMR of 2 and minimum number of 100 cells
expressing each gene. Rank scan for r up to 40 used 20 initial
conditions for each rank.

Cancer samples

We used processed RNA count matrices of cancer samples via
accession numbers GSE81383, GSE97168, GSE70630, GSE89567,
GSE72056, GSE114724, GSE117156, and GSE103322, for melanoma cell
culture, lung cancer immune cells, oligodendroglioma, astrocy-
toma, melanoma, breast cancer immune cells, MM, and HNSCC,
respectively (Table S1). We used all cells and selected genes using
thresholds for VMR and number of cells expressed as indicated in
Fig S4 to obtain countmatrices of dimensions shown in Table S1. For
MM samples, immunoglobulin genes were excluded (Ledergor et al,
2018) in addition to VMR-based filtering. We chose patient ID BC09
(tumor 01) for the breast cancer immune cell sample (Azizi et al,
2018). For MM samples, we used patient IDs MGUS01, SMM01, and
MM01 (Ledergor et al, 2018).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201900443.
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Cieślik M, Chinnaiyan AM (2018) Cancer transcriptome profiling at the
juncture of clinical translation. Nat Rev Genet 19: 93–109. doi:10.1038/
nrg.2017.96

Dal Molin A, Di Camillo B (2018) How to design a single-cell RNA-sequencing
experiment: Pitfalls, challenges and perspectives. Brief Bioinform
2018: 1–11. doi:10.1093/bib/bby007
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Edsgärd D, Johnsson P, Sandberg R (2018) Identification of spatial expression
trends in single-cell gene expression data. Nat Methods 15: 339–342.
doi:10.1038/nmeth.4634

Filbin MG, Tirosh I, Hovestadt V, Shaw ML, Escalante LE, Mathewson ND, Neftel
C, Frank N, Pelton K, Hebert CM, et al (2018) Developmental and
oncogenic programs in H3K27M gliomas dissected by single-cell RNA-
seq. Science 360: 331. doi:10.1126/science.aao4750

Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in
phagocytes: A novel group of damage-associated molecular pattern
molecules. J Leukoc Biol 81: 28–37. doi:10.1189/jlb.0306170

Gaujoux R, Seoighe C (2010) A flexible R package for nonnegative matrix
factorization. BMC Bioinformatics 11: 367. doi:10.1186/1471-2105-11-367

Gerber T, Willscher E, Loeffler-Wirth H, Hopp L, Schadendorf D, Schartl M,
Anderegg U, Camp G, Treutlein B, Binder H, et al (2017) Mapping
heterogeneity in patient-derived melanoma cultures by single-
cell RNA-seq. Oncotarget 8: 846–862. doi:10.18632/
oncotarget.13666

Goolam M, Scialdone A, Graham SJL, Macaulay IC, Jedrusik A, Hupalowska A,
Voet T, Marioni JC, Zernicka-Goetz M (2016) Heterogeneity in Oct4 and
Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165: 61–74.
doi:10.1016/j.cell.2016.01.047

Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H,
van Oudenaarden A (2015) Single-cell messenger RNA sequencing
reveals rare intestinal cell types. Nature 525: 251–255. doi:10.1038/
nature14966

Guo M, Wang H, Potter SS, Whitsett JA, Xu Y (2015) SINCERA: A pipeline for
single-cell RNA-seq profiling analysis. PLoS Comput Biol 11: e1004575.
doi:10.1371/journal.pcbi.1004575

Haghverdi L, Lun ATL, Morgan MD, Marioni JC (2018) Batch effects in single-
cell RNA-sequencing data are corrected by matching mutual nearest
neighbors. Nat Biotechnol 36: 421–427. doi:10.1038/nbt.4091

Held L, Ott M (2018) On p-values and Bayes factors. Annu Rev Stat Appl 5:
393–419. doi:10.1146/annurev-statistics-031017-100307

Ho YJ, Anaparthy N, Molik D, Mathew G, Aicher T, Patel A, Hicks J, Hammell MG
(2018) Single-cell RNA-seq analysis identifies markers of resistance to
targeted BRAF inhibitors in melanoma cell populations. Genome Res
28: 1353–1363. doi:10.1101/gr.234062.117

Hornik K (2005) A CLUE for CLUster ensembles. J Stat Softw 14: 1–25.
doi:10.18637/jss.v014.i12

Hubert M, Debruyne M (2010) Minimum covariance determinant. Wiley
Interdiscip Rev Comput Mol Sci 2: 36–43. doi:10.1002/wics.61

Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC,
Teichmann SA (2016) Classification of low quality cells from single-
cell RNA-seq data. Genome Biol 17: 29. doi:10.1186/s13059-016-
0888-1

Jaskowiak PA, Costa IG, Campello RJGB (2018) Clustering of RNA-seq samples:
Comparison study on cancer data. Methods 132: 42–49. doi:10.1016/
j.ymeth.2017.07.023

Kallies A (2008) Distinct regulation of effector and memory T-cell
differentiation. Immunol Cell Biol 86: 325–332. doi:10.1038/icb.2008.16

Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90: 773–795.
doi:10.2307/2291091

Kim H, Park H (2007) Sparse non-negative matrix factorizations via
alternating non-negativity-constrained least squares for microarray

Prediction of cell-type complexity in single-cell RNA-seq Woo et al. https://doi.org/10.26508/lsa.201900443 vol 2 | no 4 | e201900443 14 of 16

https://doi.org/10.1038/nature12477
https://doi.org/10.1038/nmeth.4628
https://doi.org/10.1093/bioinformatics/bty019
https://doi.org/10.1093/bioinformatics/bty019
https://doi.org/10.1016/j.cell.2018.05.060
https://doi.org/10.1186/s13059-016-0927-y
https://doi.org/10.1186/s13059-016-0927-y
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1101/gr.177725.114
https://doi.org/10.1073/pnas.0308531101
https://doi.org/10.1038/nbt.3102
https://doi.org/10.1186/1471-2105-7-78
https://doi.org/10.1186/1471-2105-7-78
https://doi.org/10.1155/2009/785152
https://doi.org/10.1038/nrg.2017.96
https://doi.org/10.1038/nrg.2017.96
https://doi.org/10.1093/bib/bby007
https://doi.org/10.1126/science.1245316
https://doi.org/10.1038/nmeth.4634
https://doi.org/10.1126/science.aao4750
https://doi.org/10.1189/jlb.0306170
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.18632/oncotarget.13666
https://doi.org/10.18632/oncotarget.13666
https://doi.org/10.1016/j.cell.2016.01.047
https://doi.org/10.1038/nature14966
https://doi.org/10.1038/nature14966
https://doi.org/10.1371/journal.pcbi.1004575
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1146/annurev-statistics-031017-100307
https://doi.org/10.1101/gr.234062.117
https://doi.org/10.18637/jss.v014.i12
https://doi.org/10.1002/wics.61
https://doi.org/10.1186/s13059-016-0888-1
https://doi.org/10.1186/s13059-016-0888-1
https://doi.org/10.1016/j.ymeth.2017.07.023
https://doi.org/10.1016/j.ymeth.2017.07.023
https://doi.org/10.1038/icb.2008.16
https://doi.org/10.2307/2291091
https://doi.org/10.26508/lsa.201900443


data analysis. Bioinformatics 23: 1495–1502. doi:10.1093/
bioinformatics/btm134

Kiselev VY, Andrews TS, Hemberg M (2019) Challenges in unsupervised
clustering of single-cell RNA-seq data. Nat Rev Genet 20: 273–282.
doi:10.1038/s41576-018-0088-9

Kiselev VY, Kirschner K, SchaubMT, Andrews T, Yiu A, Chandra T, Natarajan KN,
Reik W, BarahonaM, Green AR, et al (2017) SC3: Consensus clustering of
single-cell RNA-seq data. Nat Methods 14: 483–486. doi:10.1038/
nmeth.4236

Kolodziejczyk AA, Kim JK, Tsang JC, Ilicic T, Henriksson J, Natarajan KN, Tuck AC,
Gao X, Bühler M, Liu P, et al (2015) Single cell RNA-sequencing of
pluripotent states unlocks modular transcriptional variation. Cell
Stem Cell 17: 471–485. doi:10.1016/j.stem.2015.09.011

Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R,
Sweeney R, Becker CD, Levine JH, et al (2017) Innate immune
landscape in early lung adenocarcinoma by paired single-cell
analyses. Cell 169: 750–765.e717. doi:10.1016/j.cell.2017.04.014

Ledergor G, Weiner A, Zada M, Wang SY, Cohen YC, Gatt ME, Snir N, Magen H,
Koren-Michowitz M, Herzog-Tzarfati K, et al (2018) Single cell
dissection of plasma cell heterogeneity in symptomatic and
asymptomatic myeloma. Nat Med 24: 1867–1876. doi:10.1038/s41591-
018-0269-2

Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix
factorization. Nature 401: 788–791. doi:10.1038/44565

Lee DD, Seung HS (2000) Algorithms for non-negative matrix factorization. In
NIPS’00 Proceedings of the 13th International Conference on Neural
Information Processing Systems, pp. 535–541. Denver, CO: MIT Press.

Li B, Li T, Pignon JC, Wang B, Wang J, Shukla SA, Dou R, Chen Q, Hodi FS,
Choueiri TK, et al (2016) Landscape of tumor-infiltrating T cell
repertoire of human cancers. Nat Genet 48: 725–732. doi:10.1038/
ng.3581

Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK,
Tan WS, et al (2017) Reference component analysis of single-cell
transcriptomes elucidates cellular heterogeneity in human colorectal
tumors. Nat Genet 49: 708–718. doi:10.1038/ng.3818

Li WV, Li JJ (2018) An accurate and robust imputation method scImpute for
single-cell RNA-seq data. Nat Commun 9: 997. doi:10.1038/s41467-018-
03405-7

Lin P, Troup M, Ho JW (2017) CIDR: Ultrafast and accurate clustering through
imputation for single-cell RNA-seq data. Genome Biol 18: 59.
doi:10.1186/s13059-017-1188-0

Lu L, Barbi J, Pan F (2017) The regulation of immune tolerance by FOXP3. Nat
Rev Immunol 17: 703–717. doi:10.1038/nri.2017.75

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, GoldmanM, Tirosh I, Bialas
AR, Kamitaki N, Martersteck EM, et al (2015) Highly parallel genome-
wide expression profiling of individual cells using nanoliter droplets.
Cell 161: 1202–1214. doi:10.1016/j.cell.2015.05.002

Milligan GW, Cooper MC (1985) An examination of procedures for determining
the number of clusters in a data set. Psychometrika 50: 159–179.
doi:10.1007/bf02294245

Navin NE (2015) The first five years of single-cell cancer genomics and
beyond. Genome Res 25: 1499–1507. doi:10.1101/gr.191098.115

Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M,
Alizadeh AA (2015) Robust enumeration of cell subsets from tissue
expression profiles. Nat Methods 12: 453–457. doi:10.1038/
nmeth.3337

Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N, Phung AT, Willey
E, Kumar R, Jabart E, et al (2018) Profiling human breast epithelial cells
using single cell RNA sequencing identifies cell diversity.Nat Commun
9: 2028. doi:10.1038/s41467-018-04334-1

Ozsolak F, Milos PM (2011) RNA sequencing: Advances, challenges and
opportunities. Nat Rev Genet 12: 87–98. doi:10.1038/nrg2934

Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski
L, Fowler B, Chen P, et al (2014) Low-coverage single-cell mRNA
sequencing reveals cellular heterogeneity and activated signaling
pathways in developing cerebral cortex. Nat Biotechnol 32: 1053–1058.
doi:10.1038/nbt.2967

Poulin JF, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R (2016)
Disentangling neural cell diversity using single-cell transcriptomics.
Nat Neurosci 19: 1131–1141. doi:10.1038/nn.4366

Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL,
Mroz EA, Emerick KS, et al (2017) Single-cell transcriptomic analysis of
primary and metastatic tumor ecosystems in head and neck cancer.
Cell 171: 1611–1624.e24. doi:10.1016/j.cell.2017.10.044

Quann EJ, Liu X, Altan-Bonnet G, Huse M (2011) A cascade of protein kinase C
isozymes promotes cytoskeletal polarization in T cells. Nat Immunol
12: 647–654. doi:10.1038/ni.2033

Sinha D, Kumar A, Kumar H, Bandyopadhyay S, Sengupta D (2018) dropClust:
efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res
46: e36. doi:10.1093/nar/gky007

Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective
methods. Taxon 11: 33–40. doi:10.2307/1217208

Soneson C, RobinsonMD (2018) Bias, robustness and scalability in single-cell
differential expression analysis. Nat Methods 15: 255–261. doi:10.1038/
nmeth.4612

Tanay A, Regev A (2017) Scaling single-cell genomics from phenomenology to
mechanism. Nature 541: 331–338. doi:10.1038/nature21350

Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a
data set via the gap statistic. J R Stat Soc Ser B Stat Methodol 63:
411–423. doi:10.1111/1467-9868.00293

Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, Rotem A,
Rodman C, Lian C, Murphy G, et al (2016a) Dissecting the multicellular
ecosystem of metastatic melanoma by single-cell RNA-seq. Science
352: 189–196.

Tirosh I, Venteicher AS, Hebert C, Escalante LE, Patel AP, Yizhak K, Fisher JM,
Rodman C, Mount C, Filbin MG, et al (2016b) Single-cell RNA-seq
supports a developmental hierarchy in human oligodendroglioma.
Nature 539: 309–313. doi:10.1038/nature20123

van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn
Res 9: 2579–2605.

Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V,
Escalante LE, Shaw ML, Rodman C, et al (2017) Decoupling genetics,
lineages, andmicroenvironment in IDH-mutant gliomas by single-cell
RNA-seq. Science 355: eaai8478. doi:10.1126/science.aai8478

Walzer T, Jaeger S, Chaix J, Vivier E (2007) Natural killer cells: From CD3(-)
NKp46(+) to post-genomics meta-analyses. Curr Opin Immunol 19:
365–372. doi:10.1016/j.coi.2007.04.004

Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S (2017) Visualization and
analysis of single-cell RNA-seq data by kernel-based similarity
learning. Nat Methods 14: 414–416. doi:10.1038/nmeth.4207

Wang YJ, Kaestner KH (2018) Single-cell RNA-seq of the pancreatic islets: A
promise not yet fullfilled? Cell Metab 29: 539–544. doi:10.1016/
j.cmet.2018.11.016

Wen L, Tang F (2016) Single-cell sequencing in stem cell biology. Genome Biol
17: 71. doi:10.1186/s13059-016-0941-0

Winterhoff BJ, Maile M, Mitra AK, Sebe A, Bazzaro M, Geller MA, Abrahante JE,
Klein M, Hellweg R, Mullany SA, et al (2017) Single cell sequencing
reveals heterogeneity within ovarian cancer epithelium and cancer
associated stromal cells. Gynecol Oncol 144: 598–606. doi:10.1016/
j.ygyno.2017.01.015

Xu C, Su Z (2015) Identification of cell types from single-cell transcriptomes
using a novel clustering method. Bioinformatics 31: 1974–1980.
doi:10.1093/bioinformatics/btv088

Prediction of cell-type complexity in single-cell RNA-seq Woo et al. https://doi.org/10.26508/lsa.201900443 vol 2 | no 4 | e201900443 15 of 16

https://doi.org/10.1093/bioinformatics/btm134
https://doi.org/10.1093/bioinformatics/btm134
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1016/j.stem.2015.09.011
https://doi.org/10.1016/j.cell.2017.04.014
https://doi.org/10.1038/s41591-018-0269-2
https://doi.org/10.1038/s41591-018-0269-2
https://doi.org/10.1038/44565
https://doi.org/10.1038/ng.3581
https://doi.org/10.1038/ng.3581
https://doi.org/10.1038/ng.3818
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1186/s13059-017-1188-0
https://doi.org/10.1038/nri.2017.75
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1007/bf02294245
https://doi.org/10.1101/gr.191098.115
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/s41467-018-04334-1
https://doi.org/10.1038/nrg2934
https://doi.org/10.1038/nbt.2967
https://doi.org/10.1038/nn.4366
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1038/ni.2033
https://doi.org/10.1093/nar/gky007
https://doi.org/10.2307/1217208
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1038/nmeth.4612
https://doi.org/10.1038/nature21350
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1038/nature20123
https://doi.org/10.1126/science.aai8478
https://doi.org/10.1016/j.coi.2007.04.004
https://doi.org/10.1038/nmeth.4207
https://doi.org/10.1016/j.cmet.2018.11.016
https://doi.org/10.1016/j.cmet.2018.11.016
https://doi.org/10.1186/s13059-016-0941-0
https://doi.org/10.1016/j.ygyno.2017.01.015
https://doi.org/10.1016/j.ygyno.2017.01.015
https://doi.org/10.1093/bioinformatics/btv088
https://doi.org/10.26508/lsa.201900443


YanL, YangM,GuoH, YangL,Wu J, Li R, LiuP, LianY, ZhengX, Yan J, et al (2013) Single-
cell RNA-Seq profiling of human preimplantation embryos and embryonic
stem cells. Nat Struct Mol Biol 20: 1131–1139. doi:10.1038/nsmb.2660

Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB,
Wheeler TD, McDermott GP, Zhu J, et al (2017) Massively parallel digital
transcriptional profiling of single cells. Nat Commun 8: 14049.
doi:10.1038/ncomms14049

Zhu X, Ching T, Pan X, Weissman S, Garmire L (2017) Detecting heterogeneity in
single-cell RNA-Seq data by non-negative matrix factorization. PeerJ
5: e2888. doi:10.7717/peerj.2888

Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M,
Leonhardt H, Heyn H, Hellmann I, EnardW (2017) Comparative analysis
of single-cell RNA sequencing methods. Mol Cell 65: 631–643.e4.
doi:10.1016/j.molcel.2017.01.023

License: This article is available under a Creative
Commons License (Attribution 4.0 International, as
described at https://creativecommons.org/
licenses/by/4.0/).

Prediction of cell-type complexity in single-cell RNA-seq Woo et al. https://doi.org/10.26508/lsa.201900443 vol 2 | no 4 | e201900443 16 of 16

https://doi.org/10.1038/nsmb.2660
https://doi.org/10.1038/ncomms14049
https://doi.org/10.7717/peerj.2888
https://doi.org/10.1016/j.molcel.2017.01.023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26508/lsa.201900443

	De novo prediction of cell-type complexity in single-cell RNA-seq and tumor microenvironments
	Introduction
	Results
	Optimal cell-type separation is determined by data
	bNMF infers depth of heterogeneity in PBMC/pancreatic cells
	bNMF classifies known cell types with high accuracy
	Solid tumor cell cultures have limited heterogeneity
	Tumor microenvironments in vivo show two distinct classes of heterogeneity

	Discussion
	Materials and Methods
	ML-NMF
	bNMF
	Determination of optimal rank
	Software availability
	Simulated data
	Gene selection
	Gold standard and PBMC data sets
	Metagene identification
	Subgroup tree construction
	Pancreatic tissue sample
	Cancer samples

	Supplementary Information
	Author Contributions
	Conflict of Interest Statement
	Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL,   ...


