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The complex phenotype of allergic bronchial asthma involves a variable degree of bronchoobstruction, increased mucus
production, and airway remodeling. So far it is suggested that it arises from multiple interactions of infiltrating and structural
cells in the context of chronic airway inflammation that is orchestrated by T helper 2 (TH2) cells. By secreting a plethora of
typical mediators such as interleukin (IL) 4, IL-5, and IL-13, these cells hold a key position in asthma pathogenesis. However,
therapeutic approaches targeting these TH2-type mediators failed to improve asthma symptoms and impressively showed that
asthma pathogenesis cannot be reduced by TH2 cell functions. Recently, other T helper cells, that is, TH9 and TH17 cells, have
been identified and these cells also contribute to asthma pathogenesis, the processes leading to formation or aggravation of asthma.
Furthermore, TH25 cells, TH3 cells, and regulatory T cells have also been implicated in asthma pathogenesis. This paper aims at
summarizing recent insights about these new T helper cells in asthma pathogenesis.

1. Introduction

A variable degree of bronchoobstruction based on air-
way hyperresponsiveness (AHR) and allergen-dependent
mast cell degranulation together with chronic airway
eosinophilia increased mucus production, and airway
remodeling sketches the typical pathologic picture of allergic
bronchial asthma [1]. Currently, this complex phenotype is
believed to arise from manifold interactions of infiltrating
immune cells with structural cells of the airways. Although
these processes comprise a plethora of cells such as T cells,
B cells, mast cells, and macrophages on the one hand and
smooth muscle cells, fibroblasts, and airway epithelial cells
on the other hand, over the last 15 years a subpopula-
tion of CD4+ T cells emerged as key players in asthma
pathogenesis—the T helper 2 (TH2) cell. By releasing a
number of typical cytokines, these cells orchestrate a number
of inflammatory events that subsequently trigger cascades
of other processes ultimately leading to the formation of
the disease. These typical cytokines involve among others
especially interleukin 4 (IL-4), IL-5, and IL-13 which have all
been detected in increased amounts in asthmatic patients [2].

IL-4 upregulates the fate-determining transcription fac-
tor GATA-3 in naı̈ve T helper cells and is therefore essential

for the initial differentiation and expansion of allergen-
specific TH2 cells [3]. Besides its importance for TH2
cell development, IL-4 further plays a significant role in
establishing the basis for IgE-mediated allergic reactions.
Thus, IL-4 is one of two essential factors inducing the isotype
class switch in plasma cells from the production of IgM
to IgE; the other factor is IL-13 [4, 5]. Furthermore, IL-4
triggers the expression of both the high and the low affinity
Fcε receptors [6]. Besides its affects on differentiating B cells
IL-5 predominantly works on eosinophils by effecting their
differentiation, recruitment, activation, and survival in the
periphery predisposing this cytokine as a central factor in
regulating airway eosinophilia in asthma [7]. In contrast to
IL-4 and IL-5 that mainly act on immune cells, IL-13 impacts
airway epithelial cells and smooth muscle cells, where it
mediates mucus hypersecretion, subepithelial fibrosis, and
development of AHR [8]. By secreting these three cytokines,
TH2 cells exert influence on asthma pathogenesis on the level
of T cells, B cells, and structural cells. The importance of
these factors has further been figured out in mouse models
of experimental asthma: neither in animals deficient for IL-
4 or IL-13 nor in animals deficient for the IL-5 receptor it
was possible to induce allergic airway inflammation or AHR
[9–11]. In line with these observations, neutralizing these
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mediators with specific antibodies not only prevented the
development of experimental asthma but also diminished its
phenotype in already diseased animals [12].

Despite these promising results, the clinical approaches
towards asthma therapy by neutralizing IL-4, IL-5, or IL-
13 frustrated the high expectations or did not progress to
clinical trials [13–15]. These studies strikingly demonstrated
the complexity of the pathogenetic mechanisms underlying
the formation of allergic bronchial asthma and lead to a
discussion about the proposed predominant role of TH2
cells within these processes. Additionally, over the last few
years further T helper cell subsets are identified, namely,
TH9 and TH17 cells, which also seem to be involved in
asthma pathogenesis. Although TH1 cells have been shown
to act as opponents to TH2 cells that is even able to
counteract ongoing allergic immune responses [16], there
exist a few studies that clearly demonstrated a participation
of interferon γ (IFN-γ) in the development of AHR. This
paper aims at summarizing the latest developments of T
helper cell research in asthma research.

2. TH9 Cells in Asthma Pathogenesis

TH2 cells have been regarded as a major source of IL-9 pro-
duction [17]. Several studies showed IL-9 mRNA and protein
expression in the lymphocytes of bronchoalveolar lavage and
CD3+ T cells in bronchial tissue from asthmatics [18, 19].
However, recent studies described a new subset of CD4+ T
cells distinct from TH2 cells. These cells were named TH9
cells because they produce IL-9 in large amounts [20, 21].

Different cytokines can influence the differentiation of
naı̈ve CD4+ T cells into different subtypes. Transforming
growth factor β (TGF-β) can “reprogram” the differentiation
of T helper cells to an IL-9 producing phenotype, the so-
called TH9 cell [20]. In a study by Veldhoen and colleagues,
TGF-β1 together with IL-4 was able to drive highly polarized
naı̈ve T cells (CD4+CD25-CD44low) into TH9 cells in the
absence of IL-6. TGF-β1 caused a loss of the TH2 fate-
determining transcription factor GATA-3 and consequently
loss of expression of TH2 type cytokines IL-4, IL-5, and IL-13
in those TH2 cells. Since loss of GATA-3 by conditional gene
deletion abolishes the production of IL-5 and IL-13 but not
IL-4, it is unlikely that the effect of TGF-β simply mimics the
loss of GATA-3 [22]. These TH9 cells produce IL-9 and IL-10.
Although IL-10 may promote IL-9 production in human and
mouse T cells [23, 24], blockade of the IL-10 receptor did not
compromise the ability of these cells to produce IL-9.

Another study found that IL-4 could inhibit the genera-
tion of TGF-β-induced Treg cells expressing the transcription
factor Foxp3+. That study by Dardalhon and coworkers used
naı̈ve CD4+Foxp32-CD62L+ T cells from mice. Surprisingly,
the combination of IL-4 and TGF-β generated Foxp3−

effector T cells producing IL-9 and IL-10 [21]. In contrast
to the role of IL-10 as an anti-inflammatory cytokine, these
cells induced colitis and neuritis in recombination-activating
gene- (RAG-) 1-deficient mice [21]. A more recent study
by Jäger and colleagues showed that TH9 cells could induce
experimental autoimmune encephalomyelitis upon adoptive

transfer in mice [24]. So far, no defined transcription factor
has been found in TH9 cells as compared to TH2 T cells
(GATA-3), TH1 cells (T-bet), or TH17 cells (RORγt). It
has also to be taken into account that the above-mentioned
studies used mouse models. Whether TH9 cells are present
in humans or not is not proven yet.

It is interesting that IL-9+IL-10+Foxp3− T cells do not
possess anti-inflammatory activities or immunoregulatory
properties despite their production of IL-10 [25–27]. These
TH9 cells have to be considered as effector T cells. However,
their role in health and disease is not clear at the moment,
even if experimental approaches have shown that they can
induce autoimmune encephalomyelitis [24]. To understand
the possible role of IL-9 producing cells, it has to be
asked what role IL-9 plays in physiologic and pathologic
conditions.

IL-9 belongs to the family of 4-helix bundle cytokines.
This family also includes IL-2, IL-3, IL-4, IL-6, IL-7, and IL-
15. Human IL-9 consists of a 14-kd glycoprotein, the mature
form of which is composed of 144 amino acids along with a
signal sequence of 18 amino acids. The IL-9 protein contains
a high proportion of cationic amino acid residues and 10
cysteines and has 4 N-linked glycosylation sites. The IL-9
gene is located on chromosome 5 (5q31-35) next to the genes
encoding IL-3, IL-4, IL-5, IL-13, CD14, and granulocyte-
macrophage colony-stimulating factor [28]. All of these
mediators have been implicated in allergic inflammation
[29].

Besides T cells IL-9 production has been reported in
several other cell types including mast cells, eosinophils, and
neutrophils [18, 30–34]. In asthmatic patients, mast cells,
eosinophils, and neutrophils have been found to express IL-9
besides T cells.

IL-9 was originally described as a potent T cell and
mast cell growth factor in mice [35]. It has pleiotropic
effects on various cell types. IL-9 enhances the survival
of mast cells and induces production of IL-6 [30, 35].
In addition, IL-9 stimulates the production of mast cell
proteases and the expression of the high-affinity IgE receptor
[FcεRIα] [36], suggesting that IL-9 may prime mast cells to
respond to allergen challenge through increased expression
of FcεRIα and increased production of IL-6 and proteases.
In T cells, IL-9 acts as a growth factor by supporting
antigen-independent growth of T helper cell clones [37].
Moreover, IL-9 inhibits lymphokine production by IFN-
γ producing CD4+ T cells and promotes proliferation of
CD8+ T cells [38]. Transgenic IL-9 overexpressing mice
have increased levels of immunoglobulin isotypes including
IgE and expansion of lymphocytes from the B1 subset
(Mac+IgM+). Furthermore, accumulation of B cells in the
lungs and airway infiltration with T cells could be observed
in the animals [39–41]. IL-9 promotes eosinophil maturation
in synergy with IL-5 [42]. Soussi Gounni and coworkers
showed that IL-9 increased the expression of the IL-5
receptor α-chain (IL-5Rα) on eosinophils [43]. In that study,
IL-9 inhibited eosinophil apoptosis and enhanced eosinophil
development. Expression of the IL-9 receptor α-chain (IL-
9Rα) has also been demonstrated on neutrophils and IL-9
induced the production and release of IL-8 by neutrophils
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from asthmatic subjects [43]. Epithelial cells release several
chemokines and cytokines upon stimulation with IL-9 [44,
45]. Furthermore, IL-9 has been shown to stimulate mucin
transcription and to upregulate mucus expression in airway
epithelial cells [46, 47].

As mentioned above, the IL-9 encoding gene has been
localized in the chromosomal region 5q31-33 which has
been identified to contain several candidate genes for
airway hyperresponsiveness (AHR) [28, 29]. Nicolaides and
colleagues were the first to show a close association between
the IL-9 gene and bronchial hyperresponsiveness [48]. In that
study, analysis of the murine IL-9 gene identified a genetic
defect at the C57BL/6(B6)IL-9 locus associated with a lack
of IL-9 expression in the lung and reduced AHR in naive
B6 mice. In that same study, an increased expression and
production of IL-9 in the lung was associated with AHR
in DBA/J2 mice. The tight genotype-phenotype relation
was further supported by the finding that (B6D2)F1 mice
were found to be intermediate in both lung IL-9 levels and
airway responsiveness. Selective overexpression of the IL-9
gene in the airways of transgenic mice resulted in massive
airway inflammation, with infiltration of eosinophils and
lymphocytes, mast cell hyperplasia, and increased subep-
ithelial collagen deposition [39, 44, 49]. Moreover, elevated
IgE levels, AHR, and increased responsiveness to antigen
stimulation could be observed. In contrast, overexpression
of IL-4 using the CC-10 promoter resulted in baseline
eosinophilia without AHR [50]. Instillation of recombinant
mouse IL-9 into the airways of B6 mice for up to 10 days
resulted in time-dependent and dose-dependent increases
in AHR, BAL eosinophilia, elevated IgE levels, increased
lung proteases, and submucosal membrane thickening [51].
In a study by Shimbara and colleagues, both the degree
of airflow obstruction (FEV1) and airway responsiveness
to metacholine significantly correlated with IL-9 mRNA
expression [18].

Airway remodelling is a hallmark of chronic bronchial
asthma. It is characterized by structural changes of the
airways including epithelial mucus metaplasia, peribronchial
fibrosis, increases in airway smooth muscle mass, and angio-
genesis [52]. These changes are mediated by chemokines
and cytokines [53]. IL-9 has been shown to induce mucus
expression. Both in vitro and in vivo studies have demon-
strated that IL-9 can directly induce metaplasia independent
of inflammation [54, 55]. However, some studies have
suggested that IL-9-induced mucus expression is mediated
via IL-13 [56, 57]. In IL-9 transgenic mice, subepithelial
fibrosis was observed, but this may be due to mediator release
and cell recruitment [58]. IL-9 appears to play an important
role in airway remodelling especially with epithelial mucus
production. Doherty and colleagues have shown that CD4+
T cells, are not required for remodelling after establishment
of acute inflammation [59]. CD4+ T cells remain essential
for eosinophilic inflammation even during late antigen
challenges. It is tempting to speculate that IL-9 secreted from
CD4+ T cells may play an important role in early initiation
of airway remodelling. However, other cells and cytokines
are likely to contribute later. Airway remodelling in human
asthmatics and in mouse models may be regulated by TGF-β

on many levels [60]. Together with IL-4 this may provide the
adequate “milieu” to differentiate or possibly “reprogram”
effector T cells into TH9 cells.

Although animal models have shown that TH9 cells may
represent a new subtype of T cells information on their
role in human disease is speculative at the moment. So
far they have not been described in humans. One has to
keep in mind that several inflammatory cells can express
IL-9 in bronchial asthma. Therefore, the importance of
these “new” cells has to be regarded with caution. The
first step will be the identification of TH9 cells in human
patients. Nevertheless, the role of IL-9 as an important TH2
type cytokine in bronchial asthma and other diseases (e.g.,
allergic, autoimmune) cannot be questioned.

3. TH17, TH17/TH2, and TH22 Cells in
Asthma Pathogenesis

A few years ago, the identification of TH17 cells as a
new distinct subtype of T helper cells nearly overthrew
the established TH1/TH2 paradigm, so that these cells
developed to a hot spot of actual immunological research.
Characterized by the production of the eponymous cytokine
IL-17A and the expression of retinoic acid-related orphan
receptor γt (RORγt) (in mice) or ROR c in humans,
respectively, these cells were observed for the first time in
a mouse model of autoimmune diseases like experimental
autoimmune encephalitis or collagen-induced arthritis [61,
62]. Subsequent studies identified these cells as potent
producers of well-known proinflammatory mediators such
as tumor necrosis factor α (TNF-α), IL-1β, and IL-6 and
of relatively new cytokines like IL-17A, IL-17F, IL, 21, IL-
22, and IL-26, pushing these cells into the role of general
promoter of inflammatory processes [63–65].

In retrospect first hints towards participation of TH17
cells in asthma pathogenesis were reported in 2001 in
two studies that detected increased amounts of IL-17 (that
is named IL-17A today) in plasma samples [66] and an
increased expression of IL-17 mRNA in airway tissues of
asthmatic patients [67]. However, identification of TH17
cells in asthmatic airways succeeded not until 2008. In a study
by Péne et al., the author, detected highly activated TH17
cells in bronchial biopsies of patients suffering from severe
asthma, where these cells accounted for not less than 20%
of all infiltrating lymphocytes. In vitro restimulation of these
cells resulted in production of IL-17A and IL-17F, IL-22, IL-
26, lymphotoxin β (LT-β), and TNF-α [68]. Together with
the finding that increased levels of IL-17A mRNA correlate
with increased numbers of neutrophils in sputum samples of
asthmatic patients, these results suggested TH17 cells to play
a key role in asthma aggravation towards a severe phenotype
by recruiting neutrophils to already inflamed asthmatic
airways [69]. This hypothesis is supported by the finding,
that human TH17 cells induce the in vitro production of
IL-8, together with IL-6, TNF-α, granulocyte-macrophage
colony-stimulating factor (GM-CSF), and growth-related
antigen α (GRO-α) in human bronchial epithelial cells
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[70–72] and human bronchial smooth muscle cells [73–
75] by secreting IL-17A and IL-17F. TH17 cells are fur-
ther capable of activating neutrophils by secreting IL-6,
TNF-α, IL-1β, and IL-17A, which act synergistically on
the production and activity of human neutrophil elastase
(HNE) and myeloperoxidase, two of the most prominent
neutrophil-derived enzymes [76]. At least, TH17 prolongs
the survival of neutrophils by releasing GM-CSF and gran-
ulocyte colony-stimulating factor (G-CSF), enabling them
not only to promote but also to sustain airway neutrophilia
[77].

Although TH17 cell development in humans and mice
differs in some points, the link between TH17 cells and
neutrophil infiltration into the lung could be confirmed by
several mouse studies. First indications were observed in two
studies that aimed at eliminating CD4+ T cells from mice
with experimental asthma by using monoclonal antibodies,
against CD4 or IL-2, respectively. In both studies ablation
of T helper cells did not inhibit notonly airway eosinophilia
but also neutrophil infiltration [78, 79]. Moreover, intranasal
application of IL-17A resulted in pronounced neutrophil
accumulation and increased levels of active matrix metallo
protease 9 (MMP-9), another typical neutrophil-derived
enzyme, in broncho-alveolar lavage (BAL) [80]. Conse-
quently, adoptive transfer of in vitro generated OVA-specific
TH17 cells into transgenic DO11.10 mice with acute exper-
imental asthma induced marked airway neutrophilia and
unresponsiveness to treatment with cortico steroids [81].
Two other studies strongly suggest that such effects of TH17
cells seem to be mediated through release of IL-17A and IL-
17F [82, 83]. These experimental results strongly suggest a
role for TH17 cells in the development of airway neutrophilia
in severe asthma. Clinical observations additionally support
this hypothesis. Thus, IL-17A is expressed in the airways
of asthmatic patients and correlates with the numbers of
infiltrating neutrophils and disease severity [67, 84]. The
question whether these cells play a role in mild-moderate
asthmatics as well remains to be answered, especially since
two recently published studies demonstrated the appearance
of IL-17A and IL-22 producing TH17 cells in peripheral
blood of asthmatic patients [85, 86]. Most recently, another
T helper cells population has been described that produce
not only IL-17A, IL-21, and IL-22 but also considerable
amounts of the typical TH2-type cytokines IL-4, IL-5, and
IL-13. Consequently, these cells were named TH17/TH2
cells (Cosmi, 2010). Because of these special functional
properties and the increased numbers in the circulation of
asthmatic patients, this new T helper cell subset also awaits
characterization of its role in asthma pathogensis.

Furthermore, it remains also unanswered whether TH17
cells are the only source of IL-17s within the processes
leading to airway neutrophilia in asthmatic lungs since
CD11b+/F4/80+ alveolar macrophages are also capable of
producing considerable amounts of IL-17A as demonstrated
in a mouse model of experimental asthma [87]. Further-
more, distinct subtypes of γδ T cells, CD8+ T cells, and
natural killer (NK) cells have also been shown to secrete IL-
17A even in larger amounts as TH17 cells [88–91]. By doing
so, at least NK cells appear to be involved in the development

of airway neutrophilia and AHR in a mouse model of ozone-
induced experimental asthma [92].

However, these studies investigated just one aspect of
TH17 cell activity while other functions and effects during
asthma pathogenesis, progression, or aggravation remain
unclear. As already mentioned, TH17 cells isolated from
bronchial biopsies of severe asthmatics appeared to be
highly activated and secreted a plethora of proinflammatory
cytokines after in vitro restimulation. Although cytokines
with strong proinflammatory potential such as TNF-α and
IL-6 have meanwhile been implicated in at least several
aspects of asthma pathogenesis [93–95], the effects of other
TH17 cell derived factors such as IL-17F, IL-22, and IL-26
have only been investigated fragmentarily.

IL-17F belongs to the IL-17 family and is approximately
50% homologous with IL-17A, more than with any other
member of this family. Moreover, the genes encoding IL-
17A and IL-17F lie next to each other on chromosome 6
[96]. Its proinflammatory potential has been characterized
in in vitro airway epithelial cells and fibroblasts where it
induced the expression of various cytokines, chemokines,
and adhesion molecules such as IL-6, IL-8, GROα, epithe-
lial cell-derived neutrophil-activating protein 78 (ENA-78),
transforming growth factor β (TGF-β), G-CSF, GM-CSF,
monocyte chemotactic protein, and intracellular adhesion
modelcule 1 (ICAM-1) [74, 97, 98]. These observations
do not only suggest that both genes arise from a gene
duplication event but also that both gene products could
have similar functions. Increased expression of IL-17F has
already been detected in asthmatic patients after allergen
challenge. Interestingly, the authors did not observe any
augmented expression of IL-17A in the same study [99]. Pul-
monary overexpression of IL-17F in mice resulted not only in
airway neutrophilia but also in an amplified allergen-induced
immune-response including increased airway eosinophilia,
AHR, and goblet cell hyperplasia [83]. The question how
IL-17F affects the allergic immune-response in the lung has
so far not been answered. However, lung tissue of these
transduced animals revealed markedly increased levels of
several proinflammatory cytokines and chemokines such as
IL-6, IFN-γ, inflammatory protein 10, monokine, insulin-
like growth factor, and C10, demonstrating the proinflam-
matory potential of IL-17F in vivo.

IL-21 belongs to the IL-2 cytokine superfamily and is
produced by several T cell subpopulations such as TH2
cells, follicular B helper T cells, and TH17 cells, while the
last appears to produce the largest amounts [100–103]. The
expression of this cytokine by TH17 cells depends on the
signal transducer of activated T cells 3 (STAT-3) and is
strongly induced by IL-6 [104]. Together with IL-6 or TGF-
β, IL-21 is able to promote TH17 cell differentiation by
inducing the expression of RORγt. Therefore, this cytokine
is suggested to play a critical role in amplifying a TH17 cell
response as it has been demonstrated for IFN-γ for TH1 cells
or IL-4 for TH2 cells respectively [105]. Another activity of
IL-21 that might play a role in asthma pathogenesis involves
regulation of IgE-production in plasma cells [106].

IL-22 and IL-26 are members of the IL-10 cytokine
superfamily. So far, IL-22 expression has been detected in
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activated T helper cells and, to a lesser degree, inactivated
NK cells or so-called NK22 cells, whereas it is absent in
dendritic cells, macrophages, and nonimmune cells [107].
Interestingly, the IL-22 receptor has yet not been detected
in cells of the immune system, but in a broad range of
nonimmune cells including epithelial and endothelial cells.
This observation leads to the hypothesis that IL-22 serves for
the communication between TH17 cells and tissues in order
to form up the immune barrier function of epithelia against
bacterial infections and to induce production of antibacterial
peptides [108–110]. Recently, a small subpopulation of skin-
homing CD4+ T cells has been identified produced IL-22
as well but lack the production of IL-17 or IFN-γ [111].
Furthermore, these cells did not express the TH17-typical
transcription factor RORγt suggesting these cells as a T
helper cells subpopulation that is distinct from TH17 cells
thus representing a new group called TH22 cells. It remains
to be seen whether those TH22 cells will be identified in
asthmatic patients as well. IL-26 is clustered together with
IL-22 on chromosome 12q15 and is primarily produced by
T cells and monocytes. Up to now it has been implicated
in virus-induced transformation of T cells [112]. However,
the contribution neither of IL-22 nor of IL-26 to asthma
pathogenesis has been understood so far.

The question for TH17 recruitment to the lung or their
differentiation in asthmatic airways remains unanswered
as well. Since IL-23 is required for the full acquisition
of the pathogenic function of human and murine TH17
cells the “IL-23-TH17-axis” which has been established in
severe atopic dermatitis has also been hypothesized for
asthma. This hypothesis was supported by an in vivo study
showing that airway infiltrating TH17 cells together with
local IL-23 expression significantly enhanced eosinophilic
airway inflammation in a mouse model of experimental
asthma [113]. An in vitro study performed by Cheung et al.
further suggested a role for IL-23 in asthma pathogenesis.
The authors demonstrated that IL-23 in combination with
IL-17A and IL-17F promoted the production of CXCL1
and IL-8 in human eosinophils generating a strong neu-
trophilotactic signal, whereas IL-23 together with IL-17F
alone induced the production of IL-1β and IL-6 which
could reciprocally continue TH17 cell activation [114].
These data strongly suggest a close relationship between IL-
23 on the one hand and TH17 cell development and/or
activation on the other hand in the pathogenesis of severe
asthma.

Whether TH17 cells could also differentiate in a TH2
cell dominated surrounding was answered by a study carried
out in vitro by Tanaka et al. By using CD11+ dendritic
cells stimulated with human thymic stromal lymphopoetin
(TSLP) and the artificial TLR-3 ligand poly IC the others
were able to induce TH17 cells with a central memory phe-
notype even under TH2-polarizing conditions [115]. Since
TLR-3 originally recognizes double stranded RNA which
appears as an intermediate during viral replication, this study
supports the hypothesis that recurrent viral infections, which
are clinically correlated with asthma aggravation towards a
severe phenotype, play a role in TH17 cell recruitment to
asthmatic airways.

4. TH25 Cells in Asthma Pathogenesis

IL-25 belongs to the IL-17 cytokine family and is also called
IL-17E but induces a cytokine profile that is completely
different from those triggered by IL-17A or IL-17F. Its
expression has been reported in activated TH2 cells (Fort,
120)—recently suggested as a new subpopulation of T helper
cells, the TH25 cells [116]. Transgenic overexpression in mice
resulted in airway eosinophilia and elevated serum levels
of the typical TH2-type cytokines IL-4, IL-5, and IL-13
together with increased IgE serum titers [117, 118]. Similar
results were obtained by intranasal administration of an IL-
25-expressing adenovirus vector. When IL-25 was admin-
istered intraperitoneally, additionally development of AHR,
increased mucus production, and epithelial cell hyperplasia
could be observed [119]. Conversely, mice deficient in IL-
25 exhibit reduced TH2-type immune responses [120, 121]
and blocking IL-25 by the use of a monoclonal antibody or
by a soluble IL-25 receptor (sIL-25R) prevented from devel-
opment of AHR, production of allergen-specific IgE, allergic
airway inflammation, and increased mucus production in a
mouse model of experimental asthma [122, 123].

Studies revealed that IL-25 predominantly affects a non-
T/non-B cells population expressing class II MHC and
CD11c molecules and drives production of IL-4, IL-5,
and IL-13, which consequently induces TH2-type immune
responses. While these cells exhibit the characteristics of a
typical accessory cell type, most recently a subset of invariant
natural killer T cells (iNKT cells) expressing IL-17RB, a
receptor for IL-25, have also been identified as a target
for IL-25. These cells produced large amounts of TH2-type
cytokines after stimulation with IL-25 and were capable
of restoring AHR in mice deficient for iNKT cells [124].
Another study demonstrated that in vitro IL-25 induced the
production of IL-9 that is independent from IL-4 in IL-17R
expressing T cells [125].

While these studies clearly demonstrated that IL-25 is
involved in the initiation of allergic diseases, the study of
Tamachi et al. showed that IL-25 enhances allergen-induced
airway inflammation by amplifying the already established
TH2-type immune-response [123]. With its amplifying
impact on TH2 cells IL-25 shares in part functional sim-
ilarities with another novel cytokine, termed IL-33. This
is produced by many tissue related cell types including
epithelial cells, endothelial cells, smooth muscle cells, ker-
atinocytes, fibroblasts, and adipocytes. It broadly enhances
allergic inflammation through its effects on hematopoietic
cell types that is, it triggers the production of the typical
TH2-type cytokines IL-4, IL-5, and IL-13 in T cells, NKT
cells, basophils, and mast cells or prolongs the survival of
eosinophils [126, 127].

5. Regulatory T cells and TH3 Cells in
Asthma Pathology

Regulatory T cells (Tregs) and TH3 cells have both been
described as CD4+ T cells that also express the alpha chain
of the IL-2 receptor (CD25) and that act to suppress immune
responses by releasing anti-inflammatory cytokines such as
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TGF-β and IL-10. While Tregs require IL-2 for their survival,
in vitro differentiation of TH3 cells depends on TGF-β so
that these cells have been suggested to form another T cell
subpopulation [128]. Regulatory T cells have been suggested
to be critical important for maintaining self-tolerance in
order to prevent autoimmunity, they further suppress allergy,
asthma, and pathogen-induced immune-pathology, and they
seem to regulate oral tolerance as well as feto-maternal
tolerance. The role of these cells in the immune-pathogenesis
of allergic asthma has been extensively reviewed elsewhere
and will only be discussed here in brief [129, 130].

The basis for atopic sensitization and the subsequent
development of an allergic disease such as bronchial asthma
is an inappropriate TH2 cell response to common antigens.
The answers that try to address the question why asthmatic
patients develop typical allergic airway inflammation range
from genetic susceptibility and coexposure to infectious
agents to variations in the dose and timing of allergen
exposure. However, over the last 10 years it has also been
formulated that in case of asthma suppression of inappro-
priate immune responses is either defective or overwhelmed.
Several studies demonstrated that CD4+/CD25+ T cells
are able to inhibit cytokine production and proliferation
of TH2 cells in vitro and to suppress development of
experimental asthma including AHR in mice [131, 132];
however, in asthmatic patients, the number of these cells
appeared to be significantly decreased in peripheral blood,
airway tissue, and BAL fluid. Furthermore, the percentage
of CD4+CD25+ T cells in BAL correlated positively with
FEV1 in asthmatic children [133–136]. The question why
CD4+/CD25+ T cells are reduced in asthmatic patients has
not been answered yet; however, it has been observed that
these cells reveal a reduced response to the chemokines CCL1
and CXCL1 suggesting an impaired recruitment to the lung
[137, 138].

Recent in vitro studies revealed a remarkable plasticity of
Tregs that has so far not been interagted into the machnisms
leading to allergic diseases such as asthma. When these
cells are cultured with IL-6, they upregulate expression
of the transcription factor RORγt and become IL-17 pro-
ducing cells [139]. Furthermore, Tregs are able to induce
CD4+CD25-Foxp3- T cells and can even induce their own
transformation into IL-17 producing cells when TGF-β is
absent and IL-6 is present [140]. Consequently, cd4+Foxp3+
T cells that produce IL-17 have been identified in humans
and mice [141, 142]. Komatsu et al. even reported that
after adoptive transfer of natural CD4+Foxp3+ T cells into
lymphopenic or lymphoreplete recipients, a minor fraction
enriched within the CD25(−) subset actually downregulated
Foxp3 expression and started production of IL-17 and IFN-γ
[143].

Interestingly, it has further been shown that Tregs also
develop into T follicular helper (Tfh) cells that have initially
been proposed as a separate T helper cell subpopulation
failing to express cytokines and transcription factors, which
are typical for TH1, TH2, or TH17 cells [144–147]. These
recent studies demonstrate the enormous plasticity of T
helper cells and which is attended by the challenge to classify
different T helper cell lineages.

6. TH1 Cells in Asthma Pathology

TH1 cells, as cells that typically direct antibacterial or
antifungal immune responses, mediate the activation of
macrophages and clearance of intracellular pathogens by
the production of IFN-γ, whereas cytokines secreted by
TH2 cells are responsible for the production of IgE, the
recruitment of eosinophils, and clearance of extracellular
parasites [148, 149]. Thus, TH1 cells were believed to be
responsible for organizing the immune response against
bacteria, fungi, and viruses, while TH2 cells were mainly
considered to play a role in defending against parasites.

In the 1990s, the “hygiene hypothesis” came up, where
allergic epidemics concluded that the western life style with
its lack of TH1-triggering factors (e.g., exposure to microbial
components) was responsible for the increase occurrence
of allergic atopic diseases. Thus, the reduction of microbial
burden reflected by the diminished production of IL-12
and interferon by natural immunity cells attenuate TH1
and enhance TH2 cell responses. Concerning the increased
prevalence of atopic allergic diseases in Western countries,
the predominance of TH2 responses to “innocuous” antigens
became rational. Supportively, the occurrence of some
infections in childhood reduces the risk for later atopy [150].
Moreover the prevalence of allergy is reduced in patients
suffering from the TH1 driven multiple sclerosis [151]. Espe-
cially, the prevalence of asthma is on a rise in “westernized”
countries with higher hygienic and socioeconomic standard
[152]. Thus, manifold studies have shown that during the
pathogenesis of asthma TH2 cells initiate inflammatory
responses leading to AHR, the hallmark of asthma, [4, 153,
154]. Mice with deficient TH2 cytokine expression, induced
by gene deletion or the usage of TH2 cytokine antagonists,
showed diminished AHR and eosinophilic inflammation
[9, 11]. The other subset of T helper cells, the TH1 cells,
were however proposed to counteract TH2-mediated cell
responses as seen in models of parasitic infection [155].
The described virtue of TH1 cells to counteract TH2 cell
activities was subsequently reported for bronchial asthma.
Enhancement of the TH1 response by local administration
of IL-12 or IL-18 [156, 157] or the infection of TH1
promoting mycobacteria [147] or Listeria [158] diminished
the development of allergic asthma, probably by caus-
ing impaired development of TH2 responsiveness. In a
mouse model of experimental asthma, adoptive transfer
of OVA specific TH1 cells reversed in a concentration-
dependent manner TH2 cell derived IL-4 production, BAL
eosinophilia and bronchial hyperresponsiveness [159, 160].
The underlying mechanism was hypothesized to be partly
mediated by IFN-γ. IFN-γ is the ‘signature’ cytokine of
TH1 cells and its production is mediated by the tissue-
specific transcription factor T-bet that is involved in the
development of TH1 cells from native T cells [149]. Beside
IFN-γ, TH1 cells produce LT-α and IL-2. These cytokines
activate macrophages, natural killer cells, and CD8+ cytolytic
cells and promote IgG2a class switching [155]. IFN-γ induces
the expression of IL-12 by antigen presenting cells (APC)
and thus promotes TH1 differentiation [155]. Actually, IFN-
γ promotes the expression of the β-chain of IL-12 receptor
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through T-bet, indicating the importance of IFN-γ on IL-12-
mediated effects on TH1 cells [161, 162]. Blocking of IFN-γ
reversed the TH1 cell inhibition of TH2 cell-induced AHR
[159]. Thus, based on these observations, promoting TH1
responses, in order to suppress allergic asthma, was proposed
as an approach towards asthma therapy. However, while
some studies could not show airway hyperresponsiveness
after adoptive transfer of OVA specific TH1 cells [163–
165], some other works demonstrated a distinct induction
of AHR [166]. Consequently, the therapeutic utility of TH1
cells and their cytokines in allergic asthma became at least
questionable. Moreover, TH1 responses together with TH2
responses may even act in combination to augment each
other’s activity to induce airway inflammation and AHR
[164, 167]. Concordantly, in a mouse model of allergic
asthma TH1 and TH2 cells were recruited together to the
airways after sensitization with the model antigen OVA.
However, TH1 cells were not only predominantly found early
after the challenge; the presence of TH1 seems moreover
to be a prerequisite for the recruitment of TH2 cells to the
airways [168].

In the airways of asthmatic patients TH1 cells, increased
levels of IFN-γ- and IFN-γ-dependent signaling molecules
also have been detected beside TH2 cells and TH2 cytokines
[169]. Hence, also patients suffering from allergic asthma
displayed mixed T helper cell responses, reflected by the
occurrence of TH2 specific IL-13 and of TH1 specific IFN-
γ [170, 171]. Consequently, the TH1/TH2 paradigm appears
to be more complex and the role of TH1 cells is much
more controversial. Numerous studies were subsequently
performed to evaluate the exact role of TH1 cells in allergic
asthma and their interplay with TH2 cells.

The adoptive transfer of TH1 cells in a mouse model was
capable to induce airway neutrophilia, accompanied with
a dense perivascular and interstitial accumulation of small
lymphocytes [166]. Concerning the function of TH1 cells in
mucus hypersecretion, as one feature of bronchial asthma,
observations were different. Since the adoptive transfer of
antigen-specific TH1 cells induced mucus but much less than
did TH2 cells [164], mucus hypersecretion was totally absent
in a study by Cohn et al. [163]. In contrast to TH2 cells,
TH1 cells produce high amounts of IFN-γ but low levels
of IL-4, IL-5, and IL-13 [166]. Especially, IL-13 is involved
in goblet cell metaplasia and thus in mucus hypersecretion
[4]. By using recombinant cytokines Ford et al. [167] could
demonstrate that IFN-γ possesses double-sided effects on IL-
13-induced lung injury: on the one hand IFN-γ inhibited
IL-13 dependent goblet cell hyperplasia and infiltration of
eosinophils and neutrophils into the airways. On the other
hand, combination of IL-13 and IFN-γ even enhanced
peribronchial and alveolar inflammation as well as numbers
of NK cells and IL-6 levels in BAL fluids. In addition,
cells expressing high levels of molecules involved in antigen
presentation such as MHC class II, CD11c, and CD68 were
elevated [165]. However, TH1 cell-induced inflammation
and induction of AHR appear to depend neither on IL-13
nor on IL-4 [166].

IL-18 was initially identified as a factor enhancing IFN-
γ production from TH1 cells stimulated with anti-CD3 and

IL-12 [172]. IL-18 is abundantly stored in the epithelial cells
of various organs, including the lung [173]. Cellular IL-
18 responsiveness is determined by the expression of the
IL-18 receptor, a heterodimeric complex consisting of IL-
18Rα and IL-18Rβ. Upon IL-12 stimulation, native T cells
develop into TH1 cells, expressing the IL-18Rα [174]. Thus,
endogenous interleukin-18 (IL-18) might play a critical role
in the induction of bronchial asthma by TH1 cells through
IL-18-dependent IFN-γ production [175, 176]. In this
respect, Sugimoto and colleagues [176] demonstrated that
the intranasal application of antigen and IL-18 induced AHR
and airway inflammation, accompanied by the production of
a mast cell similar cytokine profile, including GM-CSF, TNF-
α, IL-9, IL-13, RANTES, and MIP-1α by reactivation of TH1
memory cells. In line with Cui et al. [166], neutralization of
IL-13 did not reverse TH1 cell induced AHR.

IFN-γ itself was initially regarded as an antiallergenic
cytokine with the ability to counteract IL-4 as well as by
reducing the proliferation of TH2 cells [177]. However,
several studies could show that INF-γ activates eosinophils
in vitro [178] or stimulates the recruitment of inflammatory
cells by inducing ICAM-1 expression [179]. The role of
IFN-γ is less clear. On the one hand administration of
an anti-INF-γ Ab reversed the development of AHR and
airway neutrophilia in mice receiving OVA specific TH1 cells
[175, 180]. On the other hand, the study by Takaoka and
colleagues [181] demonstrated that anti-IFN-γ Ab treatment
did not reveal an inhibitory effect on TH1 mediated airway
neutrophilia and AHR.

Although TH1-dominated immune responses were orig-
inally considered to play a prominent role in autoimmune
diseases, an impact of TH1 cells in rather TH2-dominated
disorders, such as allergic bronchial asthma, is obvious. At
least, the typical TH-1 cytokine IFN-γ has already been
shown to play a role in the development of AHR and in
aggravating inflammatory events in asthma. Nevertheless,
further studies are required to fully elucidate the role of TH1
cells and especially of IFN-γ in asthma pathology.

7. iNKT Cells in Asthma Pathology

Although not belonging to the group of T helper cells, a sub-
group of natural killer T (NKT) cells has to be referred to in
this paper, since by producing a number of the prementioned
cytokines involved in asthma pathogenesis. A few years ago,
invariant NKT (iNKT) cells have been described as a new
subpopulation of T cells. Since these cells express not only the
T cell receptor (TCR) but also the NK cell receptors NK1.1 or
Ly49 in mice and CD161 in humans, current research defines
these cells as a unique and evolutionally conserved group
of T cells. These iNKT cells recognize glycolipid antigens
through a TCR that is composed of an invariant TCR α
chain and a TCR β chain with restricted variability [182–
184]. In contrast to the typical cytokine profiles secreted by
T helper cells these iNKT cells, which also may express CD4,
are capable of producing large amounts of IL-4, IL-13, and
IFN-γ after being stimulated via the TCR [185]. Due to these
unique features, iNKT cells have soon been implicated in
immunological disorders such as the development of allergic
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diseases. Thus, in iNKT cell-deficient β2 microglobulin
knock-out mice, Yoshimoto et al. demonstrated that these
cells are essential for the induction of IL-4-producing TH2
cells and consequently for the IL-4 dependent production of
IgE, suggesting that iNKT cells are the source for the initial
IL-4 required for TH2 cell development [186]. In contrast,
mice lacking iNKT cells due to CD1- or Jα18-deficiency
developed the phenotype of experimental asthma after sen-
sitization to and challenge with aerosolized OVA. However,
in comparison to wild type animals IL-4 and IL-13 levels
as well as eosinophil numbers in BAL fluid and IgE serum
titers were significantly lower, whereas development of AHR
was completely absent, indicating involvement of iNKT cells
in the immunopathology of this disease. Most interestingly,
the lack of AHR could be restored by adoptive transfer of
IL-4/IL-13 producing iNKT cells [187, 188]. While these
data demonstrated the importance of iNKT cells for the
development of allergic disorders in mice, two studies further
suggest contribution of these cells to human allergic asthma.
On the one hand, Sen et al. figured out that the bronchial
mucosa of asthmatic patients reveal massive accumulation
of iNKT cells expressing the chemokine receptor CCR9 and
CD226 in large amounts. Additionally, these cells are capable
of inducing a strong TH2 bias upon CD226 engagement
[189]. On the other hand, Akbari et al. reported that more
than 60% of CD3+ or CD4+ T cells from patients suffering
from moderate-to-severe asthma were IL-4/IL-13 producing
iNKT cells expressing the Vα24 TCR and CD4 [190]. The
question how exactly iNKT cells fit into the large picture
of asthma-immunopathology remains unanswered and is
even complicated by the recent observations that iNKT cells
additionally produce IL-9, IL-17, and IL-22 [191–193].

8. Conclusion

Taken together, with the identification of new T helper cell
subsets, investigation of the mechanisms underlying asthma
pathogenesis took another step forward. However, this
insight also implicated a number of continuative questions.
What exactly are the effects of TH9 or TH17 cells in asthma
pathogenesis? Do TH22 or TH17/TH2 cells also participate
in these processes? How do these cells communicate with
each other and with infiltrated cells of the immune system or
with structural cells of the airway wall? Do these new “non-
TH2-type” T helper cells only play a role in special subtypes
of asthma? Or are they even responsible for directing the
disease process to a special development? The list of open
questions that arised from the identification of new T helper
cells in asthma could be continued and represents a task for
future research in the field of asthma. But, it is also a chance
to cut the Gordian knot of asthma phenotype diversity; these
new T helper cell subpopulations could also represent new
targets for therapeutic intervention in allergic diseases such
as asthma.
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