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1  | INTRODUC TION

Obesity has become a serious concern because it is tightly associ-
ated with cardiovascular morbidity, inflammations, type 2 diabetes 
and etc. via complex interrelationships with unfavorable meta-
bolic consequence (Hu, Lin, Zheng, & Cheung, 2018; Kobayashi, 
Kawasaki, Takahashi, Maeno, & Nomura, 2017). At present, the 
researchers have drawn wide attention on the relationship be-
tween host gene (gene- induced obesity), dietary excesses (diet- 
induced obesity), and obesity (Wei, Li, Zhao, & Nicholson, 2008). 
In fact, alteration of intestinal flora was also identified as an im-
portant element in close association with the obesity and obesity- 
induced metabolic disorders (Eaimworawuthikul, Thiennimitr, 
Chattipakorn, & Chattipakorn, 2017; Shen et al., 2017). The re-
duced Firmicutes/Bacteroidetes ratio has been associated with im-
proved glucose levels, body weight, and fat reduction (Kemperman 

et al., 2013; Singh et al., 2017). In brief, intestinal flora is indispens-
able to maintain gut homeostasis and, in turn, control the obesity 
and obesity- related diseases.

Plant- based foods are rich in source of antioxidant pheno-
lics (Zhao, Kao et al., 2017). The polyphenols including quercetin 
(Zheng et al., 2017), puerarin (Xue et al., 2016), catechin (Huang 
et al., 2016) have been reported to ameliorate host obesity asso-
ciated with a high- fat diet by modulating gut microbiota. Indeed, 
as potential prebiotic agents, chlorogenic acid has been found to 
exhibit anti- obesity property, especially improve lipid and glucose 
metabolism (Cho et al., 2010; Lin, Hu, Zhou, & Cheung, 2017; 
Sotillo & Hadley, 2002). Besides, evidence also supports chloro-
genic acid (100 μg/mL) can significantly increase the abundance 
of Firmicutes, Bacteroides in vitro (p < 0.01) (Parkar, Trower, & 
Stevenson, 2013). Therefore, we hypothesized that chlorogenic 
acid may also influence the gut microbiota in vivo, which might 
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Abstract
To evaluate the anti- obesity effects of chlorogenic acid (CGA), the mice were fed a 
high- fat diet (HFD) upon chlorogenic acid treatment for 6 weeks. The results showed 
administration of chlorogenic acid (150 mg per kg per day) remarkably promoted 
body loss, reduced lipid levels in plasma and altered mRNA expression of lipogenesis 
and lipolysis related genes in adipose tissue. Moreover, chlorogenic acid also reversed 
the HFD- induced gut microbiota dysbiosis, including significantly inhibiting the 
growth of Desulfovibrionaceae, Ruminococcaceae, Lachnospiraceae, Erysipelotrichaceae, 
and raising the growth of Bacteroidaceae, Lactobacillaceae. Overall, the amelioration 
of HFD- induced gut microbiota dysbiosis by chlorogenic acid may contribute, at least 
partially, to its beneficial effects on ameliorating HFD- induced obesity.
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be one of the underlying mechanisms by which chlorogenic acid 
exerts its anti- obesity effects. To test our hypothesis, we assessed 
the potential of chlorogenic acid in altering the gut microbiota 
composition as well as maintaining gut homeostasis upon HFD 
challenge in this study. Also, combining physiological and bio-
chemical parameters, and relative genes expression to demon-
strated chlorogenic acid is useful for the prevention and treatment 
of obesity.

2  | METHODS AND MATERIAL S

2.1 | Animals and diets

Eighteen ICR male mice (clean grade, the Wu laboratory animal trad-
ing co., Ltd., Fuzhou, China), 5- to 6- weeks old, with body weights 
ranging from 29 to 31 g. Mice were housed up to six per cage with a 
12- hr light/12- hr dark cycle (lights on from 8:00 a.m.to 8:00 p.m.) at 
23 ± 1°C and 50 ± 10% humidity. All mice were fed a normal diet and 
adapt environmental one week. They were then randomly separated 
into three groups: normal diet group (ND), high- fat diet model group 
(HFD), and high- fat diet with 150 mg/kg bw/day of chlorogenic acid 
(CGA). The normal diet contained (in weight percent): 22.3% protein, 
60.6%	 carbohydrate,	 and	 4.0%	 fat,	 high-	fat	 diet	 contained:	 21.6%	
protein,	 43.1%	 carbohydrate,	 and	 18.4%	 fat.	 All	mice	were	 treated	
orally by gavage, the ND and HFD groups received an oral saline, and 
CGA group received chlorogenic acid dissolved in saline at the same 
volume. The food and water were available ad libitum during 6- week 
administration. Body weight was measured every three days at a time.

2.2 | Biochemical analysis

After 6 weeks of feeding, all animals were fasted 12 hr and 
weighed. The blood was collected by EDTA tubes and centrifuged 
at 1500 g	for	10	min	at	4°C.	The	levels	of	triglyceride	(TG),	total	
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), 
low-density lipoprotein cholesterol (LDL-C), aspartate transami-
nase (AST), alanine transaminase (ALT), and blood urea nitrogen 
(BUN) in plasma were evaluated by using automatic biochemical 
analyzer (7080; Hitachi Co., Japan).

2.3 | Histological analysis

Epididymal white adipose tissues (WAT) and livers were fixed with 
4%	 paraformaldehyde	 for	 24	hr	 and	 embedded	 in	 paraffin.	 Then,	
5- μm sections were prepared and stained with hematoxylin and 
eosin (H&E). The physiology of epididymal WAT and livers were ob-
served by inverted microscope (Motic BA210T, China).

2.4 | Quantitative RT- PCR

Total RNA was extracted from epididymal WAT using an Uniq- 
10 Trizol total RNA extraction kit (Sanggon Biotech Co., Ltd., 
Shanghai, China). cDNA was synthesized with 0.8 μg of total RNA 

by RevertAid First strand cDNA Synthesis kit. RT- PCR was per-
formed using the SYBR Green Abstract PCR Mix (Sanggon Biotech 
Co.,	Ltd.,	Shanghai,	China)	and	LightCycler	480	II	system	(Roche,	
Basel, Switzerland). The mRNA levels of target genes were nor-
malized to β- actin. Primer sequences are shown in Supporting 
Information Table S1.

2.5 | Gut DNA extraction

The luminal contents of the cecum were isolated to extract the 
total bacterial community DNA using the DNeasy PowerSoil Kit 
(QIAGEN, Inc., Netherlands), following the manufacturer’s instruc-
tions,	and	stored	at	−20°C	prior	 to	 further	analysis.	The	quantity	
and quality of extracted DNAs were measured using a NanoDrop 
ND- 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, 
MA, USA) and agarose gel electrophoresis, respectively.

2.6 | Illumina high- throughput sequencing of 
barcoded 16S rRNA genes

PCR	 amplification	 of	 the	 bacterial	 16S	 rRNA	 genes	 V3–V4	 re-
gion	 was	 performed	 using	 the	 forward	 primer	 338F(5′-	barcode
+ACTCCTACGGGAGGCAGCA-	3′)	 and	 the	 reverse	 primer	 806R	
(5′-	GGACTACHVGGGTWTCTAAT-	3′).	 Sample-	specific	 7-	bp	 bar-
codes were incorporated into the primers for multiplex sequencing. 
After that, the 16s rDNA sequencing and analysis were performed as 
described previously (Yang, Dou, & An, 2018).

2.7 | Data analysis and statistics

All data were presented as the mean value ± standard deviation (SD) 
and comparisons of data were carried out using a Student’s t test or 
a one- way analysis of variance (ANOVA) with Duncan’s test. Values 
of p < 0.05 were considered to be statistically significant.

3  | RESULTS

3.1 | Chlorogenic acid reduced HFD- induced body 
weight and fat weight increase

The body weight of mice in CGA group changed slowly during a 
6- week feeding period (Figure 1a), and the mice fed HFD supple-
mented with chlorogenic acid (150 mg/kg) had significantly lower 
body weight in comparison to HFD- fed mice (Table 1). Further, 
the weight gain, liver weight, fat weight were also markedly de-
creased by chlorogenic acid treatment (p < 0.05). Histological 
section from epididymal WAT indicated fat mass and adipocyte 
size were greatly attenuated by CGA administration (Figure 1b,d). 
Similarly, liver histological section in HFD- fed mice also showed 
abnormal hepatic steatosis and large amounts of lipid drop-
lets, but chlorogenic acid can diminish these adverse changes 
(Figure 1c). Thus, these results confirmed that chlorogenic acid 
has anti- obesity effects.
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3.2 | Chlorogenic acid improved lipid profile and 
reduced toxicity in plasma

To examine the dyslipidemia- preventing effect of chlorogenic acid 
in HFD- fed mice, plasma lipid levels were analyzed. Table 2 shows 
the plasma biochemical variables in mice after 6 weeks of treat-
ment with chlorogenic acid. The TG, TC, LDL- C levels in the HFD 
group were significantly increased compared to that in the ND 
group. However, treatment with chlorogenic acid significantly re-
duced TC, TG, LDL- C levels and increased HDL- C level as compared 
with the HFD group. Moreover, the hepatic toxicity and renal tox-
icity were investigated by measuring plasma AST, ALT, and BUN 
levels, respectively. ALT, AST, BUN levels increased in the HFD 

group, but chlorogenic acid administration significantly decreased 
AST and BUN levels compared to the HFD group (p < 0.05).

3.3 | Effects of chlorogenic acid on transcription of 
genes involved in lipid metabolism

Based on qPCR results in Figure 2, the mRNA expression of adipo-
cyte markers, such as fatty acid synthase (FAS), lipoprotein lipase 
(LPL), peroxisome proliferator- activated receptor γ (PPAR- γ), sterol 
regulatory element- binding protein- 1c (SREBP- 1c), adipocyte protein 
2 (AP2), CCAAT/enhancer- binding protein α (C/EBP- α),	and	GRP43	
(Figure 2c–i) were remarkably up-regulated and while mRNA levels of 
PPARα, adiponectin (Figure 2a,b) were decreased in the epididymal 

F IGURE  1 Effects of chlorogenic acid 
on body weight increase of mice during 
the 6- week study period (a). The sizes of 
adipocytes in epididymal adipose tissue 
(b). Liver morphology (c) and epididymal 
WAT morphology (d) in different 
groups. HE staining (×200). Significant 
differences between HFD versus ND are 
indicated: *p < 0.05; **p < 0.01. Significant 
differences between CGA versus HFD are 
indicated: #p < 0.05; ##p < 0.01

Groups ND HFD CGA

Initial bodyweight (g) 32.25 ± 1.65a 32.93 ± 1.17a 31.53 ± 0.86a

End body weight (g) 39.31 ± 1.71c 46.82	±	1.40a 40.79	±	1.07b

Body weight gain (g) 6.91 ± 1.69c 13.90 ± 1.57a 9.33	±	2.14b

Liver weight (g) 1.46	±	0.07c 1.82 ± 0.20a 1.50 ± 0.13b

Epididymal WAT weight (g) 0.66 ± 0.11c 2.02 ± 0.39a 1.18 ± 0.26b

Notes. All data in the table are mean ± SD.
HFD: high- fat diet; ND: normal diet; CGA: chlorogenic acid; WAT: white adipose tissues.
Values in a row with different superscript letters are significantly different p < 0.05.

TABLE  1 Effects of chlorogenic acid on 
body measurements in different groups at 
the end of 6- week HFD feeding
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WAT of the HFD mice relative to the ND mice. In contrast, consump-
tion of CGA obviously offset these changes since the tissues of the 
CGA mice showed significantly lower mRNA expression of PPAR- γ, 

AP2, LPL, C/EBPα,	 FAS,	 SREBP-	1c	 and	 GRP43,	 and	 significantly	
higher mRNA level of PPARα and adiponectin compared to the HFD 
mice.

Groups ND HFD CGA

TG (mmol/L) 1.37 ± 0.28b 1.82 ± 0.15a 1.39 ± 0.20b

TC (mmol/L) 4.09	±	0.50c 5.78 ± 0.75a 5.19 ± 0.62b

LDL- C (mmol/L) 0.34	±	0.10b 0.55 ± 0.10a 0.43	±	0.07b

HDL- C (mmol/L) 1.92 ± 0.06b 2.10 ± 0.09b 2.48	±	0.27a

LDL- C/HDL- C 0.19 ± 0.01b 0.29	±	0.04a 0.18 ± 0.01b

ALT (U/L) 32.50	±	7.14a 45.00	±	9.63a 35.75	±	4.79a

AST (U/L) 119.00 ± 8.16b 140.00	±	14.14a 118.40	±	17.61b

BUN (mmol/L) 8.11 ± 0.53ab 8.41	±	0.92a 7.52 ± 1.01b

Notes. All data in the table are mean ± SD.
HFD: high- fat diet; ND: normal diet; CGA: chlorogenic acid; TG: triglyceride; TC: total cholesterol; 
HDL- C: high- density lipoprotein cholesterol; LDL- C: low- density lipoprotein cholesterol; AST: aspar-
tate transaminase; ALT: alanine transaminase; BUN: blood urea nitrogen.
Values in a row with different superscript letters are significantly different p < 0.05.

TABLE  2 Effects of CGA on plasma 
biochemical indicators in different groups 
at the end of 6- week feeding

F IGURE  2 Effect of CGA on mRNA expression of lipid metabolism- related genes in epididymal adipose tissue. The values of genes levels 
include peroxisome proliferator- activated receptor α (PPAR- α) (a), adponectin (b), FAS (c), LPL (d), PPAR- γ (e), SREBP- 1c (f), AP2 (g), C/EBP- α 
(h),	and	G	protein-	coupled	receptor	43(GPR43)	(i)	were	normalized	to	the	value	of	β- actin, which was set to 1. *p < 0.05, **p < 0.01 compared 
with the HFD group by the student’s t test
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3.4 | Chlorogenic acid modulated gut microbiota at 
different taxonomic levels

High- throughput sequencing was applied to explore the effect of 
chlorogenic acid treatment on the richness and diversity of the gut 
microbiota. As shown in Table 3, a total of 359,505 validated se-
quences	 reads	 (39,188	 for	ND	 group,	 48,674	 for	HFD	 group,	 and	
41,461	for	CGA	group)	of	V3–V4	16S	rRNA	sequences	reads	were	
obtained. As expected in alpha diversity, high- fat diet intake remark-
ably decreased diversity of gut microbiota in terms of Shannon in-
dice compared with normal diet consumption (p < 0.01). Noticeably, 
as p > 0.05 for all indices, the microbial richness and diversity in the 
chlorogenic acid administration group decreased slightly, but there 
was no statistical significance between the HFD and CGA groups.

In addition, to profile the specific changes in the gut microbiota, 
the microbial community at the phylum level is shown in (Figure 3a–
b). The most abundant phylum of Firmicutes	 accounting	 for	41.4%	

(in	the	ND	group),	42.0%	(in	the	HFD	group),	and	38.4%	(in	the	CGA	
group) of the total bacterial sequences. The relative abundance of 
Bacteroidetes	was	42.9%	(in	the	ND	group),	33.6%	(in	the	HFD	group),	
and	34.5%	(in	the	CGA	group).	In	addition,	as	shown	in	Figure	3d,	the	
Bacteroidetes- to- Firmicutes ratio was modestly increased in the HFD 
group compared with that in the ND group. In contrast, after chron-
ical administration chlorogenic acid for 6 weeks, a relatively lower 
Firmicutes: Bacteroides ratio was observed in the CGA group.

At the family level, S24-7, Unclassified_Clostridiales, and 
Desulfovibrionaceae accounted for a high proportion in three groups 
(Figure	4a).	Moreover,	the	relative	abundance	of	Desulfovibrionaceae 
in the HFD group was significantly higher than that in the ND 
group, but after chlorogenic acid treatment, the relative abundance 
of	 this	 bacteria	 decreased	 (Figure	4b).	Lachnospiraceae, belongs to 
Firmicutes phylum, showed a slight drop in HFD group, but no signif-
icant difference compared with ND group (p < 0.05), however, the 
flora community in chlorogenic acid group was decreased compared 

TABLE  3 Diversity and richness of gut microbiota in controls and chlorogenic acid- treated groups of mice

Groups Reads OTUs Chao1 Ace Shannon Simpson

ND 39,188 ± 6,399 2,637	±	324 2,819 ± 632 2,868 ± 715 9.69 ± 0.08** 0.99 ± 0.007

HFD 48,674	±	2,404 2,125	±	469 2,481	±	546 2,708 ± 602 8.51	±	0.42 0.98	±	0.024

CGA 41,461	±	4,401 1,916 ± 201 2,312 ± 318 2,485	±	351 8.27 ± 0.11 0.98 ± 0.010

Notes. Data indicate means ± SD.
HFD: high- fat diet; ND: normal diet; CGA: chlorogenic acid.
**p < 0.01 versus HFD group.

F IGURE  3 Distribution of the gut microbiota composition. ND group (a); HFD group (b); CGA group (c) at the phylum level and the ratio 
of Firmicutes to Bacteroidetes at different groups (d)
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to	that	 in	 the	HFD	group	 (Figure	4e).	Additionally,	 incremental	mi-
crobiota such as Ruminococcaceae, Lactobacillaceae, Bacteroidaceaee, 
and Erysipelotrichaceae were observed in the CGA group compared 
to	HFD	group	(Figure	4c,d,f,g).

The classification of the microbiota community structure at 
the genus level was assessed by a heat map (Figure 5). Apparently, 

genera were showed at different levels in three groups. Obviously, 
the relative abundance of Oscillospira, Coprococcus, Anaerotruncus, 
Allobacterium, Bifidobacterium, Turicibacter were increased, and a 
lower relative abundance of Bacteroides and Ruminococcus were 
exhibited in the HFD, but the changes of these species could be 
reversed by CGA treatment. Collectively, these results indicated 

F IGURE  4 CGA modulated the gut microbiota composition at the family level. Family- level taxonomic distributions of the microbial 
communities in cecum contents (a), The relative abundance of Desulfovibrionaceae (b), Ruminococcaceae (c), Lachnospiraceae (d), 
Lactobacillaceae (e), Bacteroidaceae (f) and Erysipeiotrichaceae (g) was expressed as the mean + SD. Significant differences between HFD 
versus ND are indicated: *p < 0.05; **p < 0.01. Significant differences between CGA versus HFD are indicated: #p < 0.05; ##p < 0.01

F IGURE  5 The heat map of 20 genera 
with the highest frequency and relative 
abundance in groups
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that gut microbiota in HFD- fed mice were modulated by chloro-
genic acid.

4  | DISCUSSION

In the previous study, chlorogenic acid has exhibited anti- obesity 
property with improvements of lipid metabolism in HFD- induced 
mice.	 Evidence	 suggests	 that	 chlorogenic	 acid	 (400	mg/kg)	 can	
achieve a deciline in TC, TG, and LDL- C levels in plasma (Wu et al., 
2014),	in	addition	to	this,	chlorogenic	acid	(100	mg/kg)	treatment	
also attenuated obesity- related hepatic steatosis (Ma, Gao, & Liu, 
2015). The present study confirmed this effect that chlorogenic 
acid (150 mg/kg) led to weight loss (p < 0.05), suppressed lipo-
genesis, and ameliorated hepatic steatosis. There are evidences 
that obesity individuals are closely associated with higher TG, TC, 
LDL- C levels, and lower HDL- C level (Ko, Cockram, Woo, & Chan, 
2001; Li, Huang, & Chen, 2008). Moreover, the declining ratio 
LDL- C/HDL- C, which is often considered to attenuate coronary 
heart disease risk related to obesity (Hwang et al., 2016). Here, 
it was revealed that chlorogenic acid could reverse plasma lipid 
changes altered by the HFD feeding, such as TG, TC, HDL- C, LDL- 
C, and LDL- C/HDL- C.

The adipose tissue is the most important organ for lipogenesis and 
metabolism	of	lipids	and	energy	(Cariou	et	al.,	2004).	Here,	we	com-
pared several mRNA expression of lipogenesis and lipolysis related 
genes in adipose tissue in mice received ND, HFD, or HFD+CGA, 
including PPAR- γ, C/EBP- α, SREBP- 1c (the major transcription fac-
tors in lipid regulation in vivo, Fève, 2005; Wanders, Graff, White, & 
Judd, 2013); AP2 (a protein expressed exclusively in differentiated 
adipocytes, correlated with cholesterol accumulation, Makowski, 

Brittingham, Reynolds, Suttles, & Hotamisligil, 2005); FAS and LPL 
(genes involved in regulation of fatty acid metabolism, and upreg-
ulation of this enzymatic activity is closely associated with obesity, 
Bull et al., 2002; Changsuk et al., 2010); PPARα and adiponectin 
(expression activation is known to facilitates the oxidation of fatty 
acid	 process,	 Faisal,	 Amin,	&	 Sander,	 2014;	Karbowska	&	Kochan,	
2006);	GRP43	(which	is	highly	expression	in	the	white	adipose	tis-
sue of HFD- induced mice, Dewulf et al., 2011). In our study, CGA 
treatment markedly down-regulated HFD- induced PPAR- γ, C/EBP- 
α,	SREBP-	1c,	FAS,	LPL,	AP2,	and	GRP43	over-	expression	in	epididy-
mal WAT. Meanwhile, CGA was also demonstrated to up-regulated 
mRNA expression of PPARα and adiponectin, which were found to 
be down- regulated by HFD. These changes in lipogenesis and lipoly-
sis related genes may be also one of the underlying mechanisms by 
which CGA leads to low- fat mass accumulation upon HFD challenge.

Obesity and related to metabolic disease are closed to the 
changes in gut microbial composition. Gut microbiota, particu-
larly Firmicutes and Bacteroidetes are two major phyla in mice and 
human gut microbiota (Eckburg et al., 2005; Ley, Turnbaugh, Klein, 
& Gordon, 2006), and this phenomenon was also found in our study. 
Previous studies have suggested the obesity individuals owned a 
smaller number of Bacteroidetes and higher proportion of Firmicutes 
compared to lean individual (Rastmanesh, 2011; Turnbaugh, 
Backhed, Fulton, & Gordon, 2008). Here, the results showed that 
HFD- induced mice had a relatively higher Firmicutes/Bacteroidetes 
ratio compared to the ND- fed mice, but these could be inverted by 
administering chlorogenic acid.

However, other studies reported uncertain relationship be-
tween Firmicutes/Bacteroidetes ratio and obesity induction, in 
which overweight and obese individuals were found to have no 
variations in proportions of the ratio (Zhao, 2013) or have reduced 

TABLE  4 The relationship of microbiota in family level as well as their genus and obesity in vivo studies

Phylum Family Host Obesity- specific measures References

Firmicutes Ruminococcaceae (+) 
(Oscillospira genus)

Humans (Obese) Ester compounds (+) Raman et al. (2013)

Obese Patients Visceral fat (+) Pataky et al. (2016)

Lachnospiraceae (+) 
(Coprococcus genus)

Mice (obesity) Body fat (+) Kameyama	and	Itoh	(2014)

Obese Patients Total fat mass (+) Pataky et al. (2016)

Women (obesity) BMI (+), Leptin levels (+) Gomez- Arango et al. (2016)

Children (obesity) Triglycerides level (+) Murugesan et al. (2016)

Lactobacillaceae (+) 
(Lactobacillus genus)

Broiler Chicks and Ducks Weight	gain	(−) Angelakis and Raoult (2010)

MetS patients Lipid	level	(−) Isabel et al. (2016)

Erysipelotrichaceae (+) Cholesterol	homeostasis	(−),	
inflammation (+)

Kaakoush (2015)

HFD- induced mice TC (+) Hui et al. (2015)

Bacteroidetes Bacteroidaceae (+) (Bacteroides 
genus)

Obese patients Triglycerides	level	(−) Isabel et al. (2016)

Proteobacteria Desulfovibrionaceae (+) Rat (obesity) LPS (+) Zhao, Zhang et al. (2017)

Note.	(+)	indicates	an	increase,	(−)	indicates	a	reduction.
HFD: high- fat diet; TC: total cholesterol; LPS: lipopolysaccharides; MetS: metabolic syndrome.
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Firmicutes and increased Bacteroidetes (Schwiertz et al., 2010). 
Increasing studies have pointed to a positive link between other 
bacterial	phyla	or	special	families	and	obesity	(Table	4).	In	view	of	
this, these species involved in energy metabolism also require fur-
ther consideration, In this study, the increased relative abundance 
of Ruminococcaceae as well as its genus Oscillospira were found in 
HFD- induced obesity mice, however, but CGA could significantly 
reverse the change of this species (p < 0.05). Lachnospiraceae, 
a kind of digestive tract- associated bacteria, correlates with 
increased	 fat	 mass	 and	 lipid	 level	 (Kameyama	 &	 Itoh,	 2014;	
Murugesan et al., 2016; Pataky et al., 2016). However, in our study, 
a large decrease in Lachnospiraceae when HFD- induced mice were 
simultaneously administrated chlorogenic acid. Meanwhile, our re-
search also suggested chlorogenic acid promoted increase in the 
relative abundance of Bacteroidaceae, and Lactobacillaceae might 
prevent the negative metabolic phenotype correlated with obesity- 
driven dysbiosis. It has been reported that a high abundance of 
Erysipelotrichaceae was observed in HFD- induced mice, and they 
are strongly responsible for obesity (Hui et al., 2015). Interestingly, 
the relative abundance of Erysipelotrichaceae induced by high- fat 
diet can be alleviated by CGA treatment. Intriguingly, the family 
Desulfovibrionaceae (Proteobacteria phyla) was thought to be posi-
tively associated with obesity (Delzenne & Cani, 2011), but a lower 
abundance was observed in the chlorogenic acid group, which may 
contribute to alleviating the development of obesity. Taken to-
gether, in line with the previous research that polyphenol- induced 
intestinal microbiota homeostasis, we have reason to believe that 
chlorogenic acid shows anti- obesity effect through beneficial mod-
ulation of the gut microbiota.

5  | CONCLUSIONS

The present study demonstrated that 6 weeks of chlorogenic acid 
administration could reduce the body weight, improve plasma lipid 
associated with HFD- induced obesity and regulate lipogenesis and 
lipolysis genes expression in epididymal WAT. Moreover, chloro-
genic acid treatment dramatically adjust the gut microbiota compo-
sition associated with obesity, such as decreasing Ruminococcaceae, 
Desulfovibrionaceae, Lachnospiraceae, Erysipelotrichaceae, and in-
creasing Bacteroidaceaea and Lactobacillaceae with their genus mem-
bers of the Bacteriodes and Lactobacillus, respectively. Our results 
demonstrated the potential possibility that chlorogenic acid in the 
prevention and treatment of obesity may closely rely on its role in 
regulation of gut microbiota.
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