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Numerous studies have shown that 
supraphysiological activation of 

AMPK could inhibit tumor growth. On 
the other hand, accumulating data also 
suggest that AMPK activity is required 
for tumor growth and migration. These 
findings suggest that physiological acti-
vation of AMPK is critical for tumor 
growth/migration, possibly through 
maintenance of ATP levels. Our recent 
study provides the first evidence that the 
maintenance of cellular NADPH homeo-
stasis is the predominant mechanism by 
which AMPK promotes tumor cell sur-
vival and solid tumor formation. We 
showed that AMPK activation is required 
to maintain intracellular NADPH levels 
through the activation of fatty acid oxida-
tion (FAO) or the inhibition of fatty acid 
synthesis (FAS) during glucose depriva-
tion or matrix detachment respectively. 
Through these processes AMPK activa-
tion inhibits the rise in reactive oxygen 
species (ROS) levels and promotes meta-
bolic adaptation in response to metabolic 
stress. This finding also provides a new 
therapeutic opportunity through target-
ing metabolic adaptation of cancer cells, 
either alone or in combination with con-
ventional anti-cancer drugs that cause 
metabolic stress.

Introduction

AMP-activated protein kinase (AMPK) 
plays a pivotal role in the regulation of 
energy homeostasis at both the cellu-
lar and organismal levels. Diverse stress 
conditions, such as nutrient starvation or 
hypoxia, that increase AMP, ADP, Ca2+ 
and reactive oxygen species (ROS) lev-
els have been shown to activate AMPK  
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(Fig. 1, and reviewed in ref. 1). AMPK 
exists as a heterotrimer consisting of an 
α-catalytic subunit and β, γ-regulatory 
subunits, and the phosphorylation of 
T172 in the α-catalytic subunit is a criti-
cal event for the full activation of AMPK 
under these conditions. Two major 
upstream kinases are responsible for the 
phosphorylation of the catalytic subunit: 
the liver kinase B1 (LKB1) and Ca2+/
calmodulin-dependent protein kinase 
kinase 2 (CaMKK2)2-6 (Fig. 1). LKB1 is 
responsible for the activation of AMPK 
during energy stress when intracellular 
ATP levels are reduced and ADP and 
AMP levels are elevated. Thus, the LKB1-
AMPK pathway has a major role in the 
regulation of metabolic adaptation during 
energy stress conditions. CaMKK2 activ-
ity is usually elevated when intracellular 
Ca2+ levels are elevated, and thus can acti-
vate AMPK regardless of the energy status 
of the cells. However, the physiologi-
cal conditions in which the CaMKK2-
AMPK axis plays a major role remain to 
be elucidated. In addition to AMP, ADP 
and Ca2+, recent studies also have iden-
tified reactive oxygen species (ROS) as 
another upstream activators of AMPK.7-11 
Although ROS can increase the phosphor-
ylation of T172, it was not yet determined 
which upstream kinases (or phosphatases) 
are responsible for this increase. Moreover, 
there is a debate whether ROS can activate 
AMPK directly through the oxidation of 
cysteine residues in AMPK, or indirectly 
through the increase of AMP, ADP or 
Ca2+ levels.7,8,10-12

Once activated, AMPK maintains 
energy balance through the activation of 
catabolism to increase ATP production 
and through the inhibition of anabolism 
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impaired in their ability to form tumors 
in vivo.23-25

The silencing of AMPK in pancre-
atic cancer cells impairs both their abil-
ity to grow in an anchorage-independent 
manner and to form tumors in vivo.26 
Moreover, it has been shown that the 
LKB1-AMPK signaling pathway is 
required for glioma cell survival and spher-
oid migration in low-glucose conditions.27 
The importance of AMPK activation for 
tumor cell growth, survival and migration 
has also been shown in prostate cancer.28-31 
Unbiased RNAi screening identified that 
AMPK β subunit is essential for prostate 
cancer cell survival.30 The same study 
found that the expression of AMPK β 
subunit is highly elevated in metastatic 
prostate cancers when compared with 
primary prostate cancers. Interestingly, a 
critical role of the CaMKK2-AMPK axis 

The Emerging Evidences for the 
Pro-Tumorigenic Role of AMPK

Despite the concept that AMPK hyper-
activation is anti-tumorigenic, there are 
multiple observations that indicate that 
physiological AMPK activation is pro-
tumorigenic (summarized in Table 1). 
Using an established model of glioblas-
toma, it was shown that AMPK is strongly 
activated during the early stages of solid 
tumor formation.22 This finding sup-
ports the notion that physiological acti-
vation of AMPK could be important for 
tumorigenesis. Consistently, it has been 
shown that LKB1-null mouse embryo 
fibroblasts (MEFs) are resistant to onco-
gene-induced anchorage-independent 
growth and that oncogene-transformed 
AMPKα1/α2-null (AMPKα-KO) MEFs 
are sensitive to anoikis and are severely 

to reduce ATP consumption through the 
phosphorylation of diverse substrates. 
Thus AMPK could restrain cell growth 
by inhibiting protein and fatty acid syn-
thesis, while promoting cell survival 
mechanism through the elevation of mito-
chondrial metabolism and autophagy.13-21 
Because of these versatile and conflicting 
functions of AMPK in cell growth and 
survival, its role in cancer has been hotly 
debated. In this addendum, we briefly 
summarize recent literatures supporting 
the pro-tumorigenic role of AMPK and 
highlight our recent findings connecting 
AMPK and NADPH homeostasis as the 
potential mechanisms to explain those 
previous observations. Further, we dis-
cuss possible scenarios that can resolve 
the LKB1-AMPK paradox in cancer and 
potential applications of this finding to 
cancer therapy.

Figure 1. The mechanisms by which AMPK regulate NADPH homeostasis during energy stress. When glucose is available, NADPH is generated by the 
PPP and mitochondrial metabolism. NADPH is consumed in FAS and in regeneration of GSH to detoxify ROS. Energy stress conditions, such as glucose 
deprivation or matrix detachment, which decrease glucose metabolism, impair NADPH production by the PPP. Under these conditions, AMP/ATP and 
ADP/ATP ratios are increased and the LKB1-AMPK pathway is activated. Matrix detachment also activates the CaMKK2-AMPK pathway. Oxidative stress 
is also known to activate AMPK through poorly understood mechanisms. Activated AMPK could inhibit cell proliferation through the inhibition of 
mTORC1. However, AMPK also phosphorylates and inactivates ACC1 and ACC2, which result in the inhibition of FAS and activation of FAO respectively. 
Inhibition of FAS reserves intracellular NADPH levels by blocking NADPH consumption during FAS. The activation of FAO increases NADPH production 
by increasing TCA cycle metabolites and substrates for ME1 and IDH1 that generate NADPH from malate and isocitrate respectively (for details see 
text). Abbreviations: PY, pyruvate; OA, oxaloacetate; α-KG, α-ketoglutarate.



www.landesbioscience.com	 Cellular Logistics	 199

through inhibition of mammalian target 
of rapamycin complex 1 (mTORC1) or 
activation of p53.13,34 These previous stud-
ies suggested that AMPK promotes cell 
survival by conserving ATP levels dur-
ing metabolic stress through the inhibi-
tion of ATP consuming processes or the 
activation of ATP producing processes, 
although there is no direct experimental 
evidence to support this view.

Our recent study unraveled a new 
function of AMPK in NADPH homeo-
stasis, which is required to prevent 

and for the Kinase Suppressor of Ras 2 
(KSR2)-induced anoikis resistance and 
anchorage-independent growth of cancer 
cells.33

The Mechanisms by Which  
AMPK Activation Promotes  
Tumorigenesis: The Redox  

Connections

Previous studies suggested that the LKB1-
AMPK pathway promotes cell survival 
during glucose deprivation, in part, 

also has been shown in prostate cancer.28 
It was found that CaMKK2 expression 
is highly elevated in prostate cancers and 
the activation of the CaMKK2-AMPK 
pathway is a critical downstream effec-
tor of androgen receptor (AR)-dependent 
migration and invasion, suggesting that 
the CaMKK2-AMPK axis is a promis-
ing therapeutic target in prostate cancer. 
Finally, it was recently shown that AMPK 
is essential for Myc-driven tumorigenesis 
using orthotopic transplantation of mouse 
hepatocellular carcinoma (HCC) cells32 

Table 1. Summary of recent findings supporting the pro-tumorigenic role of AMPK

Cell lines/animal models Stress conditions (assays)
Major findings supporting pro-tumorigenic 

role of AMPK
References

Established model of glioblastoma  
development in the offspring of rats 
exposed prenatally to the mutagen 

N-ethyl-N-nitrosourea (ENU)

Solid tumor formation in vivo (brain 
tumor model induced by  

carcinogen)

AMPK is strongly activated during early stage 
of tumorigenesis in vivo.

22

LKB1-null MEFs transformed by oncogene
Anchorage-independent growth 

(soft agar)
LKB1-null MEFs are resistant to  

oncogene-induced transformation.
23

AMPKα1α2-double knockout MEFs  
transformed by H-Rasv12

Solid tumor formation in vivo  
(xenograft)

AMPKα1α2-double knockout MEFs are  
severely impaired in their ability to form 

tumors in vivo.
24

AMPKα1α2 double knockout MEFs  
transformed by H-Rasv12 Matrix detachment (cell viability)

AMPK confers anoikis resistance in  
transformed cells

25

Pancreatic cancer cell lines

Glucose deprivation (cell viability), 
anchorage-independent growth 

(soft agar) and solid tumor  
formation (xenograft)

AMPK knockdown using siRNA sensitizes cell 
death during glucose deprivation and also 

impairs anchorage-independent growth and 
solid tumor formation.

26

Glioblastoma cell lines
Glucose deprivation (cell viability 

and spheroid migration)
AMPK signaling promotes cell survival and 

migration during glucose deprivation
27

Prostate cancer cell lines Non-stress conditions (migration?)
CaMKK2 is increased by androgen and  

mediates androgen dependent regulation of 
cell migration through AMPK.

28

Prostate cancer cell lines
Non-stress conditions  

(cell proliferation and apoptosis)

Inhibition of AMPK by RNAi or compound C 
decreases cell proliferation and induces  

apoptosis.
29

Prostate cancer cell lines
Lipid deprivation (caspase activity 

and cell mass) and solid tumor  
formation (xenograft)

siRNA screening in prostate cancer cell lines 
under lipid deprivation identified AMPKβ1 

subunit as an essential gene for survival.
30

Prostate cancer cell lines Glucose deprivation (cell viability)
AMPK promotes prostate cancer cell survival 

during glucose deprivation.
31

Hepatocarcinoma cells isolated from mouse 
primary tumor induced by myc, Akt, p53-/-

Solid tumor formation (orthotopic 
transplantation into liver capsule)

Myc-driven tumorigenesis requires AMPK 
activity that promotes mitochondrial  

metabolism.
32

Pancreatic cancer cell line and glioblastoma 
cell line

Matrix detachment (cell viability) 
and anchorage-independent growth 

(soft agar)

KSR2 promotes metabolic activity, anoikis 
resistance and anchorage-independent 

growth via AMPK.
33



200	 Cellular Logistics	 Volume 2 Issue 4

is an important function of AMPK activa-
tion. It appears that in cancer cells, which 
are exposed to energy stress, the mainte-
nance of NADPH is the predominant 
mechanism by which AMPK activation 
promotes cell survival.

Understanding the Previous  
Findings in the Context  

of AMPK-NADPH Paradigm

Our findings could explain several aspects 
regarding the role of the LKB1-AMPK 
pathway in cancer raised by previous stud-
ies, and which are not fully understood. 
For example, our results may explain why 
patients with Peutz-Jeghers syndrome, who 
have an inherited deficiency of LKB1, and 
most mouse models of LKB1 deficiency, 
develop only benign tumors.23 Although 
cells with LKB1 deficiency have an advan-
tage in cell growth and proliferation as a 
result of mTORC1 activation, they can-
not become fully malignant due to a dis-
advantage in cell survival during solid 
tumor formation, which involves matrix 
detachment and limited glucose supply. It 
would be, therefore, interesting to assess 
this possibility by crossing LKB1 deficient 
mice with the mice overexpressing cer-
tain antioxidant genes such as catalase or 
the transcription factor NRF2, a master 
regulator of antioxidant enzymes and ana-
lyzing tumor development.40 In addition, 
our results could potentially explain why 
LKB1- or AMPK-deficient MEFs are resis-
tant to both oncogene-induced anchorage-
independent growth and tumor formation 
in vivo, and why AMPK is required for 
KSR2-mediated anoikis resistance and 
anchorage-independent growth.23-25,33 
Interestingly, a recent study by Sorensen 
and colleagues also found that AMPK 
inhibits anoikis partially through the inhi-
bition of mTORC1-mediated translation.25 
This study adds additional mechanism 
for the protective role of AMPK during 
matrix detachment, although it is still 
possible that mTORC1 can regulate FAS 
and NADPH levels through regulation of 
sterol-regulatory-element-binding proteins 
1 (SREBP1) that induces the expression of 
lipogenic enzymes.41,42 Likewise, this may 
also explain why Tsc2-null cells are hyper-
sensitized to glucose deprivation,15,43 as 
mTORC1 hyperactivation accelerates FAS 

pathway under these conditions increases 
NADPH production and H

2
O

2
 detoxi-

fication via inhibition of ACC2 and the 
increase of FAO.35 Only ACC2 inhibition 
and the induction of FAO—not ACC1 
and FAS inhibition—is required for cell 
survival under glucose deprivation because 
FAS inhibition is occurring regardless 
of ACC1 or ACC2 status in response to 
glucose deprivation.35 This is consistent 
with the previous finding showing that in 
the absence of glucose, the activation of 
AMPK and FAO could promote the sur-
vival of cancer cells displaying hyperac-
tive Akt.20 This is also consistent with the 
recent study showing that AMPK is essen-
tial for Myc-driven tumorigenesis through 
promoting mitochondrial respiration,32 
further underscoring the importance of 
the AMPK-induced mitochondrial metab-
olism in tumorigenesis.

On the other hand, during matrix 
detachment, we found that the inhibi-
tion of FAS and therefore the inhibition 
of NADPH consumption by ACC1 inhi-
bition is the predominant mechanism by 
which AMPK sustains NADPH levels 
and prevents oxidative stress35 (Fig. 1). 
Importantly, we found that even in the 
absence of LKB1, AMPK can be signifi-
cantly activated during matrix detach-
ment in a CAMKK2-dependent manner35 
(Fig. 1). The mechanism by which the 
CAMKK2-AMPK axis is activated dur-
ing matrix detachment is not known, 
but this activation of AMPK is not suf-
ficient to fully protect the cells from 
oxidative stress induced by matrix detach-
ment. The importance of AMPK activa-
tion in reducing oxidative stress during 
tumorigenesis was underscored by the 
observations that antioxidant treatment 
in LKB1- or AMPK-deficient cells could 
restore anchorage-independent growth of 
these cells. Consistently the inhibition of 
ACC1 or ACC2 could restore anchorage-
independent growth and solid tumor for-
mation of AMPK-deficient cells in vivo.35

Collectively, our study demonstrates 
that NADPH and ROS maintenance by 
ACC inhibition is a major mechanism 
by which AMPK promotes cancer cell 
survival during energy stress, anchorage-
independent growth and solid tumor for-
mation. Further, the study established that 
in addition to ATP, NADPH maintenance 

oxidative stress and promote cancer cell 
survival under metabolic stress conditions35  
(Fig. 1). NADPH is consumed and 
required for FAS, and for the maintenance 
of reduced glutathione, which is required 
to detoxify H

2
O

2
 (Fig. 1). We showed that 

AMPK maintains NADPH homeostasis 
through the regulation of fatty acid metab-
olism by phosphorylating and inactivati-
vating acetyl-CoA carboxylase 1 (ACC1) 
and ACC2.35 ACC1 and ACC2, which are 
the major targets of AMPK in the regula-
tion of FAS and FAO, convert acetyl-CoA 
to malonyl-CoA36 (Fig. 1). Malonyl-CoA 
is not only a precursor for FAS, but is also 
an allosteric inhibitor of carnitine pal-
mitoyl transferase 1 (CPT1). CPT1 is 
associated with the outer mitochondrial 
membrane and transfers long-chain fatty 
acids from the cytosol into the mitochon-
dria for FAO. ACC1 and ACC2 might have 
overlapping function. However, malonyl-
CoA generated by ACC1, which is local-
ized to the cytosol is largely channeled to 
FAS.37 On the other hand, malonyl-CoA 
generated by ACC2, which is localized 
to the outer mitochondrial membrane 
and in close proximity to CPT1, inhibits 
CPT1 and consequently FAO38 (Fig. 1). 
Since FAO fuels mitochondrial metabo-
lism and increases TCA cycle metabolites, 
FAO could increase NADPH production 
through malic enzyme 1 (ME1) and isoci-
trate dehydrogenase 1 (IDH1) by convert-
ing malate and isocitrate to pyruvate (PY) 
and α-ketoglutarate (α-KG) respectively 
(Fig. 1).

In our study, we used two different 
conditions for metabolic stress, glucose 
deprivation and matrix detachment, 
which are both associated with solid 
tumor microenvironment.35,39 When glu-
cose uptake is decreased, both glycolysis 
and the pentose phosphate pathway (PPP) 
can be inhibited (Fig. 1). The PPP is the 
major pathway that generates NADPH 
via glucose-6-phosphate dehydrogenase 
(G6PD) and 6-phosphogluconate dehy-
drogenase (6PGD). As a consequence of 
metabolic stress conditions when glucose 
availability is decreased in LKB1 deficient 
cancer cells, we showed that NADPH pro-
duction is decreased from PPP and conse-
quently H

2
O

2
 levels are elevated, which is 

the main cause of cell death.35 However, 
the concurrent activation of LKB1-AMPK 
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ovarian cancer enhanced the therapeutic 
effect of anti-VEGF. Thus, it would be of 
importance to further assess the potential 
clinical benefits of this combination ther-
apy. Further, as described above, analyzing 
specific compensatory genetic or epigene-
tic changes in LKB1-mutated cancers will 
help design new therapeutic strategies to 
treat those cancers.
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