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Abstract: The current standard regimens for the treatment of acute myeloid leukemia 

(AML) are curative in less than half of patients; therefore, there is a great need for 

innovative new approaches to this problem. One approach is to target new treatments to the 

pathways that are instrumental to cell growth and survival with drugs that are less harmful 

to normal cells than to neoplastic cells. In this review, we focus on the MAPK family of 

signaling pathways and those that are known to, or potentially can, interact with MAPKs, 

such as PI3K/AKT/FOXO and JAK/STAT. We exemplify the recent studies in this field with 

specific relevance to vitamin D and its derivatives, since they have featured prominently in 

recent scientific literature as having anti-cancer properties. Since microRNAs also are 

known to be regulated by activated vitamin D, this is also briefly discussed here, as are the 

implications of the emerging acquisition of transcriptosome data and potentiation of the 

biological effects of vitamin D by other compounds. While there are ongoing clinical trials 

of various compounds that affect signaling pathways, more studies are needed to establish 

the clinical utility of vitamin D in the treatment of cancer. 

Keywords: acute myeloid leukemia; targeted therapy; differentiation; 1,25-dihydroxyvitamin 

D3; mitogen-activated kinases 
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1. Introduction 

Cytotoxic therapy can be quite successful in the control of the growth and dissemination of many 

human malignant diseases, but the established treatment regimens appear to have reached a plateau in 

their potential for improvement. Therefore, encouraged by the success of Imatinib mesylate, also known 

as Gleevec, in producing long-lasting remissions of CML by targeting the fusion gene Bcr-Abl with 

tyrosine kinase activity [1–4] and of ATRA, which targets a fusion TF PML-RARα in acute promyelocytic 

subtype M3 of AML (APL) [5–10], the search is on for similar targeting of other neoplastic diseases. 

Derivatives of vitamin D (VDD) have been suggested to have anti-neoplastic properties, but the 

translation of the results of epidemiological and laboratory studies to the clinic has so far not been 

successful [11–14]. In this review, we discuss the background for seeking molecular targets related to 

signaling pathways that current knowledge suggests have the potential for the exploration of their 

clinical usefulness in subtypes of AML other than CML and APL. While several excellent reviews 

have been published recently that overlap with this one [15–18], our aim is to update this knowledge, 

as well as to focus on several selected aspects of the vitamin D and human leukemia field that we feel 

deserve additional emphasis. 

2. Signaling Pathways Studied in Hematopoietic and Myeloid Cells 

AML is a predominant acute leukemia among adults and constitutes a very heterogeneous group of 

blood and bone marrow neoplasms [19–21]. AML is an aggressive disease characterized by over 20% 

of myeloblasts circulating in the blood or/and bone marrow [20,22–24]. Blast cells are characterized by 

inhibited differentiation, as well as increased proliferation. Moreover, AML have specific cytogenetic 

and molecular abnormalities [25]. There are more than two hundred described chromosomal 

aberrations in leukemic cells of patients with AML [26,27], but also a large group of AMLs without 

detectable cytogenetic abnormalities [20,28].  

Despite significant improvements in chemotherapeutic regimens, poor responsiveness and relapse 

are still problems in a significant number of patients diagnosed with AML. The clinical outcome with 

chemotherapy alone is still abysmal for many myeloid leukemia patients, so the development of 

precision therapy, also called “targeted” therapy, for AML patients based on the molecular features 

remains an essential aim. Therefore, there is a great need for new therapies with better tolerability and 

effectiveness than the current treatments. As mentioned above, APL was the first hematological 

malignancy in which targeted therapy with ATRA has been successfully introduced into clinical 

practice and induces cell differentiation and death of blast cells [29–31]. Another compound capable of 

inducing differentiation of AML cells is 1,25-dihydroxyvitamin D3 (1,25D), which induces 

monocyte/macrophage-like differentiation and cell cycle arrest [32–36]. The importance of 

understanding the signaling pathways disturbed in AML cells may improve current treatments and may 

supplement the conventional therapeutic regimens. 

2.1. MAP Kinase Signaling 

The MAPKs constitute a family of serine-threonine kinases regulating the proliferation and 

differentiation of normal and malignant hematopoietic cells [37,38]. MAPKs signal by four main 
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cascades: the ERK1/2, the JNKs, the p38 kinases and ERK5 kinase [37,39] (Figure 1). There are 

multiple interactions between these pathways, including cooperation and cross-talk between various 

components, in order to transmit specific signals to the cell [40–43]. 

MAPKs transduce signals into the cell through a three-tiered cascade, from MAP3Ks (such as Raf1, 

Cot1, MTK/DLK or ASK1/TAK1/PTK1) through MAP2Ks (such as MEK1/2, MEK5, MKK7/MEK4 

or MEK3/6) to MAPKs (ERK1/2, ERK5, JNKs, p38 kinases). Terminally, MAPKs activate several 

TFs (like c-Fos, c-Jun, PU.1, MEF2, ATF2, c-Myc and Sp1), activating genes responsible for proliferation, 

differentiation and cell death. 

 

Figure 1. MAPK signaling pathways. 

2.1.1. MEK1/2-ERK1/2 Pathway 

The ERK1/2 cascade is activated by several reactions initiated by extracellular signals and transmitted 

by growth factor receptors and cytokine receptors to the small G-coupled protein Ras1 [44], which can 

sequentially activate Raf1, MEK1/2 and, then, ERK1/2 kinases (Figure 1). When activated by  

MEK 1/2 phosphorylation, ERK1 and ERK2 are translocated to the nucleus and, in turn, phosphorylate 

transcription factors crucial for myeloid differentiation, such as C/EBPα, C/EBPβ or PU.1 [45–47]. 

Kinase suppressor of Ras 1 and 2 (KSR1 and KSR2), considered to be scaffold proteins that bring 

Ras1, Raf1 and MEK1/2 together, facilitate signaling through pathways mediated by ERK1/2 [48–51]. 

ERK1/2 have been shown to phosphorylate several different substrates, including ribosomal S6 kinase 

p90RSK [52]. The Ras1-Raf1-MEK1/2-ERK1/2 pathway is an important positive regulator of monocytic 

and granulocytic differentiation [38,53,54].  
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2.1.2. JNKs Pathway 

The JNKs family is made up of three members: JNK1, JNK2 and JNK3 [55–57]. These kinases are 

activated by external stress, apoptotic stimuli and cytokines and are also known as SAPK  

(stress-activated protein kinases). These signals lead to their phosphorylation by upstream kinases 

(MEK4, MKK7) [58]. Although JNK1 and JNK2 have somewhat different actions on AML, in 

general, JNKs phosphorylate TFs, such as c-Jun, ATF-2, p53 and Elk-1, which, in turn, regulate the 

expression of specific genes to mediate cell proliferation, differentiation or apoptosis [59,60]  

(Figure 1). C-Jun is essential for monocytic differentiation of human AML cells, as a part of the  

AP1 TF [53,61]. 

2.1.3. p38 Kinases Pathway 

The p38 MAPKs are activated in cells by environmental stresses and pro-inflammatory cytokines, 

less often by growth factors. There are four members of the p38 MAPKs family, α, β, γ and δ, which 

display tissue-specific patterns of expression [62]. p38α and β, the “classical” isoforms, are ubiquitously 

expressed among tissues, whereas the expression of p38γ and δ appears to be more tissue restricted 

and, in 1,25D-treated AML cells, have positive effects of differentiation, unlike the classical  

isoforms [41,63–66]. The p38 kinases share about 40% sequence identity with other MAPKs, but they 

share only about 60% identity among themselves, which suggests highly diverse functions [67–69]. The 

p38 MAPKs are activated by phosphorylation by upstream kinases MKK3 and MKK6, although 

MKK4, the main activator of JNKs, has also been shown to activate p38 MAPKs [70]. Upon 

activation, p38 proteins translocate from the cytosol to the nucleus, where they orchestrate cellular 

responses by mediating phosphorylation of downstream targets that regulate apoptosis, cell cycle 

arrest, cell growth inhibition and differentiation [41,71,72] (Figure 1). Besides transcription factors, 

p38 kinases downstream targets are other kinases, such as MAPKAPK3 or MAPKAPK5 [65,73]. 

2.1.4. MEK5-ERK5-MEF2C Pathway 

Like the other branches of the MAPK family, the MEK5/ERK5 pathway has been implicated in cell 

survival, anti-apoptotic signaling, angiogenesis, cell motility, proliferation and cell differentiation [74]. 

However, ERK5 signaling can have both overlapping and distinct effects from the other MAPKs [75]. 

The principal activator of ERK5 is MEK5, which can be activated by MAP2Ks, such as MEKK2 

and MEKK3 [76,77]. It has been shown that MEKK3 induces activation of the MEK5/ERK5 pathways 

through growth factor-induced cellular stimulation and oxidative stress [76,78] (Figure 1). ERK5 is 

activated by two phosphorylations: first, on the N-terminal TEY sequence, usually by MEK5 [79],  

and then by autophosphorylation on the ERK5 C-terminal transcriptional activation domain [80,81], 

which allows it to be translocated into the nucleus and to activate several TFs, including MEF2, Sap1,  

c-Fos and c-Myc [79,82–84]. The auto-phosphorylation of the ERK5 C-terminus may also be required 

for transcriptional activation [85]. The Cot1 oncogene can activate ERK5 [86,87] and can  

repress KSR1/2 [42,87].  
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2.2. PI3 Kinase-Akt1-mTOR Signaling 

PI3Ks control the growth, motility, survival and differentiation of many normal and cancer  

cells [88–90]. The PI3Ks family is composed of heterodimeric proteins grouped into three main 

classes: I (IA and IB), II and III. Class IA enzymes are composed of three distinct catalytic subunits 

(p110α, p110β or p110δ), which associate with one of the regulatory subunits (p85α, p85β, p55α, p55γ 

or p50α) [91,92]. Class IB enzymes encompass one catalytic subunits (p110 γ) and two regulatory 

subunits (p101 or p87) [93]. Notably, p110α and p110β are ubiquitously expressed in most types of 

cells, whilst p110δ and p110γ are exclusively expressed in hematopoietic cells [92,94,95]. RTKs,  

non-RTKs, GPCRs and Ras1 are direct activators of class IA PI3Ks, whereas class IB enzymes are 

activated only by GPCRs and Ras1 [96,97]. Upon activation, the regulatory subunit mediates binding 

to the receptor, whereas the catalytic subunit phosphorylates PIP2 to yield PIP3. PIP3 initiates 

downstream signaling, such as the PDK1, Akt1, mTOR or FOXO family of TFs [98–101] (Figure 2). 

Direct constitutive activation of PI3K/Akt1/mTOR signaling occurs in the majority of leukemias, such 

as AML and ALL, Hodgkin’s lymphoma, lymphoproliferative disorders or myeloproliferative 

neoplasms [102–104]. 

 

Figure 2. FLT3/PI3 kinase/Akt1/mTOR signaling pathways. 

After ligand (L) binding, FLT3 is phosphorylated (yellow circles), at TKD, and activates downstream 

pathways, such as PI3K/Akt1, MAPKs (MEK1/2, ERK 1/2) and STAT5. Two major classes of 
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activating FLT3 mutations have been identified in AML patients: ITD and TKD point mutations. 

Mutations cause constitutive activation of FLT3 and aberrant activation of downstream signaling 

pathways and factor-independent growth. PI3K is activated downstream of RTKs, non-RTKs or 

GPCRs. Ras1 is a direct activator of class IA of PI3Ks, upon activation regulatory subunit (RSU) 

mediating the binding to the receptor, whereas the catalytic subunit (CSU) phosphorylates PIP2 to 

PIP3. PIP3 initiates downstream signaling, PDK1, Akt1, mTOR or FOXO. 

2.3. FLT3 Signaling 

FLT3 is encoded by a gene located on chromosome 13 and plays an important role in early 

hematopoiesis and development of myeloid precursors [105,106]. This transmembrane kinase belongs 

to the class III receptor tyrosine kinase family and is the most commonly mutated in AML [107–109]. 

The oncogenic mutations in FLT3 (ITD, internal tandem duplication in the juxtamembrane region or 

point mutation in the catalytic domain) cause ligand-independent dimerization of the FLT3 and its 

constitutive activation. Thus, the mutated FLT3 receptor activates downstream signaling pathways, 

such as PI3K, ERK1/2 and p38, LYN and STAT5 kinases, leading to the cytokine-independent 

proliferation (Figure 2) [109–112].  

2.4. C/EBPα Signaling 

The C/EBPα belongs to the family of basic leucine zipper TFs, which participate in the differentiation 

of several cell types, including myeloid progenitor cells from multipotent precursors [113–115].  

There are two distinct isoforms of C/EBPα protein, full-length p42 and truncated p30, which lacks  

two N-terminal trans-activation domains [116]. Only the p42 isoform of C/EBPα can inhibit cell 

proliferation, while the p30 isoform can support the formation of granulocyte-macrophage progenitors 

in mice and can lead to the development of AML in the absence of p42 [117]. The relative levels of 

p42 and p30 in the cell can be regulated through mTOR signaling to control the transition of cell  

fate [118]. A genetic knockout of C/EBPα results in a complete block in the transition from common 

myeloid progenitors to the granulocyte/monocyte progenitor stage of differentiation [119]. Mutations 

in CEBPα occur in approximately 5% to 10% of de novo AML and is most common in cytogenetically 

normal AMLs [114,120].  

2.5. Targeting by MicroRNAs 

MicroRNAs are small, noncoding and highly conserved RNA molecules that regulate the 

expression of genes post-transcriptionally by binding to the 3′-UTR regions of the mRNA [121–123]. 

Several microRNAs are widely expressed in hematopoietic cells (i.e., 106a, 128a, 146, 150, 155, 181a, 

221, 222, 223), and their altered expression (e.g., by chromosomal translocations) has been correlated 

with leukemia [124]. Several studies have shown that specific patterns of microRNA expression are 

closely associated with cytogenetic and risk/survival predictions in AML patients [125–128]. 

Importantly, integration of microRNA and mRNA patterns of regulation can reveal the extent of  

co-regulation, which permits exquisite control of gene expression at the mRNA level [129,130]. 
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2.6. Global Effects of VDDs on AML Cells 

Most studies of signaling by VDDs were based on the examination of the expression of a single or  

a small number of genes. However, powerful new technology is evolving, which, combined with 

bioinformatics, is poised to transform this field. Therefore, the question can soon be answered of how 

the perturbations of cellular homeostasis by 1,25D or other VDDs influence the global gene 

expression. Interesting examples of this approach have recently been published by the Carsten group, 

which include a genome-wide analysis of VDR binding sites in THP-1 human monocytic leukemia 

cells. They identified by ChIP-seq 2340 VDR binding locations, of which 1171 occurred uniquely 

following short exposure to 1,25D and 520 without exposure to 1,25D [131]. Interestingly, it was 

found that 1,25D binding shifts the locations of VDR occupation to DR3-type response elements that 

surround its target genes, and there was a large variety of regulatory constellations of VDR binding 

sites. It is also becoming increasingly clear that VDR binding choices are highly specific for the cell 

type [130–132]. The biological significance may be derived from microarray analyses following 1,25D 

treatment, such as that which found that the monocytic marker CD14 and cathelicidin anti-microbial 

peptide were by far the most markedly upregulated genes in this scenario [131]. Among the genes 

upregulated early, as shown by the microarray analysis, the monocyte-specific genes and  

metabolism-related genes are two noticeable groups [132]. The effects of longer exposure to 1,25D 

include the finding that VDR binding sites are significantly enriched near autoimmune and  

cancer-associated genes identified from GWA studies [133]. Thus, GWA surveys can lead to deeper 

understanding of signaling by VDDs. 

3. 1,25D as an Important Modifier of Signaling Pathways Disturbed in AML 

1,25D is the physiological form of vitamin D that belongs to the family of secosteroid  

hormones [134,135]. Although the primary function of 1,25D is to maintain calcium and phosphorus 

metabolism [136], 1,25D is capable of inducing differentiation and inhibiting the proliferation of several 

types of normal and cancer cells, AML cells among them [137–139]. Exposure of AML cells to 1,25D 

results in a monocyte-like phenotype, which, upon prolonged exposure to 1,25D, becomes  

a macrophage-like phenotype, manifested by functional changes (phagocytosis accompanied by 

monocyte-specific esterase activity and the generation of reactive oxygen species). The phenotypic 

changes include altered morphology [140,141] and the expression of a receptor for complexes of 

lipopolysaccharides, CD14, and the adherence protein encoding the subunit of αMβ2-integrin,  

CD11b [142–145].  

There are several phases of 1,25D-induced differentiation of AML cells. In the initial phase, the 

cells continue normal proliferation and cell cycle progression. During this phase, high levels of MEK1/2, 

ERK1/2, JNKs and p38 kinases are essential [53,146,147]. Latter phases lead to the cell cycle block at 

the G1/S phase due to the elevated expression of CDK inhibitors, such as p21Cip1/Waf1 and  

p27Kip1 [148–150], and anti-apoptotic proteins, including Bcl-XL and Mcl1, which facilitate 

differentiation by increasing cell survival [151,152].  
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3.1. Activation of MAPKs by 1,25D 

3.1.1. Ras1-Raf1-MEK1/2-ERK1/2 

The ERK1/2 signaling pathway maintains cell proliferation during the early stages of  

1,25D-induced differentiation of AML cells (24–48 h). ERK1/2 are expressed at a high level and are 

activated by phosphorylation [53,146]. PD98059, the specific inhibitor of MEK1/2 [153], partially 

inhibits 1,25D-induced monocytic differentiation of HL60 cells. At the later phase, a high level of 

phosphorylated ERK1/2 decreases to the basal level, and then, ribosomal S6 kinase p90RSK is  

activated [53,146,147]. This kinase, in turn, can activate C/EBPβ, the master TF for 

monocyte/macrophage differentiation [154,155]. C/EBPβ, which can be activated by phosphorylation by 

ERK1/2 [156], by p90RSK [157] or by ERK5 [141] and can directly interact with the promoter region of 

CD14, activates its expression [45,156,158]. 

Raf1 signaling is a requisite for the latter stages of 1,25D-induced differentiation of HL60 cells. 

Raf1 mediates activation of p90RSK, but independently of the MEK1/2-ERK1/2 module [45]. 

Moreover, a platform for Raf1 phosphorylation, KSR1 and KSR2 [159] are also upregulated by 1,25D, 

augmenting the strength of the signal transmitted through Raf1 to downstream targets [49,160,161] 

(Figure 3). KSR2 knockdown decreases cell survival, which is accompanied by reduced Bcl-2/Bax and 

Bcl-2/Bad ratios and increased caspase-3 activating cleavage [162]. 

 

Figure 3. 1,25D’s influence on MAPK signaling. 
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1,25D activates several MAPKs, such as MLK3, Cot1 and MEK1/2. The ERK1/2, ERK5 and JNK 

(JNK1/2) pathways have positive effects on monocytic differentiation, while the p38 MAPKs pathway 

may have a dual effect on differentiation. p38α and p38β have an inhibitory effect on monocytic,  

but not granulocytic differentiation of HL60 cells, while p38γ and δ may positively modulate 

monocytic differentiation of these cells. 1,25D can amplify the Raf1-MEK1/2-ERK1/2 pathway  

by direct transcriptional upregulation of KSR1 and KSR2, which act as scaffolds that coordinate 

signaling along the Ras1/ERK1/2 signaling. Also shown is the potential role of the C/EBPβ,  

c-Jun/ATF2 and PU.1/Sp1 TFs, which act as positive effectors of 1,25D signals by upregulating the 

expression of VDR, CD14 and CD11b. 

3.1.2. JNKs 

During 1,25D-induced differentiation of AML cells, the expression level of JNK1 is highly  

elevated [147]. JNK1 activates c-Jun and ATF2, two major components of the AP-1 TF complex, as 

well as C/EBPβ and Jun B [61]. Moreover, the expression level of c-Jun is also elevated in those  

cells [163], which enhances the differentiation process [164]. Inhibition of JNK1/2 by the specific 

inhibitor, SP600125 [165], leads to the reduction of c-Jun and ATF2 phosphorylation, as well as to the 

decreased expression of Egr-1 and c-Fos, which results in the differentiation block [147,166,167]. 

Importantly, in AML cells resistant to 1,25D, JNK2 antagonizes JNK1 and is considered, at least in 

part, a negative regulator of the cell proliferation and resistance of those cells [168,169] (Figure 3). 

3.1.3. MAPK/p38 Kinases 

The p38 kinases are also essential for 1,25D-induced differentiation of AML cells. It was  

shown that some functions generally attributed to p38 kinases, such as inhibition of 1,25D-induced 

differentiation [66], are only performed by the classical forms (p38α and p38β), as these, unlike p38γ 

and δ, are inhibited by SB203580, SB202190 and related compounds [66,170–173]. Because they 

exert a negative feedback upstream of p38α and p38, the isoforms p38γ and p38δ actually have  

a positive effect on 1,25D-induced differentiation of human AML cells [66] (Figure 3). Moreover, the 

inhibition of p38α and p38β leads to an upregulated expression of isoforms p38γ and p38δ in 1,25D-treated 

AML cell lines and in primary cultures [66]. 

3.1.4. MEK5-ERK5-MEF2C 

1,25D and its analogs upregulate the expression of ERK5, which positively regulates the  

early-stage monocytic differentiation of AML cells [75,87,141]. The pharmacological inhibitor of 

MEK5 (an upstream activator of ERK5), BIX02189 [174] and the inhibitor of ERK5 

autophosphorylation, XMD8-92 [175], lead to the reduction of cell surface CD14 and an increase in 

CD11b expression [141]. ERK5 is a positive regulator of C/EBPβ TF, the direct activator of CD14, but 

negatively regulates the expression of C/EBPα [141]. MEF2C, a known downstream target of  

ERK5 [82,141], has recently been shown to be involved in 1,25D-induced AML differentiation and is 

reported to lie upstream of C/EBPβ and to control the expression of CD14, but not CD11b [176]. 

Importantly, the enzyme activity of Cot1, an upstream regulator of MEK5-ERK5-MEF2C, increases in 
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AML cells during 1,25D-induced differentiation, as does phosphorylation of MEF2C, a downstream 

target of ERK5 [42,176] (Figure 3). It is also relevant that FLT3 kinase may activate MEK5 by its 

phosphorylation, which results in the activation of ERK5 of AML cells that have an internal tandem 

duplication in FLT3 [177]. As CD11b expression generally suggests terminal differentiation, the 

dissociation of CD14 and CD11b expression by the MEK5-ERK5-MEF2C signaling cascade implies 

that the monocytic characteristics of AML cells in the early phase of 1,25D-induced differentiation 

may just be an associated phenomenon, but is not a necessary component of any potential anti-cancer 

effect of 1,25D.  

3.2. The Effect of 1,25D on the PI3 Kinase-Akt1-mTOR Pathway 

Activation of the PI3K/Akt1/mTOR pathway is important for 1,25D-mediated protection against 

apoptosis, as well as for the induction of the differentiation of AML cells [150,178–181]. Inhibition of 

PI3K by LY294002 or by Wortmannin accentuates the 1,25D-induced G1 to S phase cell cycle block 

in HL60 cells and is associated with an increased expression of p27Kip1 protein [150]. Moreover, 

LY294002 inhibits nuclear translocation of VDR and prevents activation of 1,25D target genes 

triggering monocytic differentiation [173]. 

3.3. The Influence of 1,25D on AML Cells with Mutated FLT3 Kinase 

Only a few reports focus on the susceptibility of AML cells to the combined effects of 1,25D-induced 

differentiation and FLT3 kinase activating mutations. Studies performed on blast cells isolated from 

the peripheral blood of patients with diagnosed FLT3 mutations revealed that those cells exhibit resistance 

to 1,25D and to its “semi-selective” analogs [145,182]. This notwithstanding, AML cell lines with 

mutated FLT3 kinase, such as MV4-11 or MOLM-13, do respond to 1,25D-induced  

differentiation [145,183]. Treatment of elderly relapsed AML patients with cytotoxic agents, 1,25D 

and the FLT3 kinase inhibitor, CEP-701, gave highly variable results [13].  

3.4. Effects of 1,25D on C/EBPα 

It is well documented that C/EBPα is indispensable for granulocytes to develop, while C/EBPβ 

regulates the differentiation of monocytic cells [115,184,185]. In HL60 cells exposed to 1,25D, C/EBPα 

isoforms are transiently upregulated in the early stages (up to 24 h) of the differentiation process, while 

C/EBPβ isoforms are upregulated in a sustained fashion and parallel to the expression of CD14 and 

CD11b surface markers [45]. A generally accepted scheme assumes that 1,25D-induced expression of 

C/EBPβ allows the cells to bypass the granulocytic differentiation block caused by dysregulation of 

C/EBPα and switches the cells into monocytes [45,156,186]. 

3.5. The Effect of 1,25D on MicroRNAs 

Relatively little is known regarding the influence of 1,25D on microRNA expression in AML cells, 

but it is postulated that similarly to the other types of cancer, the microRNA expression profile 

(“signature”) may be helpful for AML diagnosis and for the selection of suitable therapy. It was shown 

that during 1,25D-induced differentiation of AML cells, microRNA-181a and microRNA-181b are 
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downregulated [187]. MicroRNA-181a inhibition by 1,25D results in an increase of p27Kip1 mRNA 

and protein level, which, in turn, leads to G1/S blockade [187–189]. Furthermore, microRNA-302c 

and microRNA-520c are downregulated by 1,25D in Kasumi-1 and K562 AML cell lines, where they 

enhance the susceptibility of those cells to natural killer cell-mediated cytotoxicity [190]. Other 

microRNAs downregulated by 1,25D in AML cells are microRNA-17-5p/20a/106a, microRNA-125b 

and microRNA-155, which target AML1, VDR and C/EBPβ [191]. 

1,25D can upregulate microRNA-32, which targets pro-apoptotic protein Bim [192]. Decreased 

expression of microRNA-32 can sensitize AML cells to the cytotoxic agents, for instance 

arabinocytosine [192]. Another microRNA upregulated by 1,25D in AML cells is microRNA-26a [193], 

which targets transcriptional repressor E2F7 [194]. The repression of E2F7 by miR-26a contributes to 

the increased expression of p21Cip1/Waf1 observed during 1,25D-induced monocytic differentiation of 

AML cells. Moreover, silencing of E2F7 results in inhibition of c-Myc activity and downregulation of 

its transcriptional target, the oncogenic miR-17-92 cluster [194] (Figure 4). 

1,25D down-regulates ( ) the expression of microRNA-181a, which is a negative regulator of 

p27Kip1. This causes the block of the negative action of microRNA-181a ( ) and elevated 

expression of p27Kip1 (↑). 1,25D also downregulates other microRNAs, such as microRNA-106a, -20a 

and -155, that target and inhibit the expression of VDR and C/EBPβ. 1,25D can up-regulate (→) 

microRNA-32, which targets pro-apoptotic protein Bim and inhibits its expression (↓). Furthermore, 

microRNA-26a is upregulated by 1,25D. MicroRNA-26a inhibits transcriptional repressor E2F7, 

which, in turn, no longer inhibits p21Cip1/Waf1, and its expression is elevated. Regulation of microRNA 

expression by 1,25D leads to the augmented differentiation, inhibition of apoptosis and cell cycle 

arrest in the G1/S phase.  

 

Figure 4. Regulation of microRNA expression by 1,25D in AML cells. 
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4. Potentiators of 1,25D-Induced Differentiation of AML Cells 

1,25D-induced differentiation of AML cells may be augmented by several natural and chemical 

compounds (Table 1). One such compound is carnosic acid (CA), the plant-derived polyphenolic 

antioxidant. CA alone is weakly cytostatic to AML cells, but in combination with 1,25D, increases 

differentiation and upregulates the expression of ERK5, c-Jun and AP1 [87,166,169,195–197]. 

Moreover, CA together with a 1,25D analog, doxercalciferol, decreases the expression level of 

microRNA-181a [189]. Similarly to CA, other plant antioxidants, curcumin and silibinin, can inhibit 

AML cell growth when used alone, but show synergistic or additive effects on differentiation when 

combined with VDDs [195,198–200].  

It was also shown that an inhibitor of the Akt1/mTOR pathway, RAD001 (Everolimus), potentiates 

1,25D-induced growth arrest and differentiation of AML cells, due to the enhancement of 1,25D-mediated 

transcriptional activation of p21Cip1/Waf1 in association with increased level of the acetylated forms of 

histone H3 and VDR bound to the p21Cip1/Waf1 promoter [201]. 

A large number of compounds can potentiate 1,25D-induced differentiation of AML cells [198,202]. 

Natural compounds include plant polyphenols, carnosic acid, curcumin or silibinin [195,198,203]. 

Other compounds, such as iron chelators [204] or chemical inhibitors [205], are also capable of enhancing 

1,25D action. 

Other compounds that can enhance 1,25D-induced differentiation of AML cells are COX1 and COX2 

inhibitors [206]. It was found that a combination treatment with 1,25D and non-specific COX inhibitors 

acetyl salicylic acid (ASA) or indomethacin can robustly potentiate the differentiation of several AML 

cell lines and that ASA ± 1,25D is effective in enhanced differentiation of primary AML cultures. 

Increased cell differentiation is paralleled by arrest of the cells in the G1 phase of the cell cycle and by 

increased phosphorylation of Raf1 and p90RSK1 proteins [206]. 

Table 1. Examples of potentiators of 1,25D-induced differentiation of AML cells. 

Compound Characteristic Mode of Action with 1,25D Citations  

Nutlin 3a 
cis-imidazoline analog, inhibits 

interaction between Mdm2 and p53 

▪ downregulation of Bcl-2, MDMX, 

KSR2, phospho-ERK2 

▪ upregulation of PIG-6 

[152] 

Carnosic acid 
natural benzenediol abietane 

diterpene from rosemary 

▪ upregulation of ERK5, c-Jun and AP1 

▪ downregulation of microRNA-181a 

expression 

[189,196,197] 

Curcumin 
diarylheptanoid, natural phenol 

from turmeric 
▪ activation of caspase-3, -8 and -9 [195] 

Silibinin 
flavonolignan from the milk thistle 

seeds  
▪ upregulation of c-Jun and C/EBPβ [199,200] 

Everolimus 
40-O-(2-hydroxyethyl) derivative 

of sirolimus 
▪ inhibition of Akt/mTOR [201] 

Deferasirox iron chelator 
▪ induction of VDR expression and 

phosphorylation 
[204,207] 

Q-VD-OPh pan-caspase inhibitor ▪ upregulation of HPK1 and c-Jun [205] 

Indomethacin 
non-steroid inhibitor of 

cyclooxygenase 
▪ inhibition of phospho-Raf1 [206] 
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Iron chelating agents, such as deferasirox, also turned out to be an effective enhancer of 1,25D-induced 

differentiation of AML cells [204]. This compound induces expression and phosphorylation of the 

VDR. The combination of iron-chelating agents and 1,25D resulted in the reversal of pancytopenia and 

in blast differentiation, suggesting that iron availability modulates myeloid cell commitment and that 

targeting this cellular differentiation pathway together with the conventional differentiating agents can 

provide a therapeutic benefit for an AML patient [204]. This conclusion is reinforced by the subsequent 

retrospective study, which showed that the combination of deferasirox and vitamin D improves overall 

survival in elderly patients with AML after demethylating agent failure [207]. In accordance with these 

feasibility studies, a phase 1 and 2 clinical trial (NCT01718366) of combined deferasirox, vitamin D, 

and azacitidine in high risk MDS is in progress. 

5. Clinical Trials with VDDs Targeting Signaling Pathways in AML 

Poor responsiveness to standard chemotherapy is still a problem for a significant number of patients 

with neoplastic diseases. While the current focus in the field is on individualized therapy based on 

molecular features of the disease, the great heterogeneity of mutations in AML makes this a remote 

aim. Thus, the possibility that a differentiation-based approach can be used for a large subset of AML 

patients has been attractive. However, the attempts to utilize the differentiation properties of VDDs 

have had so far minimal success, possibly due, at least in part, to the variable levels of vitamin D 

receptors in the malignant cells [18].  

A recent review by Kim et al. [15] includes a list of clinical trials mainly conducted in the early 

1990s, which seem to have mostly “fizzled out”, that have not led to any major advances in the 

treatment of AML. Harrison and Bershadskiy [16] describe these clinical trials in depth and list  

two more trials in patients with MDS, often a pre-leukemic disease, but neither trial led to dramatic or 

promising results. More recently, several other trials of VDDs have been conducted in MDS patients; 

however, the results of those have not yet appeared in the literature, and the only phase 3 trial that 

could be found at this time (NCT00804050) has been terminated, reportedly due to “difficulties in 

enrollment”. Thus, there remains substantial uncertainty as to whether VDDs, with or without 

potentiators that were used in the majority of experiments reported to date, will have a significant 

therapeutic effect in AML. It would appear that at least part of the problem is that the 

potentiators/enhancers so far used with VDDs had no clearly defined mechanism of potentiation of 

their combined actions. These have included new cytotoxic agents and their combinations with cell 

cycle, histone deacetylase inhibitors, monoclonal antibodies, FLT3 kinase inhibitors and 

hypomethylating agents currently used as enhancers of cytotoxic therapy (Table 2). Such agents do have 

a clearly defined basis of action as single agents, but the rationales of the potentiation of the 

differentiation agents are not clear. Most relevant to this topic are phase I/II trials of MEK inhibitors 

AS703026 3 (pimasertib) and GSK1120212 (trametinib). These trials investigate the safety, 

pharmacokinetics, pharmacodynamics and clinical activity of these compounds in AML patients with all 

subtypes, except FAB M3 [208–210]. Further problems in drawing conclusions regarding the efficacy of 

VDDs in AML based on the clinical trials reported to date are the great heterogeneity of the patient 

populations studied and the variability in the dose and schedule of the VDDs used to date. 
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It is proposed that a better understanding of the signaling pathways underlying VDD actions may 

stimulate the generation of new concepts for clinical trials of VDDs with potentiators. Perhaps a 

simultaneous, or sequential, targeting of pathways described here by VDDs and enhancers or inhibitors 

of these pathways will provide conceptually new regimens for clinical trials of VDDs. The importance of 

optimal sequencing in differentiation therapy is suggested by a recent report that survival of patients 

with AML/MDS was improved by agents, which included VDDs, administered during the 

maintenance of remission induced by chemotherapy [211]. Furthermore, in addition to pathway 

inhibitors, pathway activators should also be considered for the enhancement of VDD  

therapeutic activity. 

Table 2. New agents in AML clinical trials. The recent clinical trials of AML have focused 

on new cytotoxic drugs, cell cycle and histone deacetylase inhibitors, monoclonal antibodies, 

FLT3 and MEK kinase inhibitors or hypomethylating agents. These were conducted 

without VDDs. 

Target Compounds Phase Status of the study 
Examples of 

studies 

Cell cycle inhibition 
rigosertib 

volasertib 

I/II 

I 

ongoing, recruitment closed 

ongoing, recruitment opened 

NCT01167166 

NCT02003573 

Cytotoxicty 

clofarabine 

sapacitabine 

vosaroxin 

I 

III 

I/II 

ongoing, recruitment opened 

ongoing, recruitment opened 

ongoing, recruitment opened 

NCT01289457 

NCT01303796 

NCT01893320 

DNA hypomethylation 

azacitidine 

decitabine 

SGI-110 

II 

II 

II 

ongoing,  no recruitment 

ongoing, recruitment opened 

ongoing, recruitment opened 

NCT01358734 

NCT02188706 

NCT02096055 

FLT3 small-molecule inhibitors 

crenolanib 

midostaurin 

sorafenib 

II 

I/II 

II 

ongoing, recur 

itment opened 

ongoing, recruitment opened 

not yet open for recruitment 

NCT01657682 

NCT01093573 

NCT02196857 

Histone deacetylase inhibitors 

panobinostat 

pracinostat 

vorinostat 

I/II 

II 

I 

ongoing, recruitment opened 

ongoing, recruitment opened 

ongoing, no recruiment 

NCT01451268 

NCT01912274 

NCT00875745 

Monoclonal antibodies 

gemtuzumab 

ozogamicin 

SGN33a  

III 

I 

ongoing, recruitment opened 

ongoing, recruitment opened 

NCT00893399 

NCT01902329 

MEK inhibitors 

MEK162 

trametinib 

(GSK1120212) 

I/II 

II 

ongoing, recruitment opened 

ongoing, recruitment opened 

NCT02089230 

NCT01907815 

6. Conclusions and Perspectives 

It is clear that despite the strong epidemiological evidence that optimal levels of vitamin D reduce 

overall mortality by at least 7% [212,213], while low vitamin D levels are associated with adverse 

outcomes in AML [214], translation of this knowledge to cancer prevention or treatment has been 

disappointingly slow. The early focus on the generation and testing of countless vitamin D analogs for 

cancer treatment has not led to encouraging results, and combinations of 1,25D or analogs with 
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cytotoxic agents have not led to conclusive results in neoplastic diseases, including AML [215–217]. It 

appears more likely that the therapeutic regimens for AML will require the addition of small molecule 

inhibitors, or enhancers of signaling pathways, or entirely new strategies. The latter can capitalize on 

the known changes in gene expression elicited by 1,25D, summarized here. Although current 

excitement in the field of cancer therapy is largely directed to targeting specific mutations, found 

successful for CML and APL, the vast majority of leukemia cases have a highly heterogeneous set of 

mutations, making targeting not likely in the foreseeable future. Thus, randomized trials with patients 

with AML other than APL need to be organized, with time to relapse as the main end point, for 

confirming the findings that MAPKs, and other signaling cascades, present important auxiliary targets 

that can enhance the effectiveness of the cytotoxic therapy or immunotherapy of cancer. 
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