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Abstract: The impact of weak particle-matrix interfaces in aluminum matrix composites (AMCs) on ef-
fective elastic properties was studied using micromechanical finite-element analysis. Both simplified
unit cell representations (i.e., representative area or volume elements) and “real” microstructure-
based unit cells were considered. It is demonstrated that a 2D unit cell representation provides
accurate effective properties only for strong particle-matrix bond conditions, and underpredicts the
effective properties (compared to 3D unit cell computations) for weak interfaces. The computations
based on real microstructure of an Al–TiB2 composite fabricated using spark plasma sintering (SPS)
show that, for weak interfaces, the effective elastic properties under tension are different from those
obtained under compression. Computations show that differences are the result of the local stress
and strain fields, and contact mechanics between particles and the matrix. Preliminary measure-
ments of the effective elastic properties using the ultrasonic pulse-echo technique and compression
experiments support the trends observed in computational analysis.

Keywords: AMCs; micromechanics; RVE; RAE

1. Introduction

Aluminum matrix composites are attractive structural materials due to combining
the unique characteristic of the aluminum alloy matrix with ceramic particles [1]. The
aluminum matrix has a high strength-to-weight ratio compared with that of ferrous materi-
als, and high ductility, good corrosion resistance, machinability, and processing flexibility,
while ceramic particles are exceptionally strong [2]. By controlling the volume fraction of
ceramic particles along with their size and shape, it is theoretically possible to tailor the
effective thermal and mechanical properties to a specific engineering application. Effective
properties govern the composite material response to external mechanical or thermal load-
ing. This potential for a flexible and smart material design has led to over forty years of
continuous research in both academia and industry [3].

Commonly used methods for AMC fabrication are casting (stir, squeeze, etc.), powder
metallurgy, pressure infiltration, spray atomization, and co deposition [4,5]. When consid-
ering different fabrication methods, two main parameters are important to the composite’s
effective properties. The first is the distribution of the reinforcing particles in the matrix,
and the second is the resulting particle-matrix interface conditions [6]. While liquid-state
fabrication processes may lead to the in situ formation of reinforcing particles in the melt,
which can result in greater particle-matrix bonding strength, better control of particle
distribution is obtained in solid-state processes in which the reinforcing particle and matrix
particles are created ex situ, and then combined during the solid-state fabrication process.
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The different fabrication methods, advantages, and limitations can be found in a recent
comprehensive review by Chak et al. [7].

To improve the strength of the aluminum matrix, the use of ceramic particles com-
posed of SiC, Al2O3, or B4C is usually considered. TiB2 is also a promising candidate for
aluminum reinforcement [8]. Nevertheless, while incorporating ceramic reinforcement
to the aluminum matrix can result in increased yield and ultimate stress, it does not nec-
essarily imply an increase in stiffness. The increase in AMC strength can be attributed
to the localized stress fields among reinforcement particles, or the particles themselves
acting as barriers for dislocation motion [9]. On the other hand, the increase in stiffness
depends on the load transfer between particles and matrix [10]. In order to investigate
microlevel local stress and strain fields, computational methods must be utilized. Such
computations are commonly conducted on unit cell representations (representative area
or volume elements—not to be confused with crystallographic unit cells) and are termed
micromechanical computations. These models are able to describe mechanical fields re-
sulting from particle-matrix interactions during mechanical or thermal loading. The unit
cell approach was used to investigate the effective properties of porous materials [11] and
various composites [12–16]. In [12], the unit cell approach was used to demonstrate that
the reinforcing particle arrangement in the unit cell did not significantly influence the
computed effective elastic properties of an Al–SiC composite. In [13], the method was used
to show that the effective mechanical properties of an Al–B4C composite can be influenced
by residual stress fields created during the fabrication by stir casting. Most computational
studies reported in the literature assume that a perfect bond exists between particles and
matrix [12–17]. Some studies modeled the bond strength by directly using cohesive-zone
(CZ) approaches to investigate particle-matrix debonding, which initiates prior to the final
failure of the material [15]. Nevertheless, it is commonly assumed that particle-matrix
debonding only occurs after global effective yielding initiates [17]. The exact effect of very
weak or nonexistent particle-matrix bonding strength on the effective elastic mechanical
properties of AMCs is still not fully understood. This issue is especially important in AMCs,
which are fabricated by a solid-state process that may result in materials with increased
strength but decreased stiffness due to the weak particle-matrix bonding strength [18,19].

Most of the literature’s micromechanical computational models of AMCs employ a 2D
representative area element (RAE) approach. The common assumption is that, for loading
in the elastic range, a 2D approach is justified. It is not clear if this assumption is justified
for AMCs that have weak particle–matrix interface strength. From a theoretical point
of view, due to the particle-matrix interaction, 3D computations using a representative
volume element (RVE) approach may be required. The main goal of the current study is to
conduct a rigorous computational examination of the effective elastic properties of AMCs
with weak particle-matrix interface strength. The computational study considers both
simplified RVEs, which assume spherical particles, and “real” microstructures constructed
directly from scanning electron microscopy (SEM) images of actual AMC specimens.

The highlights of the study are:

• A detailed comparison between effective elastic properties determined by RVE and
RAE micromechanical models is conducted.

• Effective elastic properties for strong and weak particle-matrix interface conditions as
a function of particle volume fraction are compared.

• The influence of loading mode (tension vs. compression) on the effective elastic
properties for weak interface conditions is studied.

The manuscript is structured as follows. Section 2 outlines the micromechanical
computational methodology utilized to study the effective elastic properties. RVE and
RAE computational models for the representative microstructures, including RAE models
constructed from SEM images, are described in Section 3. Computational results are
presented in Section 4 and discussed in detail in Section 5. A summary and conclusions are
given in Section 6.
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2. Research Methodology

The effective elastic properties of AMCs with strong or weak bonding are determined
using both 2D and 3D micromechanical computations. The formulation of the boundary
conditions that need to be applied in the micromechanical models is developed as follows:

Assume an AMC specimen that is statistically homogenous and isotropic is loaded in
uniaxial tension or compression, as shown in Figure 1. Denoting the macrolevel stress and
strain tensors as σij (x), εij(x) strain and stress tensors at some material point x takes the
following form:

σij =

 σ0 0 0
0 0 0
0 0 0

 ; εij =

 ε0 0 0
0 −νe f f ε0 0
0 0 −νe f f ε0

 (1)

where σ0 , ε0 are the uniaxial stress and strain values resulting from the applied load, and
ve f f is the effective Poisson’s ratio of the composite. Standard homogenization theory
requires that the averaged area or volume (either for a 2D or 3D representative cell) values
of strain and stress at the microlevel must equal the pointwise macrolevel values [20].

σij(x) =
1
V

∫
V

σm
ij (x)dVεij(x) =

1
V

∫
V

εm
ij (x)dV (2)

where x is the local coordinate vector at the microlevel (a unit cell with a volume of V), and
σm

ij (x) , εm
ij (x) represents the local stress and strain fields.
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Figure 1. Uniaxial loading, macro- and microlevel representations.

In order to maintain energetic consistency between the macro- and microscale, the
microlevel stress and strain fields must comply with the Hill–Mandel condition [21]:

σij(x) : εij(x) =
1
V

∫
V

σm
ij (x) : εm

ij (x)dV ⇒ 1
V

∫
V

σm
ij (x) : εm

ij (x)dV − σij(x) : εij(x) = 0 (3)
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Using the Green–Gauss theorem, the area or volume integrals can be transformed into
a boundary integral.

1
V

∫
V

σm
ij (x) : εm

ij (x)dV − σij

(→
x
)

: εij

(→
x
)
=

1
V

∫
S

(
σm

ij nj − σijnj

)(
ui − εijxj

)
dA = 0 (4)

Equation (4) results in displacement, traction, or mixed boundary conditions on the
unit cell that automatically satisfies the Hill–Mandel condition [21].

As shown in Equation (4) the displacement boundary conditions on the unit cell
depend on macro-level strain tensor εij(x) while the traction boundary conditions depend
on macro-level stress tensor σij (x). As shown in Equation (1), the strain tensor components
can be expressed as a function of applied axial strain ε0 and the effective Poisson’s ratio
ve f f , which is not known a priori. Under uniaxial loading, transverse stress components
are zero. Since local stress and strain fields σm

ij (x) , εm
ij (x) can be obtained from the unit cell,

the following method determines the effective Poisson’s ratio ve f f and the effective elastic
modulus Ee f f of the composite:

1. Define some arbitrary uniaxial strain ε0 within the elastic range, and assume an initial
guess on effective Poisson ratio ve f f .

2. Define displacement boundary conditions on the unit cell by ui = εijxi.
3. Solve the boundary value problem (BVP) on the unit cell and compute the lateral

stress value.
4. If the absolute lateral stress value is smaller than some predefined small tolerance,

the assumed value of ve f f represents the composite; if not, Steps 1 to 4 need to be
repeated.

5. Once the value of ve f f is determined, the BVP solution can be used to compute Ee f f
by σm

T /ε0 with σm
T being the average axial stress on the unit cell boundary.

A linear dependence exists between ve f f and the transverse stress value. As a result,
only two iterations of the above algorithm are required in order to identify ve f f and
compute Ee f f .

The above algorithm was applied in the current study in order to determine the
effective elastic properties for both RAE and RVE representations of AMC’s. The BVP
was solved using the finite-element method utilizing commercial finite-element code
ABAQUS/2021. The influence of particle-matrix interface conditions was directly taken
into consideration in the micromechanical computation.

3. Micromechanical Computational Modeling

Two different computational microstructural unit cell representations were considered
in this study.

1. A simplified unit cell composed of spherical ceramic particles of varying size ran-
domly distributed in the aluminum cell matrix.

2. A unit cell constructed from SEM images of real Al–TiB2 fabricated using spark
plasma sintering (SPS), previously investigated by the authors in [22].

In order to examine the difference between 2D and 3D representations of an AMC
microstructure, the simplified geometries were considered. Each RAE was constructed as a
discrete slice of the relevant RVE as demonstrated in Figure 2.
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Figure 2. Microstructural model of RVE and RAE unit cells in which each RAE is a slice of a respective RVE.

The RVE size for the simplified representation was 500× 500× 500 µm3 and contained
particle volume fractions of 10%, 20%, and 30%. The RAE was meshed using triangular
elements, while the RVE was meshed using tetrahedral elements; in both cases, full element
integration was utilized. Two types of particle matrix interface conditions were considered:
fully bonded and nonbonded. In nonbonded materials, there is no metallurgical or chemical
bonding between the particles and the matrix, whereas in fully bonded materials, there is a
strong metallurgical or chemical bonding between them. In order to numerically represent
a strong bond, the nodes of each particle were tied to the nodes of the surrounding
matrix, thus ensuring continuity in the displacement field. A weak interface was modeled
using a nonpenetration condition in the normal direction with a coulomb-type friction
in the tangential direction. Displacement boundary conditions were prescribed on all of
the RVE/RAE boundaries according to (4) with a constant value of ε0 = 1e−4 used in
all computations. To determine the effective properties using the previously described
algorithm, computations using two values of ve f f = 0.2, 0.5 were conducted. An example
of a representative mesh and boundary conditions for both RAE and RVE unit cells are
shown in Figure 3.

The influence of the unit cell microstructure on the effective properties was further
examined using RAE models that are based on SEM images of actual specimens of Al–
TiB2. For this purpose, Al composites with 5%, 10%, and 15% TiB2 volume fractions were
fabricated using SPS (commercially pure aluminum powder—E = 70 [GPa], v = 0.33 was
used with TiB2 powder—E = 510 [GPa], v = 0.11). The average powder diameter was
32 and 7 µm for the Al and TiB2 powders, respectively. The details on the fabrication
method of the Al–TiB2 composites are outlined in a recent publication by the authors [22].
The developed methodology for generating the computational model from the composite
micrographs is presented here.

Composite specimens with 5%, 10%, and 15% volume fractions of TiB2 were polished,
and their surface was then examined in SEM (see Figure 4). In the micrographs, Al and
TiB2 phases are indicated in black and green, respectively. The SPS fabrication process in
this case produced a “nonbonded” material, as the Al and TiB2 phases had no metallurgical
or chemical bonding between them.
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The micrographs in Figure 4 show that the TiB2 particles were heterogeneously ar-
ranged around large Al grains, unlike the previously presented RAE models (with arbitrar-
ily distributed spherical particles). In order to convert the SEM images (Figure 4) into unit
cell computational models, the following steps were taken:

1. Boundary detection of the TiB2 particles and segmentation of SEM images were
conducted using a MATLAB [23] code written for this purpose.

2. The segmented .jpg image was converted into a .dxf file using the online Conver-
tio [24] platform, thus transforming the image into a CAD sketch.

3. Digital scaling of the CAD sketch was performed using the SOLIDWORKS [25]
program.

4. Scaled micrographs were imported into FE program ABAQUS [26].

When transforming the image into a CAD file, some of the features needed to be
manually handled:

• Particles that were located along the edge were deleted (as there was a “nonbonded”
interaction between particles and matrix, they may have been torn off the model under
certain boundary conditions).

• Entities of very small scale from the SEM micrographs were also deleted.
• Incomplete contours of particles were manually completed.
• Particles of complicated shape that had been distorted during conversion were manu-

ally fixed or deleted.

These minor changes, in addition to digital deviations, create a small difference in the
reinforcement volume fraction between the original micrograph and the RAE based on the
image (see Appendix A). The whole process of generation of the RAE unit cell can be seen
in Figure 5.
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Materials 2021, 14, 6083 8 of 18

All computational unit cells were 100× 100 µm2 in area. as it was determined that this
is the smallest unit cell that could be taken without influencing the TiB2 volume fraction
value (see Appendix B). For these unit cell dimensions, RAE models were constructed from
different locations in the SEM image. By comparing the computed effective properties
obtained at different locations (see Appendix A for an example), the particle distribution in
the unit cell was verified not to influence the computed effective properties.

The boundary conditions, elastic properties of each constituent, interface conditions
(for both bonded and nonbonded cases), element type, and integration scheme were similar
to what is outlined above for the simplified unit cell representation. All computational unit
cell models underwent standard verification procedures in which the number of degrees
of freedom (elements) was increased until the relative error in both global values (such as
strain energy and total force) and local values such as stress and strain was obtained.

4. Results

Two types of FE models were used to represent AMCs microstructure:

1. RVE models with randomly distributed spherical particles that were also randomly
sized, and their respective RAE models that represented a discrete slice of the RVE.

2. RAE models constructed from real micrographs of Al–TiB2.

First, the assumption of isotropy of the 3D representative models was examined.
Effective elastic properties were obtained from RVE models at the three Cartesian directions
(X, Y, Z) parallel to the RVE faces. The RVE was loaded in uniaxial tension in the X, Y, or Z
directions. Each time, the effective elastic properties were calculated from the RVE for the
direction parallel to the loading. Results are presented in Figure 6. Fully bonded interface
conditions were defined between particles and matrix.
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Figure 6 shows that the representative RVE models can be regarded as isotropic for all
examined particle volume fractions. The maximal relative deviation that was obtained for
both the elastic modulus and Poisson’s ratio was 8.1%. Figure 6 also shows clear trends of
the relation between the effective elastic properties and the particle volume fraction. The
elastic modulus increased with increasing particle volume fraction, while Poisson’s ratio
decreased with increasing particle volume fraction.

Then, the 2D and 3D representative models were compared to examine the ability
of RAE models to effectively predict the elastic properties. RAE models are easier to
construct and require considerably fewer computational resources. The average values of
the effective mechanical properties (with respect to the different directions) obtained for
both RAE and RVE models are compared in Figure 7 for fully bonded interface conditions
between particles and matrix. Since the RAE and RVE models were shown to be isotropic,
and fully bonded conditions were assumed between matrix and particles, results were also
compared to the analytical solution of the Halpin–Tsai model.
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Figure 7. Comparison between 2D and 3D numerical results, and analytical results of effective elastic modulus (a) and
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Figure 7 shows that there was good agreement between the results from the numerical
models and the Halpin–Tsai estimations. The maximal relative deviation obtained between
numerical and analytical results was about 9.7%. The maximal relative deviation between
the RAE and RVE results was about 9%. Therefore, RAE models can predict the effective
elastic properties for fully bonded interface conditions.

In some AMC materials, such as the composite examined in this research, particles
are not metallurgically bonded with the matrix, and transverse forces are transmitted by
friction forces at the interface. There are no analytical solutions for these cases. RAE and
RVE models with particle volume fractions of up to 30% were used to examine the influence
of friction coefficient µ on the effective elastic properties. Friction coefficients of µ = 0–0.4
were considered. Computations showed that µ had negligible influence on the resulting
effective elastic properties for particle volume fractions within the examined range due
to the small relative sliding between particles and matrix under the elastic loading range.
Therefore, only interface conditions of µ = 0 were used to examine their influence on the
effective elastic properties for the nonbonded case. The average properties are presented in
Figure 8. As before, the models were loaded in uniaxial tension. Isotropy was examined in
the nonbonded models by calculating the effective properties for uniaxial tension in the X,
Y, and Z directions. As in the fully bonded case, similar results were obtained in all three
directions, so that isotropy could be assumed.
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Figure 8 shows that the relation between the elastic modulus and the particle volume
fraction is the opposite of the one obtained in the fully bonded case: the effective elastic
modulus decreased as the particle volume fraction increased. This trend may be attributed
to the fact that, when the interface was not bonded, there was no force transfer between
particles and matrix. Poisson’s ratio shows a similar trend to the elastic modulus in Figure 8.
In addition, there was considerable difference between the RAE and RVE results.

The presented results so far are based on RAE and RVE models for a simplified
representative microstructure. These results show that the RAE unit cell representation
underestimates the effective properties for composites with weak particle-matrix bonds.
Nevertheless, the overall trends for this type of AMCs as a function of particle volume
fraction can still be investigated by utilizing an RAE unit cell.

To better understand the interplay between particles and matrix at the microlevel, a
more realistic microstructural representation is required. To this end, RAE models that were
constructed from the SEM images of Al–TiB2 specimens were investigated. The influence of
the conditions at the interface between particles and matrix (fully bonded vs. nonbonded)
and the loading (tension vs. compression) on the effective elastic properties was examined.

To compare the different cases, we define the relative effective modulus and Poisson’s
ratio as follows.

ER
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The fully bonded case under tension is compared with the nonbonded case under
both tension and compression in Figure 9. In the fully bonded case, there is no difference
between the effective properties obtained in tension and compression.
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Figure 9. Relative effective elastic modulus (a) and Poisson’s ratio (b) for nonbonded interface for different particle volume
fraction values under different loading and interface conditions compared to fully bonded case.

Figure 9 shows that the calculated properties from the fully bonded models showed
similar trends to the results obtained by simplified representations and the theoretical
Halpin–Tsai model. The relative value of the effective elastic modulus increased with the
particle area fraction, as expected from the rule of mixtures (so the composite material
properties lay between those of the matrix and the particles). On the other hand, the
effective properties calculated from the nonbonded cases showed a different trend. Under
tension loading, both the elastic modulus and Poisson’s ratio decreased, obtained in the
simplified RVE computations. However, compression loading increases Poisson’s ratio
with the particle volume fraction, and the elastic modulus trend is unclear.
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Partial Validation of Computational Findings

Computational analysis revealed that, for composites with weak particle-matrix in-
terface strength, the effective elastic properties are both a function of the particle volume
fraction and largely influenced by loading mode (i.e., tension or compression). To validate
the computational findings, preliminary measurements of the effective elastic properties of
Al–TiB2 were performed. Two types of measurements were conducted:

1. Ultrasonic pulse-echo technique.
2. Compression testing.

The ultrasonic pulse-echo technique is an accepted method for the evaluation of the
elastic properties of different materials and composites [27,28]. Compression testing is
commonly used to determine the elastoplastic behavior of metallic materials and com-
posites [22]. Determining the elastic properties in compression requires specimens with
large aspect ratios (as suggested in the ASTM E9-09 standard). The specimen described
in [22,29,30] and utilized in this study is not suited for standard measurements of effective
elastic properties. To overcome this difficulty, each cylindrical specimen was cut on one
of its sides and fitted with two strain gages (type 060WT by Micro-Measurements Ltd.,
Wendell, NC, USA) in the axial and transverse directions, as shown in Figure 10.
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Figure 10. Compression specimen of Al–TiB2 composite fitted with axial and transverse strain gages (a) strain gage
directions with respect to loading direction (b) (y loading direction, x transverse direction).

The axial strain measurement was used to compute the compressive effective modulus
of the composite, while the ratio between axial and transverse strain measurements was
used to compute the effective Poisson’s ratio. Each measurement was repeated three
times to ensure the repeatability of the results (standard deviation was in the ranges
of 1.2–6.3 [GPa] and 0.0005–0.0062 for the effective elastic modulus and Poisson’s ratio,
respectively). Comparing the measurements to the computed relative effective properties
showed that the ultrasonic testing measurements agreed with the predicted effective
properties trend under tensile loading, as seen in Figure 11.

Compression measurements are in general agreement with the predicted effective
properties trend under compression loading, as seen in Figure 12.
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5. Discussion

As discussed in the introduction, most studies that investigate the mechanical response
of AMCs at the microscale employed 2D unit cell representations. The obtained results in
this study demonstrate that this assumption is valid, even in the elastic loading range, only
if a strong bond exists between particles and matrix. For weak bonds, 2D representation
results in an underprediction of the effective elastic modulus. This result may be attributed
to the difference in contact areas between RAE and RVE models, which influences the areas
of interaction between particles and matrix. For example, contact stresses between particles
and matrix for the RVE case are shown in Figure 13.
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Figure 13. Contact-stress maps of RVE with nonbonded interface conditions for various particle volume fractions.

Figure 13 shows that, under tensile loading, contact stresses are generated in a cir-
cumferential pattern around each particle. For the RAE representation, the contact area
is limited to a small section along the diameter of the particles transverse to the loading
direction. These differences in contact-stress values can explain the differences in the
computed effective elastic properties.

Computations demonstrated that the effective elastic modulus decreases with the
addition of reinforcing particles. This can be explained by observing stress fields near the
particle-matrix interface for the bonded and nonbonded cases, as shown in Figure 14.
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Figure 14 C,D show that high stress values developed in TiB2 particles for the bonded
case. In the nonbonded case, the stress field inside the particles was small except at local
points that were transverse to the loading direction. These lateral stresses are seen at points
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where the matrix pushed against the particle due to the transverse strain that developed as
a result of the elastic deformation in the loading direction. Although the TiB2 particles were
not bonded to the matrix, they should not be viewed as voids. As shown in Figure 14D,
particles inhibited the lateral elastic deformation of the matrix, thereby influencing the
effective Poisson’s ratio and thus the effective elastic modulus.

Computational results also demonstrated that, for the nonbonded case, effective
elastic properties also depend on the loading direction. To understand the reason for this
dependency, we can again examine the local stress fields for the “nonbonded” case under
tensile and compression loading, as shown in Figure 15.
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Figures 14D and 15A show that, while under tension, particles influence the effective
properties only by hindering the lateral deformation and by the small contribution of the
frictional forces at the contact areas. Under compression loading, particles can transmit the
compressive force between adjacent areas of the matrix. This force is not fully transmitted
due to the ability of the matrix to deform below and above the particle, with little resistance
(except from frictional forces at the interface). This explains why the effective modulus
under tension decreases with the increase in particle volume fraction, whereas it is almost
not affected by the particle volume fraction under compression. As demonstrated in
this study, RAE models introduce some error in the determination of the effective elastic
properties for the nonbonded case, as shown in Figure 8. As a consequence, the comparison
to the experiments was only used to validate the discovered trends in this study.

Although the current study deals with effective elastic properties, RAE computations
can also begin to explain results reported by the authors of this manuscript in [22] which
examines the AMC’s plastic range. Even for the nonbonded case, the yield stress of the
Al–TiB2 composite increased with increasing values of the TiB2 volume fraction (up to
10%). This can be attributed to TiB2 particles acting as barriers for dislocation movement,
but could also be related to the local stress and strain fields that develop due to the particle-
matrix interface. As shown in Figures 14D and 15, even for the nonbonded case, large
stress gradients developed in the Al matrix near the TiB2 particle or between groups of TiB2
particles. These large stress gradients can also hinder dislocation motion and effectively
increase the composite yield stress.
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6. Summary and Conclusions

Micromechanical modeling was used to investigate the effective elastic properties of
AMCs that can be statistically considered to be homogeneous and isotropic. Both strong
and weak particle-matrix interface conditions were considered using both a simplified
unit cell and real microstructural representations. Emphasis was given to cases where the
interface was weak since no general analytical solution exists for estimating the effective
elastic modulus and Poisson’s ratio.

Numerical results demonstrated that 2D computations provide an accurate estimation
of effective elastic properties (compared to 3D representations) only if a strong particle-
matrix interface can be assumed. For cases in which the interface is weakly bonded or
nonbonded, the 2D micromechanical computations result in an underestimation of the
effective properties, which should be taken into consideration.

For real microstructures, effective elastic properties depend on both the particle
volume fraction and the loading direction. Under tension, the effective elastic modulus and
Poisson’s ratio decreased for an increasing particle volume fraction. Under compression,
the effective elastic modulus did not seem to change with increasing particle volume
fraction, while the effective Poisson’s ratio seemed to increase. The local mechanical
interaction between particles and matrix existed even for nonbonded conditions. As a
result, the known analytical relations for the effective modulus of voided materials are not
appropriate for predicting the effective properties.

These findings were examined by comparing the predicted variations in effective
properties under the tension and compression of Al–TiB2 composites. Effective properties
were measured using both the pulse-echo technique and mechanical compression testing.
Initial experiments demonstrated the general trends observed in computational analysis.
It is yet not clear if ultrasonic testing can be regarded as representative of tensile loading
conditions or that computational findings should be compared to standard tensile tests.
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Appendix A. Estimation of Errors in Microstructural Representation

The computational methodology utilized in this study necessitates using SEM images
to construct the microstructure geometry. The construction is based on image analysis
and may introduce errors, especially with regard to the particle area fraction, which can
influence the predicted effective elastic properties. To check the accuracy of the unit cell
construction, the particle area fraction from the original SEM image was compared to the
resulting computational unit cell image. This process was conducted for several different
SEM images at different locations in the specimen. Figure A1 shows an example of such a
comparison.
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Analysis showed that the maximal difference in particle area fraction between the
computational unit cell and the original SEM image is about 0.4%. This error does not
significantly influence the predicted effective elastic properties.

Appendix B. Limitations on Computational Unit Cell Size

The size of the unit cell that should be used in computational analysis is inherently
linked to the relevant material microstructure. For the computed effective properties to
accurately represent the bulk composite response, the particle area fraction derived from
SEM images should remain constant for increasing unit cell dimensions. To verify this, on
the basis of a 300 × 250 µm2 SEM image, several unit cells with different cell sizes were
generated as shown in Figure A2.
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The value of particle area fraction as a function of unit cell size is shown in Figure A3:
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Figure A3 demonstrates, for unit cell sizes smaller than 100 × 100 µm2, the particle
area fraction; as a result, effective elastic properties are unit-cell-size-dependent. Therefore,
in the current study, all unit cells were equal to or larger than 100 × 100 µm2.
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