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Abstract: Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental
and neuropsychiatric disorders in children characterized by impairment of communication and
social interaction. Several genes with associated single nucleotide polymorphisms (SNPs) have
been identified for ASD in different genetic association studies, meta-analyses, and genome-wide
association studies (GWAS). However, associations between different SNPs and ASD vary from
population to population. Four SNPs in genes CNTNAP2, EIF4E, ATP2B2, CACNA1C, and SNP
rs4307059 (which is found between CDH9 and CDH10 genes) have been identified and reported as
candidate risk factors for ASD. The aim of the present study was, for the first time, to assess the
association of SNPs in these genes with ASD in the Pakistani population. PCR-based genotyping was
performed using allele-specific primers in 93 ASD and 93 control Pakistani individuals. All genetic
associations, genotype frequencies, and allele frequencies were computed as odds’ ratios (ORs) using
logistic regression with a threshold of p ≤ 0.01 to determine statistical significance. We found that the
homozygous genotypes of mutant T alleles of CNTNAP2 and ATP2B2 were significantly associated
with Pakistani ASD patients in unadjusted ORs (p < 0.01), but their significance score was lost in the
adjusted model. Other SNPs such as rs4307059, rs17850950 of EIF4E, and rs1006737 of CACNA1C were
not statistically significant. Based on this, we conclude that SNPs are not associated with, or are not the
main cause of, autism in the Pakistani population, indicating the involvement of additional players,
which need to be investigated in future studies in a large population size. One of the limitations of
present study is its small sample size. However, this study, being the first on Pakistani ASD patients,
may lay the foundations for future studies in larger samples.
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1. Introduction

Autism is a complex group of neurodevelopmental disorders, also referred to as autism spectrum
disorder (ASD). The term “spectrum” is used to describe the symptoms involving a wide range of skill
impairments in ASD children. Some children display milder impairments while others may present
more severe forms of ASD [1,2].

ASD is characterized by deficiencies in three main areas of development, which include defects
in nonverbal and verbal communication, social interaction, and the presence of multiple repetitive
behaviors with limited or unusual interests [3]. The prevalence of ASD has steadily increased over the
last few decades. Initially, in the 1970s, ASD was considered a rare disorder, and its prevalence was
estimated to be in around 2 of 10,000 children [4]. Towards the end of the 20th century, ASD prevalence
began to change, which in 2006 increased to 116.1 per 10,000 children in the United Kingdom [5].
Several factors may contribute to this increase, such as changes in the use of screening tools and
diagnostic methods as well as in the application of different epidemiological methods. Beyond the
increased awareness among the general population and healthcare professionals contributing to the
increased estimated incidence of ASD, it is also possible that other factors have resulted in an unusual
increase in ASD occurrence [6].

According to the most recent estimate in the United States, 1 out of 59 children are affected with
ASD [7]. Importantly, differences in the occurrence of ASD among different ethnic populations have
been noted. For instance, in South Korea, the estimated prevalence of ASD is 2.64% [8] and in around
12 per 10,000 in China [9]. As discrepancies exist concerning the prevalence of ASD among different
populations, it is difficult to compare the estimates of ASD prevalence in different regions. This, in part,
may be due to the different methods of case identification [6]. ASD is diagnosed more commonly in
males than in females, whereby boys are at a 4- to 7-fold higher risk of developing autism compared to
girls; however, the reason behind this is still largely unknown [10]. Currently, ASD diagnosis is based
on behavioral parameters by identifying the deviation from a typical behavior pattern, but what is
considered typical may vary between different cultures. Hence the variability in the extent of deviation
from typical behaviors in ASD can be influenced by cultural norms and values [11,12].

ASD is also reported as a complex genetically heritable disorder with a heritability of
approximately 50% [13]. Several genetic factors have been found to contribute to the disease.
Chromosomal abnormalities or single-gene mutations have been documented in familial and individual
autism cases [14]. However, these defined mutations and de novo copy number variants account
for only about 10–20% of ASD cases, leaving a high percentage of ASD cases with unknown genetic
causes [15,16]. Besides genetic factors, certain environmental factors are also reported to contribute to
ASD. Among them is included in utero exposure of offspring to viral or bacterial infection, which may
lead to failures in early fetal brain development [17,18]. In addition, the risk of autism due to prenatal
infections is most likely dependent on the individual immune status of the mother and fetus. This was
confirmed when a substantial association with ASD was found in the allergies and autoimmune
disease of the mother [19]. Since placenta serves as the source of hematopoietic stem cells for the fetus,
these maternal infections could change the immune status of the fetal immune system as well as fetal
brain development [20].

Genetic architecture of ASD is highly heterogeneous. Several genetic association studies and
genome-wide association studies (GWAS) of ASD in different populations have identified a number
of genes, SNPs and common genetic variants associated with the risk of ASD [21–23]. Among them,
genetic marker rs4307059, which lies between cadherin 10 (CDH10) and cadherin 9 (CDH9), and the
SNPs in the gene ATP2B2 are the major ASD risk markers because of their associations with ASD in
different populations. ATP2B2 encodes plasma membrane calcium-transporting ATPase 2 (PMCA2),
which extrudes calcium (Ca2+) from the cytosol into the extracellular space in response to increased
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cytosolic Ca2+ concentrations [22,24]. ATP2B2 is involved in maintaining intracellular calcium
homeostasis, and disrupting this balance leads to seizures in ASD [25]. Several pieces of evidence from
biochemical and genetic studies have indicated that altered Ca2+ homeostasis play a key role in the
cascade of signaling events leading to ASD. Furthermore, ATP2B2 is expressed mainly in cerebellum,
along with cerebral cortex, olfactory bulb, and hippocampal formation [26]. ATP2B2 is located in
the human chromosome region 3p25.3. Several studies have linked the region in chromosome 3p25
with ASD [27]. The first evidence of the association between ATP2B2 and ASD was provided by
Carayol J, et al. in a family-based association study [28]. Later on, similar results were replicated in
another research in Italy [29]. These researches indicated that ATP2B2 might be a susceptible candidate
gene for ASD [25]. On the other hand, the strongest GWAS and replicated evidence for association
of an SNP rs4307059 on 5p14.1 and ASD has been found [30,31]. Recent GWAS from China has also
shown a strong association of rs4307059 with ASD [32]. Of particular note, the chromosomal region
containing rs4307059 also contains the transcript for the noncoding antisense RNA of the moesin
pseudogene 1 (MSNP1), whose overexpression decreases the neurite length in human cells [33].

Furthermore, in European population GWAS studies, the SNPs in Eukaryotic translation initiation
factor 4E (EIF4E) and the Contactin-associated protein-like 2 (CNTNAP2) have been proposed as
strong risk candidates for ASD [34,35]. In a eukaryotic translation initiation, EIF4E is the rate-limiting
component and plays a key role in memory and in learning through its control of translation within
the synapse. Increased activity of EIF4E causes repetitive behaviors in ASD [36,37]. CNTNAP2 is the
first widely replicated ASD-predisposition gene with the strongest evidence of ASD susceptibility
from several independent studies [38,39]. CNTNAP2 encodes for Contactin Associated Protein-Like 2
(Caspr2), is localized at the juxtaparanodes of myelinated axons, and is thought to be involved in
axon differentiation. Caspr2 plays a role as a receptor and cell adhesion molecule in the vertebrate
nervous system. The neuronal circuits involved in higher cortical functions are enriched in Caspr2.
It plays a major role in language development in ASD and other language-related disorders [40].
Mice lacking CNTNAP2 show similarity to the core deficits of cognitive and behavioral functions and
selective dysregulation of connectivity in integrative prefrontal areas that are seen in ASD patients,
signifying its vital role in brain development [41].Genetic variants within another gene, CACNA1C,
are reported to be linked with psychiatric disorders including ASD, schizophrenia, and bipolar disorder.
CACNA1C encodes the α 1C subunit (Cav 1.2) of the L-type voltage-dependent calcium channel and
calcium influx through such channels is coupled to signaling pathways that stimulate the expression of
genes essential for neuronal survival dendritic development, synaptic plasticity, learning, memory
formation, and behavior. Rare mutations in CACNA1C are known to cause cognitive abnormalities
in ASD [42–44]. On the basis of previous research and heterogeneity between the results of genetic
association studies among different populations, the abovementioned five genes have been selected for
the present study.

ASD is well studied in Europe and America but is relatively less understood in the Eastern
world [6]. To date, most of genetic association studies on ASD have been primarily carried out in North
America, Western Europe, and Australasia. Asia represents the largest portion of world’s population
with different ethnic backgrounds and genomic heterogeneity. Therefore, there is a need to explore the
genetic markers responsible for ASD in Asian populations. So far, most of the ASD-related genetic
association studies have been performed on Chinese, Korean, and Indian populations, but there is no
genetic association study reported in the Pakistani population as of yet [45–48]. There is even no reliable
data available regarding the prevalence of ASD in Pakistan [49]. However, according to the estimates
of the Pakistan Autism Society, about 350,000 children are suffering from ASD in Pakistan [50].

Examining the genetic variants in Pakistani individuals has been challenging, as individuals with
psychiatric disorders do not report their disease due to the possibility of social stigma. This results
in an under-reporting of the number of individuals in Pakistan with mental illnesses and prevents
patients from receiving care by trained professionals. The present study has addressed this gap in
our knowledge by examining five common ASD SNPs among a Pakistani cohort for the first time.
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This study may not only provide an initial step towards the awareness of ASD among parents and
society, but also highlights the underlying genetic causes among Pakistani ASD children.

2. Materials and Methods

2.1. Procedure and Participants

This study was approved by the Ethics committee of Pir Mehr Ali Shah Arid Agriculture
University Rawalpindi and the Pakistan Institute of Medical Sciences (PIMS) Hospital, Islamabad.
Written informed consent was obtained from the parents of 93 patients and 93 healthy controls who
participated in this study. Cases were recruited from PIMS hospital Islamabad, Pakistan after a
consensus diagnosis made by experienced psychiatrists using a combination of the Autism Diagnosis
Observation Schedule (ADOS) and the Diagnostic and Statistical Manual of Mental Disorders 5th edition
(DSM-5) as the assessment instruments. Clinical phenotype data was collected by asking questions
to the parents of children. Healthy controls were recruited from local communities with a simple
non-structured interview performed by psychiatrists. Control subjects with a history of mental health
or neurological disease, or first-degree relatives suffering from mental health or neurological disease,
were excluded from the present study. Healthy controls were drawn from the same geographical areas
as patients and were matched to the patient group based on ethnicity. All participants were unrelated
Pakistani nationals born and residing in different areas of Pakistan.

2.2. DNA Extraction and Quantification

Venous blood was collected in Ethylenediaminetetraacetic acid (EDTA) vacutainers from patients
and healthy controls. Genomic DNA was extracted by the standard phenol-chloroform method with
few modifications in the protocol [51]. Whole blood (750 µL) and equal amount of red blood cell (RBC)
lysis solution (0.32 M Sucrose, 10 mM Tris-HCl pH 7.5, 5 mM MgCl2, 0.01% Triton-X) were collected
in an Eppendorf tube and incubated at room temperature for five minutes. Then centrifugation was
performed at 12,000 revolutions per minute (rpm) for 2 min at 4 ◦C; 750 µL of RBC lysis solution was
added to the pelleted cells after discarding the supernatant. Washing steps were repeated three times
until a clear white blood cells (WBC) pellet was obtained. Then, to the pelleted cells, 450 µL of WBC
lysis solution (10 mM Tris-HCl pH 7.5, 400 mM NaCl, 2 mM EDTA pH 8.0), 10 µL of 20% sodium
dodecyl sulphate (SDS) solution, and 10 µL of Proteinase K (20 mg/µL) were added and incubated
overnight at 37 ◦C. The next day, 300 µL of chloroform-isoamylalcohol solution (24:1) and 300 µL of
phenol (pH 7.8) were added to the lysed WBCs and centrifugation was performed at 12,000 rpm for
10 min at 4 ◦C. The upper aqueous layer was collected in a new clean tube, and 55 µL of 3M sodium
acetate solution and 800 µL of chilled isopropanol were added to precipitate the genomic DNA.

The solution was centrifuged for 10 min at 12,000 rpm, the supernatant was discarded, and the
pellet of DNA was washed with 250 µL of 70% ethanol. Centrifugation was performed again for
10 min at 12,000 rpm and ethanol was removed by keeping the tubes inverted for 10 min which were
then air dried. The DNA pellet was then dissolved in 100 µL of TE (100 mM Tris-HCl pH7.5, 10 mM
EDTA pH 8.0) and stored at −20 ◦C for genotyping. DNA quantification was done using a Nanodrop
Spectrophotometer 2000 (Thermo Scientific, Waltham, MA, USA). Each sample was diluted to a final
concentration of 10 ng/µL before genotyping.

2.3. Genotyping

Genotyping was conducted on SNPs in the genes ATP2B2, CNTNAP2, CACNA1C, EIF4E and in
the rs4307059 marker, which lies between the CDH9 and CDH10 genes at Yale school of medicine,
Yale University, Connecticut, USA. IDT oligoanalyzer (IDT Technologies, Coralville, IA, USA) and
BatchPrimer 3 (https://wheat.pw.usda.gov/demos/BatchPrimer3/) were used to design allele-specific
primers and the primers for Sanger sequencing (Table S1). PCR-based amplification was performed
using the reaction mixture with 1× PCR buffer (No. 10342020; Invitrogen, Carlsbad, CA, USA), 1.5 nM of

https://wheat.pw.usda.gov/demos/BatchPrimer3/
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MgCl2, 0.2 mM dNTPs, 0.5 µM primers, 1 unit of Taq DNA polymerase and 20 ng genomic DNA.
Amplification was performed with a DNA Engine Peltier Thermal Cycler (Bio-Rad, Hercules, CA, USA)
with the following cycling conditions: initial denaturation at 95 ◦C for 5 min, followed by 30 cycles at
95 ◦C for 30 s, Tm specific for each primer for 30 s, and 72 ◦C for 45 s, with a final elongation of 72 ◦C
for 5 min.

Agarose gel (1.5%) was used for running the PCR products. Several randomly selected samples
were sent for Sanger sequencing to confirm the specificity of allele-specific primers using allele-flanking
primers (Table S1). For sequencing, bands of DNA were cut from the gel followed by DNA extraction
using the MinElute gel extraction kit (No. 28604; Qiagen, Hilden, Germany). Finally, the Sanger
sequencing was performed at the Keck DNA Sequencing Lab at Yale University, Connecticut, USA and
a 4Peaks system was used to visualize electropherograms.

2.4. Genotyping Data Analysis

Difference in age and gender between the cases and control groups was determined by t-test
and χ-squared test in Prism v7 (GraphPad, San Diego, CA, USA). Linkage disequilibrium and Hardy
Weinberg equilibrium was calculated by Bioconductor’s R package “genetics” and “HardyWeinberg”,
respectively. A bonferroni corrected p-value was applied to the Hardy Weinberg p-values and all
subsequent statistical tests to account for multiple testing of five different SNPs in the same samples.
The nominal p-value calculated in SAS v9.4 (SAS Institute, Cary, NC, USA) that surpassed the 0.01
Bonferroni-corrected p-value was considered significant. This methodology has been employed for
GWAS and genetic case-control studies, and has been described in detail in previously published
protocol papers [52,53]. The relative risk of SNPs to disease and interaction between gender and each
SNP was determined using a multinomial logistic regression model in SAS. Both unadjusted and
adjusted p-values, odds ratios (ORs), and 95% confidence intervals (95% CI) were calculated for each
SNP. Adjusted models included age and gender as covariates. To identify an additive effect of risk
alleles from multiple SNPs, the genetic risk scores analysis was performed. Furthermore, a χ-squared
test was performed to check any association of clinical variables with SNP genotypes in SPSS v16 (IBM,
Chicago, IL, USA).

2.5. Protein–Protein Interaction Network

The interaction between the selected proteins ATP2B2, CNTNAP2, CACNA1C, and CDH8 and
CDH9 spanning the rs4307059 and other proteins related to ASD was explored using STRING version
10.5 [54]. We considered only high confidence protein–protein interactions obtained from experimental,
co-expression, co-occurrence, or database sources. STRING analysis also included 20 primary and
20 secondary interactors along with selected proteins. Identification of ASD-linked KEGG pathways
(https://www.genome.jp/kegg/) was also conducted.

3. Results

3.1. Patient Characteristics and Minor Allele Fequencies

In the present study, we compared 93 autistic individual cases with an equal number of healthy
controls from the Pakistani population by genotyping to assess the association of SNPs in ATP2B2,
CNTNAP2, CACNA1C, rs4307059, and EIF4E with the disease risk. The chromosomal position of each
SNP is provided in Supplementary Table S2. The average age and gender of patients and controls are
listed in Table 1. We found significant differences between the controls and ASD patients in age and
gender (p-value < 0.001). These variables were used as covariates in subsequent statistical analysis.
All controls passed Hardy-Weinberg equilibrium, and minor allele frequencies in our population were
analyzed with globally reported frequencies in Table S2.

https://www.genome.jp/kegg/
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Table 1. Mean age and gender frequency among control and autism spectrum disorder (ASD) patients.

Controls ASD p-Value

Total Samples 93 93 data
Mean Age ± SD 39.98 ± 1.87 8.409 ± 0.5784 <0.001 a

Median 40 7
Interquartile Range 26.5 5.5

Total Number (Percentage) Males 41 (44.09%) 68 (73.12%)
<0.001 b

Total Number (Percentage) Females 52 (55.91%) 25 (26.88%)
a Calculated using an independent t-test. b Calculated using a χ-square test.

3.2. Genotyping and Sanger Sequencing

Genotyping was conducted on SNPs in the genes ATP2B2, CNTNAP2, CACNA1C, EIF4E, and in
the rs4307059 marker, which lies between the CDH9 and CDH10 genes and the specificity of primers
was confirmed by Sanger sequencing. The results of Sanger sequencing are shown in Figure 1. Parts A,
B, C, D, and E shows sequencing results of ATP2B2/rs35678, Rs4307059, CNTNAP2/rs7794745,
CACNA1C/rs1006737, and EIF4E/rs17850950, respectively. The measure of 0 risk refers to the
homozygous ancestral genotype, 1 risk refers to the presence of one risk allele in the heterozygous
condition and 2 risk refers to the presence of two risk alleles in homozygous condition (Figure 1).

Figure 1. Sanger sequencing of selected samples showing all observed genotypes. Electropherograms
of individuals with (A) ATP2B2/rs35678 C/T, (B) Rs4307059 C/T, (C) CNTNAP2/rs7794745 A/T,
(D) CACNA1C/rs1006737 G/A, (E) EIF4E/rs17850950 C/T. All three possible genotypes are highlighted.
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3.3. Comparison of Allele Frequencies of Studied Population with Global Allele Frequencies

In a comparison of minor allele frequencies, the results revealed that minor allele T of ATP2B2
showed a frequency of 0.57 globally, but in the Pakistani population, it showed the relatively higher
frequency of 0.65. On the other hand, the minor allele T of CNTNAP2 was found with the frequency
of 0.40 in our population as compared to 0.51 observed by other populations. The frequency of a
minor allele A of CACNA1C was 0.20 in our population, with a 0.30 globally estimated frequency,
while a minor allele T of rs4307059 was also observed to have a difference in frequency of 0.63 in
our population as compared to 0.79 reported globally. Minor allele T of rs17850950 of EIF4E showed
0 frequency in our population and globally it also showed the very low frequency of 0.01 (Table S2).

3.4. Association Analysis

It has been observed in genotyping results of rs17850950 of EIF4E that 100% of cases and controls
were homozygous for the C allele. We did not find the risk allele T in any homozygous or heterozygous
combination among cases or controls (Table 2). For the SNP rs35678 of ATP2B2, 15.1% controls and 3.2%
ASD cases were observed as homozygous for the C allele. Observed frequencies of heterozygotes were
50.5% and 51.6% in controls and cases, respectively, while genotypic frequencies of controls and cases
were 34.4% and 45.2%, respectively, for the homozygous risk allele genotype (TT). Unadjusted ORs
and p-values for heterozygotes were 4.76 and 0.01, respectively, while for the homozygous risk allele
genotypes, unadjusted ORs were 6.12 with a p-value of 0.007 (Table 2). After adjusting for age
and gender, ORs for heterozygous and homozygous risk allele genotypes were 0.42 and 1.37 with
non-significant p-values of 0.52 and 0.81, respectively (Table 2).

Table 2. Genotypic frequencies of studied SNPs in control and ASD patients.

Genotype Controls
(n = 93)

Cases
(n = 93)

OR (95% CI)
p-Value

Adjusted OR (95% CI)
p-Value

ATP2B2/rs35678 (C/T)
CC 14 (15.1%) 3 (3.2%) Reference
CT 47 (50.5%) 48 (51.6%) *4.76 (1.28–17.66) 0.01 0.42 (0.02–6.23) 0.52
TT 32 (34.4%) 42 (45.2%) *6.12 (1.62–23.13) 0.007 1.37 (0.09–19.88) 0.81

CNTNAP2/rs7794745 (A/T)
AA 38 (40.9%) 28 (30.1%) Reference
AT 47 (50.5%) 45 (48.4%) 1.29 (0.68–2.45) 0.42 0.98 (0.26–3.68) 0.977
TT 8 (8.6%) 20 (21.5%) *3.39 (1.30–8.81) 0.01 2.98 (0.28–31.16) 0.361

CACNA1C/rs1006737 (G/A)
GG 58 (62.4%) 52 (55.9%) Reference
GA 35 (37.6%) 41 (44.1%) 1.30 (0.72–2.34) 0.37 1.41 (0.40–4.92) 0.584

(CDH9/CDH10)/rs4307059
(C/T)
CC 12 (12.9%) 10 (10.8%) Reference
CT 47 (50.5) 45 (48.4) 1.14 (0.45–2.92) 0.77 0.26 (0.01–3.62) 0.319
TT 34 (36.6) 38 (40.9) 1.34 (0.51–3.49) 0.54 0.05 (0.002–1.02) 0.05

EIF4E/rs17850950
CC 93 (100%) 93 (100%) – –
CT 0 0 – –
TT 0 0 – –

SNPs: Single nucleotide polymorphisms. The adjusted odds ratio (OR), 95% confidence interval (CI), and p-value
were calculated after adjusting for gender and age as covariates. * Unadjusted significant p-values are in bold.

For SNP rs7794745 of CNTNAP2, we observed in 40.9% controls and 30.1% autistic cases
homozygous for A allele, while 50.5% controls and 48.4% cases were heterozygous. For the homozygous
risk allele combination (TT), 8.6% of controls and 21.5% of cases were observed. The homozygous
genotype showed unadjusted OR of 3.39 (unadjusted p-value 0.01, Table 2), while the adjusted OR was
2.98 (p-adj. 0.83). In rs1006737 of CACNA1C, 62.4% of controls were homozygous for the G allele as



Genes 2020, 11, 1206 8 of 18

compared to 55.9% cases, while 37.6% controls and 44.1% cases were heterozygotes (GA), carrying a
single copy of the risk allele A. The observed unadjusted OR for the heterozygous genotype was 1.3
(p-value 0.37); however, the adjusted OR was 1.41 with a p-value of 0.58 (Table 2).

For the SNP rs4307059, we found 50.5% of controls as compared to 48.4% of cases with one risk
allele T in the heterozygous genotype CT. In the homozygous risk allele combination TT, 36.6% of
controls as compared to 40.9% of cases were observed. Both genotypes showed unadjusted ORs of 1.14
and 1.34 with p-values of 0.77 and 0.54, respectively. After adjusting the p-value with age and gender,
ORs were 0.26 (p-value 0.319) and 0.05 (p-value 0.05), respectively.

In terms of minor allele frequencies and their association with ASD, our results indicated that
the minor allele T of ATP2B2 and T of CNTNAP2 were found with unadjusted and adjusted odds
of 1.04 (p-value 0.88), 0.29 (p-value 0.11) and 1.68 (p-value 0.01), 0.86 (p-value 0.79), respectively.
Minor alleles A of CACNA1C and T of rs4307059 showed unadjusted ORs of 1.21 (p-value 0.44) and
1.16 (p-value 0.5) respectively; however, adjusted ORs were 1.21 (p-value 0.44) and 0.72 (p-value 0.61),
respectively (Table 3). Interaction of gender and SNPs also revealed non-significant p-values (Table S3).

Table 3. Allele frequencies of studied SNPs in control and ASD patients.

Genes/SNPs IDs Alleles Controls (%) Cases (%) OR (95%CI)
p-Value

Adjusted OR (95%CI)
p-Value

ATP2B2/rs35678 T 60 71 1.04 (0.59–1.86) 0.88 0.29 (0.06–1.38) 0.11
C 40 29

CNTNAP2/rs7794745 T 34 46
*1.68 (1.09–*2.61) 0.017 0.86 (0.28–2.65) 0.79

A 66 54

CACNA1C/rs1006737 A 19 22 1.21 (0.73–2.02) 0.44 1.21 (0.73–2.02) 0.44
G 81 78

(CDH9/CDH10)/rs4307059 T 62 65 1.16 (0.75–1.80) 0.5 0.72 (0.20–2.58) 0.61
C 38 35

The adjusted OR, 95% CI, and p-value were calculated after adjusting for gender and age as covariates. * Unadjusted
significant p-values are bold

3.5. Risk Score Analysis

In a risk score analysis, no individual was found with a 0 risk allele and therefore, 1 risk allele was
taken as a reference. The presence of 2 risk alleles was found with an adjusted OR of 2.17 (p-value 0.77)
(Table 4). Similarly, the presence of 3 and 4 risk alleles was found with ORs of 3.53 (p 0.63) and 3.16
(p-value 0.66), respectively. Presence of 5 and more than 5 risk alleles together showed an OR of 2.11
and p-value 0.78.

Table 4. Polygenic risk score between ASD cases and controls.

Number of
Risk Alleles Controls (n = 93) Cases (n = 93) OR (95% CI) p-Value Adjusted OR (95% CI)

p-Value

1 6 (6.5%) 1 (1.1%) Reference
2 15 (16.1%) 8 (8.6%) 3.19 (0.326–31.391) 0.31 2.175 (0.010–463.87) 0.776
3 27 (29.03%) 25 (26.9%) 5.55 (0.624–49.38) 0.124 3.53 (0.019–650.02) 0.634
4 24 (25.8%) 22 (23.7%) 5.49 (0.613–49.32) 0.127 3.16 (0.016–611.30) 0.667

5+ 21 (22.6%) 37 (39.7%) 10.56 (1.19–93.77) 0.034 2.114 (0.011–40.7.04) 0.780

The adjusted OR, 95% CI, and p-value were calculated after adjusting for gender and age as covariates.

3.6. Protein–Protein Interactions and Pathway Analysis

The STRING analysis to evaluate the interaction of ATP2B2, CNTNAP2, CACNA1C, CDH9,
and CDH10 directly or through their primary or secondary partners indicated that they do not interact
directly but through primary or secondary interactors at a high confidence except for CNTNAP2,
which interacts neither directly nor through any interactors (Figure 2A). Proteins with their interacting
partners are shown in Table S4.
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Some of the predicted functional partners were identified which include proteins involved
in calcium channels (CACNA2D2, CACNA2D3, CACNB2, CACNB3, CACNB1, CACNB4),
calcium-dependent cell adhesion proteins (CDH6, CDH7, CDH15, CDH18), and G-protein (GNB1)
(Figure 2A, Table S5). Furthermore, some of the identified KEGG pathways by enrichment analysis were
found to be associated with the oxytocin signaling pathway, MAPK signaling pathway, calcium signaling
pathway, GABAergic synapse, GnRH signaling pathway, Cholinergic synapse, and the cGMP-PKG
signaling pathway (Figure 2B).
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Figure 2. Protein–protein interactions and enrichment analysis for ATP2B2, CNTNAP2, CACNA1C,
CDH9, and CDH10 and their interacting partners. (A) Using STRING analysis, all forty proteins that
interact with ATP2B2, CNTNAP2, CACNA1C, CDH9, and CDH10 via either primary or secondary
interactions were plotted. The confidence level of the interactions is represented by the width of
the edges connecting the proteins. (B) Enrichment analysis for KEGG pathways among the forty
proteins that interact with ATP2B2, CNTNAP2, CACNA1C, CDH9, and CDH10. X-axis represents
the enrichment score, which is the -log FDR-adjusted p-value. The black line at 1.3 represents an
FDR-adjusted p-value and the pathways that surpass 1.3 are significantly over-represented among our
proteins of interest.

3.7. Association between SNPs and Autistic-Like Traits

The association between 21 clinical variables of ASD was estimated with selected SNPs and
our results indicated that rs35678 of ATP2B2 was found to be associated with olfactory symptoms
and poor/limited understanding, with a p-value of 0.04 and 0.02, respectively (Table 5). rs7794745 of
CNTNAP2 was associated with a lack of self-care skills and aggressive behavior, with a p-value of 0.03
and 0.009, respectively.rs1006737 of CACNA1C was found to be associated with aggressive behavior
with a p-value of 0.01, while rs4307059 was associated with unusual noise-producing behavior and
poor/limited understanding with p-values of 0.04 and 0.03, respectively. All of these associations become
statistically non-significant after Bonferroni correction, except for aggressive behavior association with
CNTNAP2 and CACNA1C, with p-values of 0.009 and 0.01, respectively (Table 5).
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Table 5. Association of clinical variables of ASD with genotypes.

Clinical Phenotype Classification ATP2B2 rs35678 CNTNAP2 rs7794745 CACNA1C rs1006737 rs4307059

CC CT TT p-Value GG GA AA p-Value GG GA p-Value CC CT TT p-Value

Licking Yes 2 29 23
0.824

17 26 11
0.923

26 28
0.076

4 27 23
0.471

No 1 19 19 11 19 9 26 23 6 18 15

Hand functioning Ok 2 45 40
0.150

25 43 19
0.545

47 40
0.162

10 42 35
0.662

Poor 1 3 2 3 2 1 5 1 0 3 3

Self-care skills Fully dependent 2 29 25

0.983

19 30 7

0.031

32 24

0.721

8 28 20

0.527Needs help 1 17 16 7 14 13 19 15 2 15 17

Good 0 2 1 2 1 0 1 2 0 2 1

Vision problems Yes 0 4 1
0.420

0 3 2
0.275

1 4
0.096

1 1 3
0.412

No 3 44 41 28 42 18 51 37 9 44 35

Smells everything Yes 0 15 22
0.045

12 21 4
0.118

18 19
0.251

3 20 14
0.623

No 3 33 20 16 24 16 34 22 7 25 24

Looks closely from eye corner Yes 1 34 29
0.396

18 34 12
0.378

33 31
0.209

6 33 25
0.621

No 2 14 13 10 11 8 19 10 4 12 13

Cover ear in noise Yes 0 28 21
0.130

12 25 12
0.435

26 23
0.559

5 28 16
0.185

No 3 20 21 16 20 8 26 18 5 17 22

Rocking and swaying Yes 3 40 33
0.596

25 36 15
0.413

46 30
0.058

7 41 28
0.074

No 0 8 9 3 9 5 6 11 3 4 10

Repetitive behaviors Yes 3 44 39
0.862

26 41 19
0.857

46 40
0.099

10 43 33
0.206

No 0 4 3 2 4 1 6 1 0 2 5

Likes circular moving objects Yes 1 21 24
0.381

14 24 8
0.610

22 24
0.120

6 23 17
0.659

No 2 27 18 14 21 12 30 17 4 22 21

Reciprocates smiles Yes 2 14 12

0.554

4 15 9

0.209

15 13

0.760

3 15 10

0.748Rarely 0 18 13 11 14 6 19 12 4 16 11

No 1 16 17 13 16 5 18 16 3 14 17

Eye contact Good 2 15 16

0.744

13 15 5

0.485

20 13

0.616

5 13 15

0.666Poor 1 31 25 15 28 14 31 26 5 30 22

No 0 2 1 0 2 1 1 3 0 2 1
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Table 5. Cont.

Clinical Phenotype Classification ATP2B2 rs35678 CNTNAP2 rs7794745 CACNA1C rs1006737 rs4307059

CC CT TT p-Value GG GA AA p-Value GG GA p-Value CC CT TT p-Value

Unusual noise Yes 1 27 20
0.582

14 24 10
0.950

27 21
0.946

2 22 24
0.046

No 2 21 22 14 21 10 25 20 8 23 14

Echolalia Yes 0 18 15
0.420

7 18 8
0.382

18 15
0.844

1 17 15
0.201

No 3 30 27 21 27 12 34 26 9 28 23

Sense of being praised Yes 1 13 7
0.450

7 10 4
0.917

9 12
0.171

0 10 11
0.149

No 2 35 35 21 35 16 43 29 10 35 27

Aggressive Yes 0 18 21
0.159

14 12 13
0.009

16 23
0.014

4 17 18
0.672

No 3 30 21 14 33 7 36 18 6 28 20

Speech No Speech 2 21 12

0.249

13 16 6

0.592

21 14

0.920

4 18 13

0.969

Able to make
short sentences 0 13 15 7 14 7 15 13 4 12 12

Can string
few words 0 8 8 4 8 4 9 7 1 9 6

Only a few
single words 1 3 7 4 6 1 6 5 1 5 5

Normal 0 3 0 0 1 2 1 2 0 1 2

Idiosyncratic language Yes 0 6 8
0.522

2 8 4
0.365

7 7
0.629

2 7 5
0.858

No 3 42 34 26 37 16 45 34 8 38 33

Understanding (Cognitive) Good 1 4 0

0.020

1 3 1

0.664

3 2

0.349

0 3 2

0.034Limited 0 11 18 6 16 7 13 16 5 7 17

Poor 2 33 24 21 26 12 36 23 5 35 19

Shared enjoyments with parents Yes 0 5 3
0.742

2 2 4
0.112

3 5
0.273

0 3 5
0.340

No 3 43 39 26 43 16 49 36 10 42 33

Follow instructions Yes 0 6 5

0.976

2 4 5

0.07

8 3

0.08

4 12 14

0.810Very simple 1 15 14 7 14 9 12 18 1 5 5

No 2 27 23 19 27 6 32 20 5 28 19

p-values were calculated using χ-squared tests. p-values that pass the Bonferroni p-value threshold of 0.01 are highlighted.
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4. Discussion

ASD is a form of complex and severe developmental disorder, with strong genetic foundations [13].
In this present study, we investigated the association between EIF4E, ATP2B2, CNTNAP2, CACNA1C,
and Rs4307059 polymorphisms and ASD in the Pakistani population. Comparing the minor allele
frequencies of studied SNPs in our population with globally reported allele frequencies showed the
differences indicating genetic heterogeneity in different ethnicities.

The genotyping results of our research indicated that EIF4E did not show any type of association;
however, previous genome-wide linkage studies in ASD patients have linked the region containing the
EIF4E locus on chromosome 4q with ASD as a regulation of EIF4E activity is known to play a key role
in learning and memory through its control of translation within the synapse [55–58]. In our study,
we did not find even a single individual showing minor allele T, which may be due to the fact that
this minor allele was found in very low frequency, i.e., 0.01, even in other worldwide populations
(1000 Genome).

Previous studies showed a significant association of SNP rs4307059, which is found between the
CDH9 and CDH10 gene with ASD [22,59], however no association with ASD was found in the present
study as both unadjusted and adjusted p-values were non-significant. These results are inconsistent
with a previous study on the Italian population, which showed a significant association of rs4307059
with ASD [29]. Various independent GWAS done by using individuals from European and Caucasian
ancestry, which reported rs4307059 as a novel ASD associated region [30,60]. Similar results were
observed for CACNA1C in the present study, although several other independent studies reported the
involvement and the association of the specific SNP rs1006737 in CACNA1C with psychiatric disorders
in European, Danish, and Spanish populations [61–63]. However, in our study, we did not find any
association of risk allele A of rs1006737 of CACNA1C with ASD. Consistent results with the present
study were also reported in the Chinese Han population in which rs1003767 was not associated with
ASD risk [64]. Allelic expression imbalance was also found for this SNP as no homozygotes for risk
alleles (AA) were found among cases and controls.

In the case of SNP rs35678 of ATP2B2, an obvious difference between genotypic frequencies
of controls (34.4%) and cases (45.2%) for homozygous risk allele genotype (TT) was observed and
unadjusted p-values were significant for both heterozygous and homozygous risk allele genotypes,
but after adjusting for age and gender, it was no longer statistically significant. Similar results were
observed in terms of SNP rs7794745 of CNTNAP2, when for the homozygous risk allele combination
(TT), a significant difference between genotypic frequencies of controls (8.6%) and cases (21.5%) were
observed. The homozygous genotype was found to be significantly associated with disease with odds
of 3.39 (unadjusted p 0.01) but this association did not remain significant after adjusting with covariates
(p-adj. 0.83). Likewise, in terms of allele frequencies and their association with ASD, only risk allele
T of CNTNAP2 was found to be significantly associated in the unadjusted model, but remained no
longer significant in the adjusted model. This lost significance in most of the SNPs may be due to the
unequal numbers of male and female patients, as well as the large difference between ages of controls
and cases (Table 1). However, if we looked upon the interaction of gender with SNPs, as almost 73% of
individuals who participated in this study were male, no significant interaction between any of the
four SNPs and gender was observed (Table S3), indicating that gender had no effect on the association
between any SNP and disease.

Although risk alleles of both ATP2B2 and CNTNAP2 did not show a significant association with
ASD in adjusted models, we found a trend of association of studied SNPs with some behavioral
phenotypes of ASD. ATP2B2 showed a trend of association towards a limited understanding and sensory
behavior although later on, after Bonferroni correction, significance was lost but this trend of association
was strengthened by previous findings, which showed plasma membrane calcium-transporting ATPase
2 (PMCA2) encoded by ATP2B2 are expressed in brain and sensory systems at a particularly high
level and in the developing human brain. Similarly, CNTNAP2 was found to be associated with a lack
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of self-care skills and with aggressive behavior. Significant association of CNTNAP2 and aggressive
behavior persisted even after Bonferroni correction.

Additionally, messenger RNA (mRNA) of CNTNAP2 is reported to be significantly enriched
in the temporal and frontal lobes, as well as in the frontal cortex and in striatal circuits of the adult
brain [65]. These regions support speech, language learning, and other forms of implicit learning,
further strengthening a role of CNTNAP2 in cognition and language, which are the major affected
areas in ASD [66,67]. CACNA1C has previously been implicated to be involved in anxiety, cognition,
fear conditioning, and depressive phenotypes [68,69]. We also found a significant association of
CACNA1C with aggressive behavior, with a p-value of 0.01.

In polygenic risk score analysis, no combined risk effect of studied SNPs was observed in our
study, which is also obvious from STRING analysis, as none of the protein interact directly with each
other and also no primary or secondary interacting protein was found to be previously reported in ASD.
However, several KEGG pathways were found to be reported early in the case of ASD like oxytocin
(OXT), calcium signaling pathways, and GABAergic function. In the hypothalamus, OXT is the
biological basis of trust, social recognition, and bonding. It plays major roles in the modulation of social
behaviors with a focus on social bonding, recognition, and communication [70]. Calcium signaling
pathway disturbance may contribute greatly to the underlying molecular mechanism of ASD [71–73].
Furthermore, the characteristic ASD phenotype is often associated with either a loss or a gain of
the GABAergic function. Dysfunction of GABAergic signaling mediates ASD-like stereotypes in the
majority of animal models of ASD [74]. GABA-mediated calcium signaling regulates a variety of
developmental processes from cell proliferation, and therefore it is not unanticipated that some forms
of neuro-developmental disorders including ASD showed alterations of GABAergic signaling and
impairment of the excitatory/inhibitory balance in selective neuronal circuits [75]. In the brain of ASD
patients, insulin-signaling pathways and pathological involvement of cholinergic nuclei and altered
expression of acetylcholine receptors, particularly nicotinic acetylcholine receptors, have also been
reported [76–79].

The present study has some limitations, which include the small sample size, as well as the
significant difference between age and gender between cases and controls (Table 1). Lack of awareness
and misconceptions about psychiatric disorders among the Pakistani population pose a problem to
correctly diagnosing and collecting blood/DNA samples for genetic testing. In recognition of these
limitations, appropriate statistical analyses accounting for gender and age as covariates were conducted
to ensure that there was no effect on statistical results. However, despite these limitations, this study
may serve as an initial step to set the foundation for future studies utilizing larger samples from the
Pakistani population.

5. Conclusions

The present study provided some trend of association of studied SNPs to the etiology of ASD in
the Pakistani population. Homozygous risk allele genotypes of ATP2B2 and CNTNAP2 were strongly
associated with ASD in unadjusted models. In terms of risk allele association, risk allele T of CNTNAP2
was significantly associated with ASD in an unadjusted model. Significance was lost in the adjusted
model, which may be due to the difference in ages of cases and controls. All studied SNPs also showed
some trend of association with clinical phenotypes of ASD, whereas CNTNAP2 and CACNA1C showed
a significant association with the aggressive behavior of ASD patients. This study will serve as an initial
study of the Pakistani population and further association studies in larger samples and functional
research are needed.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/10/1206/s1,
Table S1: List of Primers used for genotyping and Sanger sequencing, Table S2: Genes/SNPs ID and their position
on chromosomes. Minor allele frequency in studied population and in other worldwide populations, Table S3:
Interaction of studied SNPs with Gender, Table S4: Proteins at node 1 and their interacting partners at node 2,
Table S5: Gene annotation and Ensemble IDs of Nodes.
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