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Ammonia is a cytotoxic molecule generated during normal
cellular functions. Dysregulated ammonia metabolism, which is
evident in many chronic diseases such as liver cirrhosis, heart
failure, and chronic obstructive pulmonary disease, initiates a
hyperammonemic stress response in tissues including skeletal
muscle and in myotubes. Perturbations in levels of specific
regulatory molecules have been reported, but the global re-
sponses to hyperammonemia are unclear. In this study, we used
a multiomics approach to vertically integrate unbiased data
generated using an assay for transposase-accessible chromatin
with high-throughput sequencing, RNA-Seq, and proteomics.
We then horizontally integrated these data across different
models of hyperammonemia, including myotubes and mouse
and human muscle tissues. Changes in chromatin accessibility
and/or expression of genes resulted in distinct clusters of
temporal molecular changes including transient, persistent,
and delayed responses during hyperammonemia in myotubes.
Known responses to hyperammonemia, including mitochon-
drial and oxidative dysfunction, protein homeostasis disrup-
tion, and oxidative stress pathway activation, were enriched in
our datasets. During hyperammonemia, pathways that impact
skeletal muscle structure and function that were consistently
enriched were those that contribute to mitochondrial
dysfunction, oxidative stress, and senescence. We made several
novel observations, including an enrichment in antiapoptotic
B-cell leukemia/lymphoma 2 family protein expression,
increased calcium flux, and increased protein glycosylation in
myotubes and muscle tissue upon hyperammonemia. Critical
molecules in these pathways were validated experimentally.
* For correspondence: Srinivasan Dasarathy, dasaras@ccf.org; Ranadip Pal,
Ranadip.pal@ttu.edu.
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Human skeletal muscle from patients with cirrhosis displayed
similar responses, establishing translational relevance. These
data demonstrate complex molecular interactions during
adaptive and maladaptive responses during the cellular stress
response to hyperammonemia.

Essential cellular functions, including amino acid catabo-
lism, purine breakdown, and gut bacterial metabolism in
humans, generate cytotoxic ammonia (1–3). The primary
mode of ammonia disposal is via hepatocyte ureagenesis (1, 2).
Dysregulated ammonia metabolism occurs in a number of
chronic diseases, and the consequent hyperammonemia causes
dysfunction in multiple organs (4). During hyperammonemia,
skeletal muscle becomes a major organ for ammonia uptake
(5, 6). Consequences of skeletal muscle hyperammonemia
include activation of inhibitor of nuclear factor kappa B kinase
subunit beta and p65–NFκB and a sarcopenic phenotype (7);
more recently, a hyperammonemic stress response (HASR)
with decreased protein synthesis and increased autophagy flux
has been reported (7–10). Accelerated degradation of β-cat-
enin with impaired ribosomal biogenesis and the reduced
expression of a number of ribosomal proteins has also been
reported (11). Metabolic perturbations during hyper-
ammonemia include loss of tricarboxylic acid cycle in-
termediates, or cataplerosis, impaired mitochondrial oxidative
function, and changes in amino acid metabolic pathways
(12–15). These data show specific metabolic and molecular
responses during HASR, but the global molecular changes that
can provide an understanding of interacting cellular pathways
have not been comprehensively analyzed. Our approach also
has broad applications in studies of tissue and cellular
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Global molecular responses during muscle hyperammonemia
responses to different stressors. Global regulatory responses in
cellular systems and tissues, in vivo, are increasingly being
studied using unbiased systems biology approaches (16–18).
Notably, systems biology approaches have been used to un-
derstand regulation of cellular responses that contribute to
human diseases, such as chronic kidney disease, aortic valve
disease, and cardiac remodeling (19–22), through approaches
that involve vertical integration of the regulome, including
patterns of differentially accessible chromatin (DAC), differ-
entially expressed genes (DEG), and differentially expressed
proteins (DEPs) (18, 23, 24). However, no studies have spe-
cifically integrated chromatin accessibility, transcription, and
proteomics data from cellular models, mouse models, and
human patients, and we chose hyperammonemia as a model to
validate such an approach.

We used both vertical integration, or integration of data
using the framework of the central dogma—from DNA to RNA
to protein, and horizontal integration, or the direct comparison
of transcriptomics and proteomics in myotubes and mouse and
human skeletal muscle. In the present studies, we performed
assay for transposase-accessible chromatin with high-
throughput sequencing (ATAC-Seq), next-generation RNA-
Seq, and quantitative proteomics in a well-characterized murine
myotube model of hyperammonemia that reproduces the
biochemical, molecular, and phenotypic responses observed in
skeletal muscle from human patients with cirrhosis and
hyperammonemia (7, 8, 15). The distinct patterns of change
identified in our analyses were classified as early transient
change, pseudosilent change, late change, and persistent
change. We interpret the early transient change to be an
“adaptive phase” of hyperammonemia when significant changes
occur in the chromatin accessibility, transcriptome, and pro-
teome at 3 h (3hAm), but these changes return to baseline, or
untreated (UnT), levels at 24 h (24hAm). Pseudosilent change
was interpreted as the cellular responses that attempt to drive
expression in one direction (increase or decrease) initially that
later is sensed to be a progression toward adverse outcomes.
Consequently, the expression of the genes is reversed in an
attempt to restore homeostasis. Late changes are a failure of
early adaptive processes to return the molecular responses to
the baseline homeostatic state and may represent a “maladap-
tive phase” of responses that occurs with longer ammonia
exposure. Persistent changes are perturbations in molecular
pathways/molecules that are unable to return to baseline
because of the continued stress and may be a maladaptive
response or a persistent attempt at adaptive response. Our data
also show that adaptive, maladaptive, and restoration to ho-
meostasis or progression to cell death responses occur across
multiple pathways that share molecules.

We established the physiological relevance of these cellular
responses by performing RNA-Seq and quantitative proteomic
analyses of skeletal muscle from a mouse model of hyper-
ammonemia (25). Finally, we identified gene expression
changes in skeletal muscle tissue from human patients with
cirrhosis, a major chronic liver disease characterized by
hyperammonemia to determine translational congruity of our
unbiased findings. Interestingly, we found that while changes
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in expression patterns of specific genes were not always
conserved among the experimental systems used, similar
pathways were altered. Consistent changes were noted in
calcium, hypoxia-inducible factor 1-alpha (HIF1α), senescence,
and transforming growth factor β (TGF-β) signaling and
protein synthesis pathways over time and across different
species. These data identify a novel link between HIF1α and
senescence pathways during hyperammonemia. Our cellular
studies also identified temporal changes in specific pathways
and provide insight into early adaptive events that may
contribute to the maladaptive phase of HASR. These data
suggest that our preclinical models are translationally relevant
and can be used to identify mechanistic therapeutic targets.

Results

A schematic of our approach of vertical and horizontal
integration, clusters of global responses, and establishing
translational relevance in human samples with experimental
validation of critical findings is shown in Figure 1.

Proteomics analyses showed temporally clustered responses
in myotubes during hyperammonemia

Cellular functions are mediated via changes in protein
expression, but less is known about the interactions and
contributions of these alterations to overall cellular responses.
Modifications in protein expression contribute to both adap-
tive and maladaptive responses. Therefore, a proteome-wide
analysis was first performed to identify early and late
changes to integrate overall responses to HASR. Proteomics
analyses in C2C12 myotubes showed that the most DEP were
found at 24hAm versus UnT (n = 226) and 24hAm versus
3hAm (n = 95) with fewer DEP found in the 3hAm versus UnT
(n = 53) treatment comparison (Fig. 2, A and B). We defined
four clusters of DEP based on their pattern of change: early
transient change (significant expression differences at 3hAm
versus UnT with or without a significant change at 24hAm
versus 3hAm but not at 24hAm versus UnT), pseudosilent
change (change at 24hAm versus 3hAm, but neither the
expression at 24hAm or 3hAm was different from UnT), late
change (change only at 24hAm versus UnT with or without a
significant change at 24hAm versus 3hAm, but no difference
between 3hAm and UnT), and persistent change (both 3hAm
and 24hAm were different from UnT). Changes in the clusters
suggest a temporal pattern of cellular responses. The physio-
logical significance of the alterations in the pseudosilent
cluster is currently unclear but may represent active adaptive
responses over time (Fig. S1, A–D). Cluster analyses of the
proteomics expression patterns showed that the late change
cluster had the most DEP (n = 323), with fewer DEP in the
early transient (n = 60) and persistent change (n = 37) clusters.
We noted a high level of concordance between different
functional enrichment analyses (ingenuity pathway analysis
[IPA], Gene Ontology [GO], and Kyoto Encyclopedia of Genes
and Genomes) (Fig. S2, A and B), indicating that interpretation
of our data was similar irrespective of the approach/algorithm
used. In both the late change and persistent change clusters in
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Figure 1. Graphical summary. Data were generated from C2C12 myotubes and skeletal muscle from mice treated with 10 mM ammonium acetate (Am) or
PBS and from human patients with cirrhosis and controls. Datasets from cells and tissues were created using ATAC-Seq, RNA-Seq, and quantitative pro-
teomics. As shown on the left panels, datasets from C2C12 myotubes were separated into clusters of early transient (increase or decrease in accessibility/
expression at 3hAm with a return to baseline [UnT] expression at 24hAm), late (increase or decrease in accessibility/expression at 24hAm versus 3hAm and/
or 24hAm versus UnT), persistent (increase or decrease in accessibility/expression at both 3hAm and 24hAm versus UnT), and pseudosilent (increase or
decrease in accessibility/expression only at 24hAm versus 3hAm but not with either Am treatment versus UnT) change groups. Footprinting analyses from
ATAC-Seq were also parsed into the same clusters. Functional enrichment analyses were performed on myotube dataset clusters and mouse and human
datasets. Validation experiments were performed using real-time PCR, immunoblots, flow cytometry, calcium flux, and transcription factor array. Novel
processes as targets emerged including postmitotic senescence-like phenotype, calcium signaling, and HIF1α signaling. Am, ammonium acetate; ATAC-Seq,
assay for transposase-accessible chromatin with high-throughput sequencing; HIF1α, hypoxia-inducible factor 1-alpha; UnT, untreated.
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the proteomics dataset, the protein synthesis regulatory
pathways (including mammalian target of rapamycin [mTOR]
and pP70S6k signaling) were significantly enriched (Fig. 2, C–
E) and are consistent with our previous report of impaired
mTOR complex 1 signaling during hyperammonemia (9, 11,
15). Also, consistent with our published data on hyper-
ammonemia (9, 10, 15, 26), oxidative stress response, AMP-
activated protein kinase (AMPK) signaling, tricarboxylic acid
cycle, and glycolysis pathways were among the pathways
enriched in the late change cluster in the proteomics dataset in
myotubes. We have previously reported an increase in
eukaryotic initiation factor-2 α (eIF2α) phosphorylation during
HASR (10). eIF2 signaling and calcium signaling were the most
enriched pathways in the late change dataset. Other pathways,
including HIF1α signaling and apoptosis were also enriched in
the late change myotube proteomics cluster. Changes in
components of these pathways have been reported by us and
others during hyperammonemia (10, 27–29) and in our
experimental studies that showed increased calcium flux in
myotubes with ammonia exposure (Fig. 2F). These observa-
tions are consistent with reports by others of ammonia-
induced changes in calcium signaling that mediate oxidative
stress responses in astrocytes (30, 31). To validate our
proteomics data, we chose highly DEPs, which were included
in the pathways described previously, and performed immu-
noblotting on lysates from treated or UnT myotubes over the
24-h time course. We then experimentally validated expres-
sion of critical skeletal muscle regulatory and structural pro-
teins on immunoblots. Consistent with our proteomics data,
we noted lower expression of myosin heavy chain at 3hAm
versus UnT and lower expression of caveolin-3 at 24hAm/
3hAm versus UnT. We also observed higher expression of
NLR family, apoptosis inhibiting protein 1 at 24hAm versus
UnT and of B-cell leukemia/lymphoma 2 (Bcl2) at 24hAm
versus UnT/3hAm (Fig. 2G). We then evaluated cell viability
and apoptosis markers as a measure of overall cellular func-
tional response. Even though others have reported an increase
in apoptosis during hyperammonemia (29, 32), our published
(8) and experimental observations show unaltered cell viability
during hyperammonemia (Fig. 2H). These observations were
consistent with increased expression of antiapoptotic mole-
cule, Bcl2 (Fig. 2G), and unaltered apoptosis markers,
including cleaved caspase 3, poly(ADP-ribose) polymerase 1
(PARP1) expression (Fig. 2H), and annexin V in UnT as well as
3hAm- and 24hAm-treated myotubes (Fig. S3). Immunoblots
for HIF1α in myotubes showed stabilization at 24hAm
J. Biol. Chem. (2021) 297(3) 101023 3
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Figure 2. Proteomic landscape in differentiated murine myotubes during hyperammonemia. A, heat map of differentially expressed proteins (DEP) in
myotubes that were either untreated (UnT) or treated with 3 h or 24 h of 10 mM ammonium acetate (Am). B, Venn diagram of unique DEP in UnT myotubes
or those treated with 3hAm and 24hAm and analyzed for differential expression using the following comparisons: 3hAm versus UnT, 24hAm versus 3hAm,
and 24hAm versus UnT. C, heat map of myotube DEP with significant increase or decrease in expression at 3hAm with a return to baseline (UnT) expression
at 24 h, termed early transient change. Stacked bar chart showing manually curated canonical pathways that are significantly enriched in the early transient
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compared with UnT controls, consistent with our unbiased
data analyses (Fig. 2I). Thus, our unbiased proteomics data
show that clusters of responses to hyperammonemia involve a
global reprogramming that follows a distinct temporal course
with maintained cell viability.
Global transcriptomics responses showed multiple pathway
enrichments during hyperammonemia in myotubes

We then evaluated if transcriptomic responses in myotubes
followed the temporal and expression patterns that were
identified on the proteomics analyses. In addition to shared
genes, a number of unique DEG in both the 24hAm versus
UnT (n = 1082) and 24hAm versus 3hAm (n = 1284) treatment
comparisons were noted (Fig. 3). In contrast, there were few
(n = 3) unique DEG at 3hAm versus UnT (Fig. 3, A and B).
Consistent with our observations in the proteomics cluster
analyses, the largest number of DEG (n = 2795) in the RNA-
Seq dataset was in the late change cluster (Fig. 3B). Func-
tional enrichment analysis was then performed in the different
clusters in the RNA-Seq dataset (Fig. 3, C–E, Figs. S1 and S4,
A and B). In the pseudosilent cluster, oxidative phosphorylation,
sirtuin signaling, and mRNA translational components were
among the significantly enriched pathways (Fig. S1C). In the
late change cluster, enrichment of HIF1α signaling, senes-
cence, and metabolic regulation pathways (Fig. 3D) was
observed. AMPK, interleukin-6, and death receptor signaling
pathway components were significantly altered in both late
and pseudosilent clusters. Confirmatory real-time PCR per-
formed for select genes showed results consistent with the
RNA-Seq DEG, including an increase in Bcl2 and alpha-1,3,-
mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransfer-
ase C (Mgat4c) transcripts at 24hAm and a decrease in leucyl-
tRNA synthetase transcripts at 24hAm (Fig. 3F). The changes
in these genes correlate with published data supporting the
potential role of these pathways during persistent hyper-
ammonemia in skeletal muscle (maintained cell viability (7, 8),
responses to L-leucine (10)). In addition to targeted modula-
tion of proteins, ammonia induces N-glycosylation in different
proteins, but the mechanisms have not been identified (33, 34).
Consistent with our data on Mgat4c, glycosylation levels in
myotubes were increased during hyperammonemia (Fig. S5).
RNA-Seq and proteomics from myotubes were then vertically
integrated to determine if the proteomics data corresponded
with transcriptional responses. We compared like-clusters
(e.g., late change RNA-Seq to late change proteomics) and
dissimilar clusters (e.g., early transient change RNA-Seq to late
change proteomics) to help identify concordance in temporal
change cluster on proteomics. D, heat map of myotube DEP that increase or d
termed late change cluster. Stacked bar chart showing manually curated canon
cluster. E, heat map of myotube DEP that increase or decrease in expression
persistent change. Stacked bar chart shows manually curated canonical pathwa
F, calcium response in differentiated myotubes to 10 mM Am compared with
proteomics changes in NLR family, apoptosis inhibitory protein 1 (Naip1), myo
representative immunoblots and densitometry of cleaved caspase-3 and poly-A
4-h 4 mM H2O2-treated differentiated C2C12 myotubes. Cell viability percentag
treated cells and 4-h 8 mM H2O2-treated cells. I, representative immunoblots
experiments were performed in three biological replicates. Significance for D
canonical pathway enrichment was set at −log(p value) ≥1.3. *p < 0.05, **p <
changes in transcription and translation. Comparisons of
clusters in the RNA-Seq and proteomics datasets showed that
the most shared DEG/DEP were in the late change “like-
clusters” (Fig. 3G). Of the shared DEG/DEP in late change like-
clusters (n = 58), we found that the DEG and DEP expression
changes were concordant in 36. We then performed Spearman
correlations on the shared DEG/DEP in the late RNA-Seq–late
proteomics like-clusters. Individual gene/protein correlations
are shown in Fig. S6, A and B. Functional enrichment analysis
demonstrated that HIF1α signaling and senescence pathways
were significantly enriched in the late change clusters in both
the RNA-Seq and proteomics datasets (Fig. 3H). Concordance
and discordance between the RNA-Seq and proteomics data-
sets and the temporal alterations identified on cluster analyses
suggests that the molecular responses occurred at the protein
and mRNA levels. Whether these responses could be related to
altered chromatin access was then assessed.
Hyperammonemia causes unique changes in chromatin
accessibility and gene regulatory sites

To determine if changes in chromatin accessibility during
hyperammonemia are consistent with the cellular RNA-Seq
and proteomics patterns, the ATAC-Seq dataset from C2C12
myotubes was analyzed (Fig. 4). ATAC-Seq DAC positions and
their location on the gene structure are shown in Fig. S7.
Within the ATAC-Seq dataset, there were significant differ-
ences between DAC in all three treatment comparisons, with
the majority (n = 1883) of DAC in the 24hAm versus UnT
treatment comparison (Fig. 4, A and B). Functional enrichment
analyses for the early transient, late, and persistent change
clusters reveal enriched pathways within the ATAC-Seq dataset
that are conserved across RNA-Seq and proteomics in myo-
tubes, including pathways related to calcium, senescence, cell
cycle regulation, and HIF1α signaling (Fig. 4, C–E and Fig. S8,
A and B). The late change cluster on ATAC-Seq (Fig. 4D)
showed enrichment in mRNA translation, mTOR complex,
AMPK, and p65–NFκB signaling pathways that are consistent
with previous experimental reports on these pathways during
hyperammonemia (7, 8, 26). To determine if accessibility of
regions on the same gene changes over time, early transient
ATAC-Seq changes and late ATAC-Seq changes were
compared for concordance between dissimilar-clusters within
the same dataset. This was only possible with the ATAC-Seq
dataset since the same gene can have more than one accessi-
bility region where changes occur at different times. Since a
gene can appear multiple times in ATAC-Seq data because of
the presence of multiple accessibility regions, we compared the
ecrease in expression significantly only at 24hAm versus 3hAm and/or UnT,
ical pathways that are significantly enriched in the late change proteomics
significantly at 3hAm and become more/less expressed by 24hAm, termed
ys that are significantly enriched in the persistent change proteomics cluster.
UnT. G, representative immunoblots and densitometries for validation of
sin heavy chain (Myh), caveolin-3 (Cav-3), and B-cell lymphoma 2 (Bcl2). H,
DP ribose polymerase-1 in UnT, 3hAm (10 mM), 24hAm (10 mM)-treated and
e is shown with the aforementioned treatments and also in 4-h 1 mM H2O2-
and densitometry of hypoxia-inducible factor 1α in myotubes. All cellular
EP in the cellular proteomic datasets was set at p < 0.05. Significance for
0.01, and ***p < 0.001. All data represent mean ± SD.
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Figure 3. Differentially expressed genes in RNA-Seq from differentiated murine myotubes and as compared with myotube proteomics. A, heat map
of differentially expressed genes (DEG) from RNA-Seq analysis of C2C12 myotubes that were either untreated (UnT) or treated for 3 h or 24 h with 10 mM
ammonium acetate (Am). B, Venn diagram showing unique DEG in differentiated C2C12 myotubes either UnT or treated with Am and analyzed using the
following comparisons: 3hAm versus UnT, 24hAm versus 3hAm, and 24hAm treatment versus UnT. C, heat map of myotube DEG that have either increased or
decreased expression in 3hAm and return to baseline (UnT) status at 24hAm, termed early transient change cluster. D, heat map of myotube DEG that have
either increased or decreased expression at 24hAm versus UnT/3hAm termed late change cluster. Stacked bar chart shows manually curated canonical
pathways that are significantly enriched in the late change RNA-Seq cluster. E, heat map of myotube DEG that have either increased (or decreased)
expression at 3hAm and whose expression increased (or decreased) further at 24hAm treatment, termed persistent change cluster. Stacked bar chart shows
manually curated canonical pathways that are significantly enriched in the persistent change RNA-Seq cluster. F, real-time PCR validation of changes in
select components on RNA-Seq that included leucyl-tRNA synthetase (Lars), alpha-1,3-mannosyl-glycoprotein 4-beta-N-acetylglucosaminyltransferase C
(Mgat4c), and Bcl2 (B-cell lymphoma 2). G, Venn diagrams showing “like-clusters” and “dissimilar-clusters” of unique and shared genes between myotube
RNA-Seq and myotube proteomics. H, canonical pathways enriched in late change RNA-Seq and late change proteomics clusters. All cellular experiments
were performed in three biological replicates. Significance for cellular DEG was FDR <0.05. Significance for cellular differentially expressed proteins was p <
0.05. Significance for canonical pathway enrichment was set at −log(p value) ≥1.3. *p < 0.05 and ***p < 0.001. All data represent mean ± SD. FDR, false
discovery rate.
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Figure 4. Unique patterns of accessible chromatin in differentiated murine myotubes during hyperammonemia are identified by ATAC-Seq. A, heat
map of all differentially accessible chromatin (DAC) (annotated and nonannotated) from ATAC-Seq analysis of differentiated C2C12 myotubes that were
either untreated (UnT) or treated with 3 h or 24 h of 10 mM ammonium acetate (Am). B, Venn diagram showing unique and shared DAC in UnT myotubes
compared with 3hAm and 24hAm. C, heat map and schematic showing differential peaks that either become significantly more accessible (open) or less
accessible (closed) at 3hAm returned to baseline (UnT) at 24 h, termed early transient change cluster. Stacked bar chart showing manually curated canonical
pathways that are significantly enriched in the early transient change ATAC-Seq cluster. D, heat map and schematic showing differential peaks that are
changed significantly only at 24hAm termed late change cluster. Stacked bar chart showing manually curated canonical pathways that are significantly
enriched in the late change ATAC-Seq cluster. E, heat map and schematic showing differential peaks that open (or close) significantly at 3hAm and become
more open (or more closed) at 24hAm and termed “persistent” change cluster. Stacked bar chart shows manually curated canonical pathways that are
significantly enriched in the “persistent” change cluster. F, Venn diagrams of unique and shared DAC/DEG in “like-clusters,” between ATAC-Seq (A) and RNA-
Seq (R). G, Venn diagrams of unique and shared DAC/DEG in “dissimilar-clusters.” H, integration of enriched pathways in both the late change ATAC-Seq
DAC and late change RNA-Seq ordered by significance. I, heat map of ATAC-Seq (At), RNA-Seq (R), and proteomics (P) DAC/DEG/DEP expression levels. All
cellular experiments were performed in three biological replicates. Significance for differential peaks in the ATAC-Seq dataset was set at p < 0.005 with fold-
change cutoff >|1.5|. Significance for cellular DEG was set at false discovery rate (FDR) <0.05. Significance for canonical pathway enrichment was set
at −log(p value) ≥1.3. Annotation refers to a region of a known/identified gene. Nonannotated areas refer to chromosomal regions that are not in the region
of known/identified genes. Like-clusters were defined as those that were temporally similar (e.g., late change ATAC-Seq to late change RNA-Seq), whereas
“dissimilar-clusters” were the DAC that belonged to different temporal changes in different datasets (e.g., early transient change ATAC-Seq to late change
RNA-Seq). ATAC-Seq, assay for transposase-accessible chromatin with high-throughput sequencing; DEG, differentially expressed gene.
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Global molecular responses during muscle hyperammonemia
trend concordance for all region combinations, and the blue
bars in Fig. S9A show these ranges. A range from −1 to +1
(e.g., myeloid RNA regulator of Bcl2-interacting mediator of
cell-induced death [Morrbid], nuclear receptor corepressor 2)
denotes that each of these genes had multiple DAC with an
equal number having positive concordance (+1; same trend/
agreement) and negative concordance (−1; reverse trend/
discord), with the mean concordance = 0 (or undecided/inde-
terminate). When there are DAC on the same gene with an
unequal number of concordance and discordance, the mean
concordance is derived; for instance, polypeptide N-acetyl
galactosaminyltransferase 2 had 1/3 agreement and 2/3 discord,
therefore the overall relationship among these DAC is discor-
dant. Based on these calculations for all 45 shared DEG/DEP/
DAC, the following agreement summary was calculated:
agreement = �49% (n = 22), discord = �47% (n = 21), and
undecided = �4% (n = 2) (Fig. S9A). Analyses of the genes with
agreement showed enrichment in cell development and dif-
ferentiation (Fig. S9B). These data show that, similar to the
patterns of responses on transcriptomics and proteomics,
distinct clusters of chromosomal access alterations occurred
during hyperammonemia.
Vertical integration of chromatin accessibility and
transcriptomics during hyperammonemia showed most
concordance in late change cluster

To determine if chromatin remodeling is linked to altered
expression of genes, a vertical integration of the ATAC-Seq
and RNA-Seq myotube datasets was performed. For these
analyses, we only considered DAC in ATAC-Seq, which were
within a known gene and thus were annotated to that gene.
The greatest number of shared DAC and DEG (n = 200) were
found between the late change ATAC-Seq and the late change
RNA-Seq clusters (Fig. 4F and Fig. S9C). A number of DAC
and DEG were shared (n = 31) between the pseudosilent
clusters in both datasets (Fig. S10), supporting our interpre-
tation that pseudosilent clusters may have biological relevance
during HASR. We also noted a number (n = 52) of shared
DAC and DEG in the early transient change ATAC-Seq versus
late change RNA-Seq (Fig. 4G). Surprisingly, in the early
transient change ATAC-Seq versus the late change RNA-Seq
clusters, the majority (34 of 52) of shared DAC/DEG had a
negative correlation (Fig. S9D). In the late change like-clusters
between ATAC-Seq and RNA-Seq, a similar number of shared
DAC/DEG showed positive and negative correlations
(Fig. S9E), suggesting that HASR-mediated changes to chro-
matin most likely are not a significant driver of functional
change. An alternative explanation is that even if chromatin
access changes drive RNA-Seq, other upstream events and
their effects can mediate these differential responses. The ca-
nonical pathways enriched in both the late change ATAC-Seq
and late change RNA-Seq clusters included those previously
reported to be altered during hyperammonemia (HIF1α sta-
bilization (27); mitochondrial oxidative dysfunction (15), and
others, including the senescence genes (35), consistent with
our recent clinical observations supporting an accelerated
8 J. Biol. Chem. (2021) 297(3) 101023
aging in muscle phenotype in cirrhosis (36) (Fig. 4H)). An
integrated heat map of ATAC-Seq, RNA-Seq, and proteomics
datasets from UnT as well as 3hAm- and 24hAm-treated
myotubes was generated to simultaneously represent the
shared and unique changes (Fig. 4I) that were consistent with
our analyses of each dataset (Figs. 2B, 3B and 4B). Other like-
cluster and dissimilar-cluster comparisons and DAC/DEG/
DEP accessibility/expression correlations for ATAC-Seq,
RNA-Seq, and proteomics are shown in Fig. S10. Together,
our combined analyses show shared genes between dataset
pairs (ATAC-Seq versus RNA-Seq; RNA-Seq versus prote-
omics; and ATAC-Seq versus proteomics). However, there
were very few to no shared genes across all three datasets,
which may be due to differences in access, synthesis efficiency,
or half-life of different molecules.
Footprinting analysis of ATAC-Seq showed enrichment of
transcription factors regulating senescence and mitochondrial
oxidative dysfunction during hyperammonemia

Chromosomal access regulates gene transcription by altered
transcription factor binding. Footprinting analysis performed
on the ATAC-Seq dataset from UnT as well as 3hAm- and
24hAm-treated myotubes (Fig. 5) identified unique and shared
transcription factor motifs with significant differences between
treatment time points and corresponded with predicted up-
stream regulators of the RNA-Seq dataset. The greatest
number of unique differentially accessible motifs were found
in the early transient change cluster (n = 26), whereas fewer
unique motifs were identified in the late (n = 15), persistent
(n = 7), and pseudosilent change (n = 10) clusters (Fig. 5, A and
B). These may be due to a greater diversity of transcription
factor responses that subsequently become more focused with
persistent stress. Even though unique motifs from the ATAC-
Seq dataset in different clusters indicated enrichment of
multiple pathways (Fig. S11), the UPR and senescence path-
ways, including interleukin-17 signaling, were most signifi-
cantly and consistently enriched in the early transient and late
change clusters (Fig. 5C). To experimentally validate the
changes in UPR pathways on footprinting analyses, we per-
formed a UPR transcription factor activation profiling array.
Interestingly, we found that the protein expression of nuclear
respiratory factor-1 (NRF1), a component of the mitochondrial
UPR, was upregulated with 3hAm (Fig. 5D). The NRF1 foot-
printing plot suggests an increased binding of transcription
factors at the NRF1-binding site at 3hAm compared with UnT
control myotubes (Fig. 5E). One of the functions of NRF1 is to
regulate mitochondrial respiration (37, 38). Our observations
of an increase in predicted binding at NRF1 motifs and on the
transcription factor activation profiling array suggest that an
increase in NRF1 may be a compensatory response to the
mitochondrial defects during hyperammonemia that we have
reported earlier (15). We then performed network analyses
using the differentially accessible motifs in each cluster
(Fig. S12). Based on our current analyses and published data by
others and us, consistent alterations in expression of the Bcl2
and NRF1 families of genes, we generated interaction networks
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Global molecular responses during muscle hyperammonemia
by mapping DAC/DEG/DEP from myotubes and mouse and
human muscle tissues followed by subnetworks using these
two families as primary nodes (Figs. S13–S17). Previously
unreported interactions between the Bcl2 family and NRF1
were identified using our vertical/horizontal integration
approach. Regulation of cell cycle and senescence were major
biological processes identified in these networks enriched in
the footprinting analyses. Consistent with our footprinting
analyses, E2F3 and E2F1, members of the E2F family of tran-
scription factors that regulate cell cycle entry and senescence,
were predicted transcriptional modulators of a significant
RNA-Seq DEG network (Fig. 5F). Together, these findings not
only help to identify hyperammonemia as a modulator of
senescence but also show that our vertical integration of
ATAC-Seq and RNA-Seq datasets can identify novel regula-
tory pathways.
Horizontal integration of proteomics across mouse muscle
and myotubes showed enrichment of cell cycle regulation and
ribosomal biogenesis pathways

To establish physiological relevance of our data in myo-
tubes, we analyzed proteomics datasets in vivo in gastrocne-
mius muscle from hyperammonemic (Am mice) or control
mice (n = 3 each) and integrated them with the datasets
in vitro in myotubes (Fig. 6). A heat map (Fig. 6A) showed 54
DEP in gastrocnemius muscle from control or Am mice. There
were multiple pathways that were enriched in the mouse
muscle proteomics dataset. Of these, cell cycle regulation,
HIF1α, and apoptosis signaling pathways were significantly
enriched in the mouse proteomics dataset and have been
previously reported to be perturbed by ammonia exposure in
different cells (27, 28, 32, 35, 36) (Fig. 6A). We then hori-
zontally integrated the late change cluster from myotubes and
hyperammonemic mouse muscle datasets to identify shared
molecules. In both the late change cluster in the cellular
proteomics and in the mouse proteomics datasets, there were
ten DEP that were shared, of which four were ribosomal
proteins, which decreased in expression in both myotubes and
mouse skeletal muscle (Fig. 6B) and are consistent with a
reduction in ribosomal biogenesis during hyperammonemia
(11). When the late change cluster from the myotube prote-
omics dataset was compared with the mouse proteomics
dataset (Fig. 6C), eIF2, actin cytoskeleton, axonal guidance,
actin-based motility, and other signaling pathways were
enriched in both datasets. A heat map of the shared DEG/DEP
between the late change cluster on RNA-Seq in myotubes and
the mouse muscle proteomics dataset showed a number of
skeletal muscle–specific proteins and leucyl-RNA synthetase
that were altered (Fig. 6D). Pathway analyses using g:Profiler
showed that multiple skeletal muscle contractile protein–
related pathways were enriched in our mouse proteomics
dataset (Fig. S18) as identified on the integrated IPA (Fig. 6C).

To determine if the proteomics responses in mice were
related to transcriptomic changes during hyperammonemia,
we analyzed the RNA-Seq from gastrocnemius muscle from
control and Am mice and found 1495 DEG. A heat map
10 J. Biol. Chem. (2021) 297(3) 101023
analysis showed a reversal of the DEG pattern between control
and Am mice (Fig. 7A). Functional enrichment analyses of the
myotube DEG during hyperammonemia showed enrichment
of calcium signaling, cell cycle regulation, death receptor, and
apoptosis pathways (Fig. 7A). We then horizontally integrated
the shared DEG as a heat map (Fig. 7B) followed by functional
enrichment analyses of the mouse muscle and myotube late
change cluster datasets (Fig. 7C). Calcium signaling, cell cycle
signaling, oxidative stress response, and death receptor
signaling pathways were enriched in both datasets (Fig. 7C).
These pathways identified to be altered during hyper-
ammonemia were then validated experimentally in myotubes.
We show that rapid calcium flux (Fig. 2F), decreased apoptosis
and maintained viability (Fig. 2H), increased expression of p21
(Fig. 7D), and increased mitochondrial oxidative stress, as re-
ported by us previously (15), are components of the HASR.
Concordant changes between the late change cluster on
myotube RNA-Seq and hyperammonemic mouse muscle that
have been previously studied in skeletal muscle were noted in
actin cytoskeleton, integrin-linked kinase, and synaptogenesis
signaling (Figs. 3H, 4H and 7C and Fig. S19). We compared the
DEG/DEP from Am and control mice and noted eight shared
molecules (Fig. 7E). A relationship between the DEG and DEP
would suggest either a common regulatory mechanism be-
tween such molecules or a heretofore unknown interaction
between molecules. We therefore generated a correlation
matrix (Fig. 7F) and a pairwise correlation (Fig. 7G) to deter-
mine trends for proteomics and RNA-Seq expressions for the

eight shared genes (number of comparisons ð 8
2
Þ ¼ 28). There

were five positive (starch binding domain 1 [Stbd1], quinoid
dihydropteridine reductase [Qdpr], COP9 signalosome subunit
5 [Cops5], AKT1 substrate 1 [Akt1s1], and adipogenesis
associated Mth938 domain containing [Aamdc]) and three
negative (dystrophin [Dmd], four and a half LIM domains 3
[Fhl3], and macrophage migration inhibitory factor [Mif])
correlations between the proteomics and RNA-Seq data for
the eight similar DEG/DEP pairs. Consistent with these find-
ings, when correlations were performed between pairs of dis-
similar molecules, we found an inverse relation between the
expression levels of two molecules in RNA-Seq and prote-
omics (e.g., negative expression correlation between the
molecule pair in RNA-Seq but positive expression correlation
between the molecule pair in proteomics) when a pair of
molecules contained ether DmD, Fhl3, and Mif (Fig. 7G). The
biological and functional relevance of these novel relations
needs to be evaluated in future experimental studies.

Transcriptomics from human skeletal muscle from patients
with cirrhosis and hyperammonemia showed enrichment of
cell cycle regulation, senescence, and mitochondrial oxidative
function pathways

Finally, we asked whether changes observed in murine
myotubes and skeletal muscle during hyperammonemia were
also seen in human skeletal muscle tissue. A heat map of the
RNA-Seq dataset from skeletal muscle from human cirrhotic
(CIR) or control (CTL) subjects is shown in Figure 8. The
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Figure 6. Mouse muscle proteomics analyses. A, heat map showing differentially expressed proteins (DEP) in gastrocnemius muscle from mice implanted
with a miniosmotic pump releasing either ammonium acetate (Am) (2.5 mmol.kg−1.d−1) or PBS for 28 days. Stacked bar chart shows manually curated
canonical pathways that are significantly enriched in the proteomics tissue dataset. B, heat map comparing the late change cluster DEP in myotubes to
hyperammonemic mouse skeletal muscle DEP. C, integration of canonical pathways enriched in late change cluster on proteomics in myotubes and mouse
muscle proteomics. D, heat map of shared differentially expressed genes (DEG)/DEP from the late change clusters from myotube RNA-seq and mouse
muscle proteomics. All cellular experiments were performed in n = 3 biological replicates, and mouse experiments were performed in n = 3 in each group.
Significance for cellular RNA-Seq DEG was taken at false discovery rate (FDR) <0.05. Significance for cellular and mouse proteomics was taken at p < 0.05.
Canonical pathway enrichment significance cut off was −log(p value) ≥1.3. Am concentration in all cellular experiments was 10 mM.

Global molecular responses during muscle hyperammonemia
human RNA-Seq dataset showed a reversal of expression
patterns between CIR and CTL that was similar to our ob-
servations in the RNA-Seq datasets from hyperammonemic
myotubes and mouse muscles (Figs. 3A and 7A). Consistent
with cellular and mouse muscle transcriptomics and prote-
omics, cell cycle regulation, cell death, senescence, HIF1α, and
oxidative stress pathways were enriched in our human RNA-
Seq dataset (Figs. 8A and Fig. S20). Activation of the HIF1α
pathway was consistent with our data in hyperammonemic
myotubes (Fig. 2D) and mouse muscle (Fig. 6A) as well as
previous data on HIF1α stabilization by ammonia (27, 28).
TGF-β signaling pathway components were enriched in our
dataset, consistent with our previous reports of increased
myostatin, a member of the TGF-β superfamily, during
hyperammonemia (7). Shared significant changes were also
seen in Am mouse and human CIR skeletal muscle tran-
scriptomics (n = 36), and both datasets showed enrichment of
cell cycle regulation and oxidative stress response pathways
(Fig. 8, B and C). Shared DEG between human and cellular
transcriptomics (n = 77) showed an enrichment of cell cycle
regulation, senescence, and HIF1α signaling pathways (Fig. 8,
D and E). A senescence-like phenotype in a postmitotic cell
J. Biol. Chem. (2021) 297(3) 101023 11
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Figure 7. Mouse muscle RNA-Seq integrated with other datasets. A, heat map of differentially expressed genes (DEG) in the RNA-Seq dataset from
gastrocnemius muscle from mice implanted with a miniosmotic pump releasing either ammonium acetate (Am) (2.5 mmol.kg−1.d−1) or PBS for 28 days.
Stacked bar chart shows manually curated canonical pathways enriched in the RNA-Seq dataset from mouse muscle tissue. B, heat map of shared late
change cluster DEG in myotubes and DEG from hyperammonemic mouse skeletal muscle. C, canonical pathways enriched in RNA-Seq from late change
cluster in myotubes and mouse skeletal muscle. D, representative immunoblots and densitometry of cyclin-dependent kinase inhibitor p21 in untreated as
well as 3hAm- and 24hAm-treated differentiated C2C12 myotubes. E, Venn diagram of unique and shared DEG between the mouse RNA-Seq dataset and
the mouse proteomics dataset. F, correlation matrix of shared DEG/DEP expression in mouse muscle RNA-Seq and mouse muscle proteomics. G, pairwise
correlation of shared DEG/DEP expression in mouse muscle RNA-Seq and mouse muscle proteomics. Significance for cellular RNA-Seq DEG was taken at
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Global molecular responses during muscle hyperammonemia
would typically be characterized by expression of a
senescence-associated secretory phenotype. These known
secretory molecules were curated from a senescence database
(39) and previously published data (40) and connected in IPA.
The late change cluster from the cellular RNA-Seq dataset
(Fig. 8F) and the human RNA-Seq dataset (Fig. 8G) DEG
expression levels were next overlaid on the senescence-
associated secretory phenotype network and showed inter-
acting nodes suggesting accelerated senescence during
hyperammonemia, consistent with clinical reports of increased
senescence in cirrhosis (35, 36). The DAC, DEG, and DEP
from the myotube datasets and the DEG and DEP from the
tissue datasets were also compared against a comprehensive
senescence-associated gene database (Table S1), and we found
that nicotinamide phosphoribosyltransferase, the rate-limiting
enzyme in NAD biosynthesis, was increased in several datasets
with hyperammonemia. Given our previous observation of
decreased NAD+ during hyperammonemia, these data suggest
that the increased expression of nicotinamide phosphor-
ibosyltransferase is an adaptive response to the altered redox
status (NAD+/NADH ratio). Importantly, changes in NAD+
also regulate sirtuins, critical components of cellular senes-
cence pathway. Our approach of integrating datasets allows for
identification of novel interactomes during HASR that can be
targeted for therapies.

Concordance between different patterns across datasets is
summarized in Table S2. The supporting data for all the fig-
ures are provided as supplementary tables indexed in Table S3.
A model summarizing the major pathways enriched during
early, late, and persistent hyperammonemia is shown in
Fig. S21.
Discussion

Using a comprehensive approach including chromatin
accessibility sequencing, transcriptomics, and proteomics, we
defined the molecular landscape of hyperammonemia in
myotubes and skeletal muscle. Pathways that were enriched
and molecules that were upregulated/downregulated during
hyperammonemia were identified and showed novel patterns
of alterations that could be classified into unique clusters of
responses that represent adaptive and maladaptive changes.
Consistently, vertical integration of unbiased data showed
temporal patterns of responses in chromatin accessibility,
transcriptomics, and proteomics. Horizontal integration
showed that shared responses are conserved, whereas unique
responses may be related to regulatory interactions between
different organs in a whole organism. These data provide novel
approaches to understanding whole body and tissue-specific
responses during physiological and pathological states.

There is increasing interest in integration of transcriptional
and translational responses that have primarily focused on the
false discovery rate (FDR) <0.05. Significance for mouse RNA-Seq was taken a
taken at p < 0.05. Canonical pathway enrichment significance cut off was −log
cellular experiments were performed in n = 3 biological replicates. Mouse expe
treated mice. *p < 0.05; **p < 0.01; and p < 0.001. All data represent mean
consistency of responses (18, 23, 24, 41, 42). Discrepancies
between transcripts and protein expression have been reported
by others (41, 43, 44). Similarly, changes in chromatin acces-
sibility do not always correlate with changes in gene expres-
sion. Our observations on global alterations show that a
majority of gene/protein level perturbations are not concor-
dant even though distinct clusters of responses could be
identified at each level. These suggest that groups or networks
of molecules interact at the chromosomal, transcriptional, and
translational levels even if the exact genes/proteins within the
networks do not show matching expression changes across
levels. A potential reason for discordance across either the
vertical (DNA, RNA, and protein) or horizontal (cell, mouse,
and human) comparisons may be related to interorgan
interactions/contributions to homeostatic responses; organs or
tissues that alter distant organs via endocrine or cargo trans-
port via different mechanisms, including extracellular vesicles;
paracrine/extracellular matrix–mediated effects; or subcellular
organelle contributions from mitochondria, endoplasmic re-
ticulum, ribosomes, and others. Even though our studies were
performed on differentiated myotubes and skeletal muscle
tissue, our observations demonstrate the need to study the
contributions of multiple organs/cell types when evaluating
responses to perturbations in homeostasis. Studies on other
organs that metabolize ammonia including the liver and brain
will allow one to determine if the global responses observed in
the present studies are unique to the muscle or are general
responses. Our systems biology approach was reproducible
across datasets and experimental models even though re-
sponses may be context dependent, and our data are limited to
the skeletal muscle and myotubes.

Ideally, all measurements across the vertical regulatory
program should be done simultaneously in the same cells/
tissue. Since most assays for sequencing involve disrupting
cellular components, simultaneous measurement of multiple
molecules is not feasible. Even within a population of cells,
there are differences in responses as identified by single-cell
studies (45, 46). Since tissues consist of many types of cells
that may respond differently to various external and internal
biological processes, studies on whole tissue provides inte-
grated data from the various groups of cells including inter-
cellular interactions (45, 47, 48). Physiological and clinical
translation of such data in tissue is further compounded by the
inherent nature of regional responses in any specific organ
(49, 50). Finally, heterogeneity in humans adds to the limita-
tions and assumptions while interpreting such global regula-
tory responses. Understanding these methodological
limitations are critical while developing a model integrating
across vertical and horizontal gene regulatory phenomena.
Consistently, others have reported limited correlation between
mRNA and protein expression data from the same cells under
similar conditions (44, 51). To reduce uncertainty, we have
t p < 0.05, FDR <0.08. Significance for cellular and mouse proteomics was
(p value) ≥1.3. Am concentration in all cellular experiments was 10 mM. All
riments for the RNA-Seq dataset were performed in n = 4 PBS and n = 5 Am-
± SD.
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Global molecular responses during muscle hyperammonemia
provided details of the methods used, raw data and procedures
used in the analyses, and validated results of interest experi-
mentally that allow for reproducibility of our observations. We
have identified specific components for experimental valida-
tion based on previously reported data and some of the novel
observations that have been suggested clinically including
accelerated senescence in cirrhosis as a contributor to muscle
loss (36). We anticipate that future studies will focus on
evaluating other molecules/pathways noted in our large
datasets.

Our data during hyperammonemia did identify a number of
pathway enrichments that were conserved across datasets that
were not necessarily specific for skeletal muscle responses,
suggesting that many of these molecules/pathways play distinct
and potentially important regulatory roles. Senescence and cell
cycle regulatory pathways have been studied to a very limited
extent in mature muscle cells (39, 52, 53) but were altered
across datasets and in different clusters in our studies. Our data
are also consistent with previous reports of ammonia-induced
cellular senescence in astrocytes, which are also postmitotic
cells (35). Similarly, activation of the antiapoptotic Bcl2 family
members is consistent with our current observations and pre-
vious reports of unaltered cell viability despite continued HASR
(9, 10). Therefore, the mechanisms that promote increased
expression of Bcl2 family of proteins that protect against
apoptosis in mature muscle cells during HASR need to be
explored further. Our unbiased data analyses across datasets
and models showed defects in mitochondrial components that
were consistent with functional abnormalities reported during
hyperammonemia (15). Calcium signaling is involved in a
number of skeletal muscle and cellular responses, including
apoptosis, mitochondrial function, and contractile responses.
We observed alterations in calcium signaling during hyper-
ammonemia across different datasets, but the mechanisms and
consequences of altered calcium signaling during hyper-
ammonemia need to be dissected in future studies. We also
noted an enrichment of the HIF1α pathway during hyper-
ammonemia that is consistent with stabilization of HIF1α.
Cellular hypoxia is a possible explanation for stabilization of
HIF1α during hyperammonemia. Even though we did not
directly measure cellular or tissue oxygen concentrations,
ammonia has not been reported to cause tissue hypoxia. A
potential mechanism for stabilization of HIF1α is cataplerosis of
α-ketoglutarate (15), a critical intermediary metabolite that
promotes HIF1α degradation. The mechanism of HIF1α sta-
bilization during hyperammonemia needs to be evaluated in
future studies. Our novel networks and enrichment of pathways
lay the foundation for discovery of novel molecules/pathways
that could be therapeutic targets.

Approaches using unbiased data to comprehensively assess
cellular responses at multiple levels of regulation allow for
identifying novel molecules, pathways, or interactions. Each
type of unbiased or “omics” data helps identify differences
taken at p < 0.05. All pathways have significance of log(p value) ≥1.3. All cel
periments for the RNA-Seq dataset were performed in n = 4 PBS and n = 5 Am-
CTL. All data represent mean ± SD.
associated with disease or physiological changes. However,
analysis of any one type of data provides correlations and does
not provide insights into causal mechanisms. Therefore,
because of the confounding effects of multiple potential con-
tributors (age, sex, comorbidities, etiological agent, etc.) in
complex diseases, a coordinated set of several layers of data at
different time points would provide mechanistic insights into
disease development. Integrations of different omics data types
also provide novel insights into not only hyperammonemic
responses but also help identify heretofore unrecognized
pathologic effects including increased senescence. An addi-
tional consideration is the increasing use of single-cell ap-
proaches that provide the individual responses in a tissue or
group of cells and allows for the identification of cells that
behave differently in their interactions with other cells within a
tissue. In contrast, bulk analyses of whole tissue or cell culture
do not allow determination of the differential contribution of
each group of cells or even individual cells to the overall re-
sponses. Single-cell analyses suffer from their own limitations,
including, but not limited to, cell death of specific populations
during flow cytometry, large sample input, the effects of stress
related to cell separation, and the computational challenges of
the bioinformatics analyses and interpretation. While hori-
zontal integration across models can identify novel and
conserved pathway enrichments, the contribution of cell–cell
interactions and interorgan communication are not always
accounted for, resulting in differences between models. Simi-
larly, vertical integration can provide insights into the tem-
poral course of responses across levels because of the time
course and efficiency of transcription and translation. If there
is a discord at different levels or models, a systems biology
approach helps identify whether pathways are concordant or
not rather than individual molecules in each pathway. Such a
strategy is highly informative to determine major pathways
that are responsive and how such pathways interact with each
other. Discords across horizontal or vertical integrations can
also impact identification of therapeutic targets. A potential
approach to determining therapeutic molecules when there are
differences between multiomics analyses is to experimentally
validate target molecules or pathways by loss-of-function or
gain-of-function studies. Such an approach was recently re-
ported by us in two muscle model systems (54, 55). The
discord on vertical and horizontal integrations observed in our
studies is a potential explanation for unbiased data-based ob-
servations not consistently reproduced experimentally.
Notwithstanding these limitations of multiomics analyses, our
approach of vertical and horizontal integration of unbiased can
identify specific contributors to global responses in vitro and
test the physiological relevance of these observations in vivo.
An additional advantage of our approach is the ability to
determine the role of specific agents to cellular responses or
disease development while providing an understanding of
tissue interactions in vivo that modulate such responses.
lular experiments were performed in n = 3 biological replicates. Mouse ex-
treated mice. Human experiments were performed in n = 4 each for CIR and
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Global molecular responses during muscle hyperammonemia
In these studies, we have defined the global responses to an
endogenous cytotoxic molecule, ammonia, that may be a novel
senescence-promoting molecule. Network and nodal analyses
identified novel interaction partners in myotubes and skeletal
muscle, and further analyses of these data can lay the foun-
dation for studies on postmitotic cells choosing a senescence
pathway to maintain viability in the face of continued stress.
The present analyses also provide the basis for using integrated
approaches to discover novel regulatory molecules and path-
ways. In summary, our data show that integrated analyses of
large unbiased datasets help identify patterns of responses
across chromosomes, RNA, and proteins in myotubes and
skeletal muscle with experimental validation of differentially
expressed molecules. The systems biology approach used in
these studies will allow for novel therapeutics to be developed
by combining integrated data/network analyses with bioin-
formatics approaches to identify treatment targets and can be
applied to other model systems also.

Experimental procedures

Reagents

All chemicals were of molecular biology grade and obtained
from Sigma–Aldrich. The list of reagents is shown in Table S4.

Computational resources

All computational resources used are acknowledged within
the section and cited either by URL or peer-reviewed articles.

Biological resources

Human cirrhosis with hyperammonemia

Human skeletal muscle samples were obtained from the
vastus lateralis in patients with alcoholic cirrhosis and healthy
volunteer control subjects as previously described (56). The
clinical details of these subjects have been previously reported
(56). In brief, cirrhosis was diagnosed by biopsy or based on
clinical presentation, laboratory values, and imaging results. A
Bergström needle was used to acquire the samples that were
flash frozen in liquid nitrogen and stored at −80 �C until
analysis. Human studies were performed after obtaining
written informed consent, and the studies were approved by
the Institutional Review Board at the Cleveland Clinic and
conformed to the Helsinki Declaration on human studies.

Hyperammonemic mouse

In vivo studies in ammonia-treated or vehicle-treated mice
were performed in 8- to 10-week-old wildtype animals bred on
a C57BL/6J background (Jackson Laboratory). In brief, an
Alzet miniosmotic pump (Model 2004; Alzet) prefilled either
with Am (released at a rate of 2.5 mmol/kg/day), or sterile PBS
was implanted in the mice as described by us (25). Mice were
sacrificed 4 weeks after pump implantation, and gastrocnemius
muscle was rapidly collected and flash frozen. Plasma and
muscle concentrations of ammonia were similar to those
previously reported in our cellular model and human tissue
16 J. Biol. Chem. (2021) 297(3) 101023
(25). All animal protocols were approved by the Cleveland
Clinic Institutional Animal Care and Use Committee.

Cell culture

In vitro cell culture studies were performed in differentiated
murine C2C12 myotubes (American Type Culture Collection
CRL 1722; American Type Culture Collection) as described by
us previously (8). In brief, myoblasts were grown to 90%
confluence in proliferation medium (Dulbecco’s modified Ea-
gle’s medium with 10% fetal calf serum), which was replaced
with differentiation medium (Dulbecco’s modified Eagle’s
medium plus 2% horse serum) for 48 h. Cells were treated with
10 mM Am for 3 or 24 h. This model reproduces the tissue
concentrations of ammonia in human skeletal muscle from
patients with cirrhosis with no loss of viability (7). The cellular
early and late phenotype and metabolic responses to hyper-
ammonemia are also similar to those observed in human
cirrhosis and rodent models of hyperammonemia (7–9). These
concentrations of Am do not alter the cellular pH unlike that
with ammonium chloride as previously reported by us (8). The
molecular responses were not because of acetate as reported
by us previously using 10 mM acetic acid and sodium acetate
(7). Since the molecular, metabolic, and phenotypic changes
with hyperammonemia develop over time, we evaluated the
global responses at 3 h when we believe adaptive changes
occur, based on our previously published data (11). The
adaptive phase to hyperammonemia is followed by a mal-
adaptive phase at 24 h, when HASR responses and resultant
phenotypes become evident (10).

Unbiased data generated from ATAC-Seq, RNA-Seq, and
proteomics were each defined as a “dataset.” We generated all
three datasets from myotubes, two from mouse gastrocnemius
muscle (RNA-Seq and proteomics), and one (RNA-Seq) from
human muscle that were used in these integrated analyses. For
myotube datasets, there were three time points defined as
UnT, 3hAm, or 24hAm.

ATAC-Seq

ATAC-Seq library preparation was performed using the
Omni-ATAC protocol for cells (57). Sequencing and analysis
were performed at the University of Michigan according to
their pipeline. In brief, Snakemake was used to manage the
bioinformatics workflow (58). FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/) was used to
assess the quality of each sample. TrimGalore (https://github.
com/FelixKrueger/TrimGalore) (version 0.4.5) and Cutadapt
(59) (version 1.15) were applied using the following parame-
ters: –nextera -e 0.1 –stringency 6 –length 20 –nextseq 20.
Trimmed reads were aligned to mm10 with Bowtie2 (60)
(version 2.3.4.1) with the following parameters: -X 2000 –no-
mixed –no-discordant, and defaults multi-seed length of 20 bp
with 0 mismatches. Duplicate reads were marked with Picard
(http://broadinstitute.github.io/picard/) (version 2.20.2).
Alignments to autosomes were retained (while sex chromo-
somes and mitochondrial alignments are removed), duplicates
marked by Picard were removed, and alignments below a
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MAPQ threshold were removed. These filtering steps were
performed with SAMtools (61) (version 1.2) and the flags: -q
10 -F 1024. Reads completely overlapping blacklisted regions
(ENCODE Blacklist Regions) were removed with bedtools (62)
(version 2.28.0). Sample-wise peaks were called with macs2
(63) (version 2.1.2) with flags: -f BAM –nomodel –shift -100 –
extsize 200 –gsize mm. Peaks over all samples are then merged
with bedops (64) (version 2.4.36). MultiQC (65) (version 1.7)
generated a report combining FastQC, trimming, alignment,
and duplicate calling over all the samples. For ATAC-specific
QC metrics, ataqv (Ataqv) (66) was used (version 1.0.0).

Differential accessibility analysis—For each model and
contrast, edgeR Bioconductor package (67) (version 3.26.8)
was used to identify regions of DAC. For each sample, the
number of reads in the merged peaks is counted, and a library
size normalization factor is determined. The common, tren-
ded, and tagwise negative binomial dispersions of replicates are
calculated. Each model is fit using the glmQLFit function, and
each contrast tested with an empirical Bayes quasi-likelihood F
test. The DAC are then annotated to genic and CpG island
annotations using the annotatr Bioconductor package (68)
(version 1.10.0).

Footprinting analyses—The HINT tool was used in the
Regulatory Genomics Toolbox (rgt-hint) to perform foot-
printing and motif-binding analysis (69). Briefly, for each
condition, the reads among the replicates are pooled, and tag
counts are determined within the merged peaks. Motifs, or,
transcription factor–binding sites, from the JASPAR database
(70), were queried against the footprints found within each
condition. Finally, a differential score representing the
transcription factor–binding activity and the openness of the
surrounding chromatin is calculated and visualized between
pairs of conditions, what we refer to as “differential
accessibility.”
RNA-Seq

Total RNA was extracted using the RNeasy Plus minikit
(Qiagen) from C2C12 myotubes that were UnT or treated with
10 mM Am for 3 or 24 h and muscle from mice and human
subjects as described by us previously (11). In brief, total RNA
quality was evaluated using an Agilent 2100 bioanalyzer
(Agilent Technologies) and quantitative PCR (library activity
≥2 nM), and the amount of the isolated RNA was determined
using a NanoDrop ND-1000 spectrophotometer (Infinigen
Biotechnology, Inc). RNA-Seq libraries were generated using
the RNeasy Plus minikit (Qiagen) and sequenced on an Illu-
mina HiSEQ400 instrument (using protocols provided by
manufacturer) by Novogene (71). DEGs were identified, and
their expression was compared at different times or across
different datasets.

Data analysis—Downstream analysis of RNA-Seq datasets
was performed using a combination of programs including
STAR, HTseq, Cufflink, and Novogene’s wrapped scripts
(72–74). Alignments were parsed using TopHat, and
differential expressions were determined through DESeq2
(74, 75).
Reads mapping to the reference genome—Mus musculus
genome assembly GRCm38 (mm10) and homo sapiens
genome assembly GRCh37 (hg19) (https://www.ncbi.nlm.nih.
gov/grc) and gene model annotation files were downloaded
from genome Web site browser (National Center for
Biotechnology Information [NCBI]/University of California
Santa Cruz/Ensembl) directly. Reference genome indices were
built using STAR, and paired-end clean reads were aligned to
the reference genome using STAR (version 2.5). STAR used
the method of maximal mappable prefix, which generates a
precise mapping result for junction reads (72).

Quantification of gene expression level—HTSeq (73) (version
0.6.1) was used to count the read numbers mapped to each
gene. The fragments per kilobase of transcript per million
mapped reads value of each gene was calculated based on the
length of the gene and reads count mapped to this gene.
Fragments per kilobase of transcript per million mapped reads
consider the effect of sequencing depth and gene length for the
reads count at the same time and is currently the most
commonly used method for estimating gene expression levels
(76).

Differential expression analysis—Differential expression
analysis between two conditions/groups (two biological repli-
cates per condition) was performed using DESeq2 (75)
(version 2_1.6.3). DESeq2 provides statistical routines for
determining differential expression in digital gene expression
data using a model based on the negative binomial distribu-
tion. The resulting p values were adjusted using the Benjamini
and Hochberg’s approach for controlling the false discovery
rate (FDR).
Quantitative proteomics

Global proteomics analyses were performed in myotubes
and muscle tissue using methods previously described by us
(11, 54). In brief, UnT and Am-treated myotube samples were
prepared for unbiased proteomics studies as previously
described by us (11). Murine and human tissues were flash
frozen and then homogenized in a Barocycler using 30 μl lysis
buffer consisting of 4 M urea in 0.1 M ammonium bicarbonate
with fresh Complete Mini Protease Inhibitor Cocktail (Roche)
added. The homogenizing temperature was set at 35 �C, 90
cycles with 20 s at 45 PSI, and 10 s at 0 PSI per cycle. After
homogenization, the tissue was centrifuged and the superna-
tant was transferred to a new Eppendorf tube. Proteins were
digested with trypsin and prepared for MS; unbiased prote-
omics studies were performed on a Thermo Scientific Fusion
Lumos MS system (Thermo Scientific), and data were analyzed
using MaxQuant software (version 1.6.3.3) as previously
described by us (11) to identify DEP.

Digested peptides were analyzed on a ThermoFisher Sci-
entific UltiMate 3000 UHPLC system (ThermoFisher Scienti-
fic) interfaced with a ThermoFisher Scientific Orbitrap Fusion
Lumos Tribrid mass spectrometer (Thermo Scientific). Liquid
chromatography was performed prior to MS/MS analysis for
peptide separation. The HPLC column used is a Thermo
Scientific Acclaim PepMap 100 C18 reversed-phase capillary
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chromatography column (Thermo Fisher Scientific) 75 μm ×
15 cm, 2 μm, 100 Å. About 5 μl volumes of the peptide extract
were injected, and peptides were eluted from the column by a
110-min acetonitrile/0.1% formic acid gradient at a flow rate of
0.30 μl/min and introduced to the source of the mass spec-
trometer online. Nano electrospray ion source was operated at
2.5 kV. The digest was analyzed using the data-dependent
multitask capability of the instrument acquiring full scan
mass spectra using an FT orbitrap analyzer to determine
peptide molecular weights and collision-induced dissociation
MS/MS product ion spectra with an ion-trap analyzer at 35%
normalized collision energy to determine the amino acid
sequence in successive instrument scans. The MS method
used in this study was a data-dependent acquisition with 3 s
duty cycle. It includes one full scan at a resolution of 120,000
followed by as many MS/MS scans as possible on the most
abundant ions in that full scan. Dynamic exclusion was
enabled with a repeat count of 1, and ions within 10 ppm of
the fragmented mass were excluded for 60 s.

The LC–MS-based quantitative proteomic experiments were
done using three biological replicates in each treatment group
with one technical replicate per sample. The proteins with
single-peptide identifications were removed. The data were
analyzed using MaxQuant, version 1.6.3.3 with the search en-
gine Andromeda, which is integrated in MaxQuant software,
and the parameters used were default settings for an Orbitrap
instrument. The database used to search the MS/MS spectra
was the UniprotKB/Swiss-Prot with organism set to mouse
containing 25,035 entries downloaded on July 26, 2017 with an
automatically generated decoy database (reversed sequences).
The search was performed looking for fully tryptic peptides with
a maximum of two missed cleavages. Oxidation of methionine
and acetylation of protein N terminus were set as dynamic
modifications, and carbamidomethylation of cysteine was set as
static modifications. The precursor mass tolerance for these
searches was set to 20 ppm, and the fragment ionmass tolerance
was set to 0.5 Da. The search was performed including the
common contaminant database available in MaxQuant, and
these proteins were excluded in the data analysis. An FDR was
set to 1% for both peptide and protein identification and
calculated using the number of identified peptides/proteins
from decoy database divided by the total number of identified
peptides/proteins. Two peptides were required for positive
protein identification to decrease the chance of false discovery
by a random match. The “match between runs” feature of
MaxQuantwas used to transfer identifications to other LC–MS/
MS runs based on their masses and retention time (maximum
deviation of 0.7 min), and this was also used in quantification
experiments. Quantifications were performed using the pre-
cursor intensity–based label-free quantitation method available
in the MaxQuant program (77). The resulting label-free quan-
tification intensities were used as the measures of protein
quantities in this work and include accession number (and
database from which it is derived), the number of distinct pep-
tides assigned for each protein, percentage coverage of each
protein assigned, and the quantification measurements for each
protein (Tables S5 and S6).
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Vertical integration

Comparing responses across different unbiased datasets
(ATAC-Seq, RNA-Seq, and proteomics) from the same sample
source were defined as “vertical integration” because it allows
us to determine the consistency of expression across these
datasets. Vertical integration was performed by comparing
in vitro results in myotubes. Vertical integration of in vivo
RNA-Seq and proteomics was performed for murine skeletal
muscle.

Horizontal integration

Comparison of unbiased datasets from different sample
sources (e.g., RNA-Seq from myotubes, muscle tissue from
mice and human subjects) was defined as horizontal integra-
tion because it allows us to determine the degree of conserved
responses across species/sources. Unbiased in vitro data from
myotubes and unbiased in vivo data from gastrocnemius
muscle from hyperammonemic and pair-fed mice and human
skeletal muscle from cirrhotic patients and controls were then
compared to determine unique and shared characteristics of
datasets across tissue and species.

Hierarchical clustering and heat map generation

Sample heat maps were created using “pheatmap” (https://
cran.r-project.org/web/packages/pheatmap/index.html), and
rows were scaled. Hierarchical clustering was performed using
hclust (https://www.rdocumentation.org/packages/fastcluster/
versions/1.1.25/topics/hclust) using complete-linkage clus-
tering, and dendrograms were plotted with dendextend (78).

Cluster analyses

DAC/DEG/DEP studied in the datasets from the three time
points—UnT, 3hAm-treated, and 24hAm-treated myotubes,
showed distinct patterns or clusters (Fig. S1). Significant
changes (increase or decrease in expression) at 3hAm
compared with UnT but not with 24hAm versus UnT was
called an “early transient” change. We termed a significant
difference in accessibility/expression between 24hAm versus
3hAm, but without a difference in either 3h or 24hAm from
UnT, as “pseudosilent.” We used this term because accessi-
bility/expression changes from baseline are not significant at
3h or 24h and in classical analyses comparing responses with
baseline control would have been identified to have no sig-
nificant difference. A “late” change was defined as significant
change in accessibility/expression between UnT and 24hAm
but not at 3hAm versus UnT. “Persistent” change was defined
as a change in the same direction (increase or decrease in
accessibility/expression) at 3hAm and 24hAm compared with
UnT. Cluster patterns were then compared during vertical
integration to determine if there was a pattern or temporal
course of accessibility/expression to evaluate if chromosomal
access results in translation and if mRNA expression correlates
with protein expression. Since the temporal course of tran-
scription and translation depends on a number of factors, we
used “like-cluster” and “dissimilar-cluster” integration. Like-
clusters were defined as those that were temporally similar,
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(e.g., late change ATAC-Seq to late change RNA-Seq), whereas
“dissimilar-clusters” were the differentially accessible/
expressed chromatin/mRNA/proteins that belonged to
different temporal changes in different datasets (e.g., early
transient change ATAC-Seq to late change RNA-Seq). A
dissimilar-cluster relation would suggest that in addition to the
time/efficiency of transcription/translation, stability of the
molecules also affects the observed responses.
Correlation analyses

ATAC-Seq, RNA-Seq, and proteomics myotube and skeletal
muscle tissue datasets, as well as the four temporal cluster
patterns, early transient, pseudosilent, late, and persistent
change, were analyzed. We performed intersections for the
“like-clusters” for the different datasets to retrieve the shared
gene list between a dataset pair for a cluster type. Dataset pairs
of shared DAC/DEG/DEP were then generated by paired
vertical analyses, for example, ATAC-Seq–RNA-Seq; RNA-
Seq–proteomics; and ATAC-Seq–proteomics. Genes shared
between datasets for each of the four “like-clusters” were also
identified. Correlations between dataset pairs for accessibility/
expression values in a certain change category were performed.
Since the early transient and persistent clusters did not have
any shared genes, we only performed the correlation analysis
for late and pseudosilent clusters. In this analysis, we examined
whether concordance between expression/accessibility trends
at various characterization levels is temporally determined and
if the changes that occurred in chromosomal accessibility, for
example, are followed by changes at another level (e.g., tran-
scription) instantaneously or with some time delay.

For each dataset pair, we calculated the correlations using
two approaches:

(a) Correlation for DAC/DEG/DEP. We consider the treat-
ment comparisons (e.g., 24hAm versus 3hAm in one of the
dataset clusters) as samples and the shared DAC/DEG/
DEP as variables to calculate the correlation between
accessibility/expression changes for a dataset pair. This will
generate values of +1 or −1 only (i.e., trend), since only two
treatment comparisons are available at most per gene. We
then summarized the overall trend agreements by using the
sign of the mean correlation where positive corresponds to
agreement, negative to discord, and a zero value is inter-
preted as undecided. This correlation analysis could not be
performed for the pseudosilent category as only one
treatment comparison (24hAm versus 3hAm) was available
for comparison between datasets.

(b) Correlation for clusters. We consider the DAC/DEG/DEP
as samples and the clusters as variables to calculate the
correlation between accessibility/expression changes for a
dataset pair. This generated values in the usual [−1, 1]
range since multiple samples can be available per variable.
This yielded low-to-moderate correlations (jrj< 0:5) for
both late and pseudosilent clusters.

Next, we sought to perform analogous correlation analyses
between datasets and clusters and retrieved the shared DAC/
DEG/DEP in a similar fashion. This yielded 36 distinct sets of
shared DAC/DEG/DAP (6 × 6, number of change category
pairs ð 4

2
Þ ¼ 6, and number of dataset arrangements = 3

2P). We
can only determine the correlation between dataset clusters for
DAC/DEG/DAP if the number of treatment comparison
groups within a cluster is the same, which is true for the early–
late change dissimilar-clusters only. We then get the trend
agreement summary, which has a 35 to 65% split between
“agreement” and “discord.” Contrarily, we can calculate the
correlations for shared treatment comparison groups for any
dissimilar-cluster given that we have nonzero accessibility/
expression values for the shared DAC/DEG/DAP. We calculate
these correlations for early–late, early–pseudosilent, late–
persistent, and late–pseudosilent clusters, which show varia-
tion in both correlation trends and values, that is, −1 < r < 0.5.
We cannot calculate the correlations for the early–persistent
and persistent–pseudosilent dissimilar-clusters as they either
do not have enough shared DAC/DEG/DAP or only have an
expression value of zero.

Also, we can find shared DAC for dissimilar-clusters within
the ATAC-Seq dataset because of the possibility of having
multiple different DAC sites within the same gene displaying
different directional trends in different clusters. We calculate
the temporal change correlations for all three treatment
comparisons between six ATAC-Seq dataset pairs from the
three change categories, which show a shared trend with wide
range, that is, 0.1 < r < 0.8.

Functional enrichment analyses

A number of gene interaction analytical tools were used to
evaluate known or reported interactions and expected re-
sponses using our experimental data. The most frequently
used applications include IPA (QIAGEN, Inc; https://www.
qiagenbioinformatics.com/products/ingenuity-pathway-
analysis) that uses proprietary algorithms and knowledge
database and g:Profiler (https://biit.cs.ut.ee/gprofiler/gost),
which includes analyses from Kyoto Encyclopedia of Genes
and Genomes (https://www.kegg.jp) that uses molecular-level
information generated by genome sequencing and other
high-throughput experimental strategies, and GO (http://
geneontology.org) that was developed by a consortium (GO
consortium) that developed a comprehensive computational
model of biological systems, and the TRANSFAC database of
transcription factors (79), among others. Even though these
tools use experimental published data, the priorities provided
and the weights for the algorithms are different and hence
analyzing the same experimental data can provide different
results in terms of networks and regulatory molecular path-
ways. Therefore, we used both IPA and the databases acces-
sible in g:Profiler to determine common and unique pathways/
networks identified from our large datasets.

IPA

ATAC-Seq DAC and motif accessibility data (footprinting
analyses), RNA-Seq DEG, and proteomics DEP expression
and statistical significance values were uploaded to IPA
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(QIAGEN, Inc; https://www.qiagenbioinformatics.com/
products/ingenuity-pathway-analysis) and canonical pathway
enrichment, or the pathways with the most significant rep-
resentation among the molecules in the selected dataset, were
identified using the Ingenuity Pathway Knowledge Base
(IPKB).

Networks of upstream regulators and networks of molecules
with known interactions were also generated using the IPKB.
All the molecules that compose each network identified in the
IPKB are listed, and the molecules from the gene set that are
contained within a network, termed “network eligible mole-
cules,” are quantified. Regulatory networks of these unique and
shared genes for temporal clusters and datasets were generated
and integrated for qualitative comparisons. The upstream
regulator analysis tool was used to analyze linkages to RNA-
Seq DEGs via coordinated expression levels found within a
dataset in order to identify potential upstream regulators of the
RNA transcription.

g:Profiler

Lists of differentially accessible/expressed genes were
inputted into g:Profiler (80) (version
e102_eg49_p15_7a9b4d6), freely available at https://biit.cs.ut.
ee/gprofiler/gost. Using the g:Ost tool, multiple databases of
functional evidence including GO terms, biological pathways,
regulatory motifs of transcription factors and microRNAs,
human disease annotations, and protein–protein interactions
were mined for the functional enrichment analyses performed.

Senescence database analyses

The Cell Senescence Gene Database was used to identify
known senescence genes (39) in our ATAC-Seq, RNA-Seq,
and proteomics data.

Validation of representative observations

To confirm the validity of our unbiased data observations
and analyses, mRNA was quantified by real-time PCR using
methods previously described (8). In brief, total RNA was
extracted from myotubes, reverse transcribed to comple-
mentary DNA, and amplified on an Applied Biosystems7500
real-time PCR instrument (Thermo Fisher Scientific), and
the PCR product was run on a Tris borate EDTA gel with
ethidium bromide staining. The primer sequences were
leucine t-RNA synthetase (F50-cgacccctgacgtgctataa-30; R50-
ctgcaagatcatccggggaa-30); Mgat4c (F50-acagtgttctttgcaaga
gccgc-30; R50-tgggaacgtgcttcatggaccaa-30), and Bcl2 (F50-acc
tgcagcttcttttcggggaa-30; and R50-attgggttgctctcaggctggaa-30).
Results were normalized to β-actin (F50-atcgtgcgtgacatcaaga-
30; R50-atgccacaggattccata-30). Immunoblots were performed
in proteins extracted from myotube lysate, quantified, and
subjected to gel electrophoresis, electrotransferred to poly-
vinylidene fluoride membrane, and blotted for NLR family
apoptosis inhibitory protein-1 (R&D Systems), caveolin-3
(Novus), myosin heavy chain (Millipore), p21 (Proteintech),
cleaved caspase-3 and PARP/PARP1 (Cell Signaling Tech-
nologies), Bcl-2 (BioVision), O-linked N-acetylglucosamine
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(AbCam), and HIF1-α (Cell Signaling Technologies) primary
antibodies at 1:1000 dilution and appropriate secondary
antibodies (1:10,000), and developed using enhanced chem-
iluminescence solution (Thermo Fisher Scientific). Densi-
tometries were performed using ImageJ (National Institutes
of Health) (81).

An activation profiling array to determine 16 UPR-related
transcription factors simultaneously was used using the
manufacturer protocol (Signosis, Inc). We determined the
activation of these transcription factors in differentiated
myotubes at 3hAm. Nuclear protein extracts were prepared
using the Nuclear Extraction Kit protocol (SK-0001; Signosis,
Inc). In brief, a series of biotinylated probes made from
consensus sequences of transcription factor DNA-binding
sites were incubated with nuclear extracts, and the transcrip-
tion factor–probe complex was separated from free probes
using a spin column. The bound probes were separated from
the complex and hybridized with complementary sequences of
the probes on a plate and detected using a streptavidin-
horseradish peroxidase conjugate. Luminescence was deter-
mined on a microplate luminometer.

Cell death

Apoptosis was determined using annexin V tagged to Alexa
Fluor 680 by flow cytometry as described by us earlier (54). In
brief, differentiated C2C12 myotubes that were treated with
10 mM Am or equal volume of medium for 3 h and 24 h and
1 mM hydrogen peroxide for 4 h at 37 �C prior to trypsini-
zation and flow cytometry analysis (LSRII from BD Bio-
sciences). Analysis was done using the FlowJo software
(FlowJo, LLC). Cell viability was quantified by trypan blue
exclusion as described by us previously (54).

Calcium concentrations

Cellular calcium levels were measured using FLIPR Calcium
5 Assay Kit (Molecular Devices) as described previously (82).
Differentiated myotubes were seeded at a density of
100,000 cells/well in a 96-well clear bottom black plate.
Following serum starvation, calcium-sensitive dye was added
to the cells. The Flipper instrument was programmed in FLEX
mode to add ligands (0.04 and 1000 nM concentration) to the
cells and to monitor the fluorescence before and after adding
10 mM Am. The response curves were plotted and expressed
as relative fluorescence units.

Statistical approach

In order to have a range of 50 to 2800 DAC/DEG/DEP from
each cluster or dataset for functional enrichment analysis, we
slightly varied the significance and fold-change cutoffs for
DAC, DEG, and DEP, respectively. Given the multiple analyses
and models of in vitro and in vivo hyperammonemia, this was
the tightest range we could achieve while keeping the signifi-
cance cutoffs similar to other published data, the same within
each dataset, and within a myotube dataset, the same for each
cluster. Because footprinting analysis was a subanalysis within
the ATAC-Seq dataset, we did not choose the significance level
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to stay within the goal range of 50 to 2800 differentially
accessible motifs per cluster but instead used the least con-
servative significance cutoff applied to any other dataset within
this study, p < 0.05.

The following specific significance cutoffs were utilized:
ATAC-Seq DAC p < 0.005 and a fold-change cutoff of >|1.5|;
ATAC footprinting motif differential activity p < 0.05; cellular
RNA-Seq DEG FDR <0.05; tissue RNA-Seq DEG p < 0.05
FDR <0.08; cellular and tissue proteomics DEP p < 0.05.
Canonical pathways were determined to be significant if −log(p
value) ≥1.3 for the pathway. Validation data are presented as
mean ± SD and an unpaired Student’s t test was used to assess
statistical significance. The biological replicates used for each
dataset were as follows: n = 3 per treatment group for all
cellular datasets and mouse skeletal muscle proteomics; n = 4
for PBS and n = 5 for Am-treated mouse skeletal muscle RNA-
Seq; n = 4 for each group for human skeletal muscle RNA-Seq.
For the canonical pathway enrichment of IPAs, the signifi-
cance values (p value of overlap with a dataset) are calculated
using a right-tailed Fisher’s exact test. The significance in-
dicates whether the percentage of DAC/DEG/DEP associated
with a pathway is present in our datasets/clusters by random
chance. For the IPA network analyses, a significance score is
given to each network by taking the negative exponent of the
right-tailed Fisher’s exact test result. The score measures the
likelihood that the “network eligible”molecules that are part of
a network are found within the dataset by random chance
alone (83). For g:Profiler functional enrichment analyses, the
g:SCS multiple testing correction method was used, applying a
significance threshold of 0.05 (80).

Reliability of the measurements between replicates

The raw values for the biological replicates for unbiased data
were used for generating heat maps and all raw values
(including those differentially expressed between datasets)
been provided as Supporting Tables. For pathway analyses,
fold changes were calculated for each differentially expressed
molecule (DAC, DEG, and DEP) by averaging the control and
hyperammonemic groups. For unbiased data analyses, false
discovery rates, raw data, log2 fold change, and p values are
provided for all data.

Data availability

The unbiased data in this article are available in the
Supporting Tables and also publicly available at established
repositories as follows. The cellular RNA-Seq datasets are
publicly available at NCBI Sequence Read Archives database
accession: PRJNA495054 and have been previously published
(11). The other high-throughput sequencing data (the cellular
ATAC-Seq dataset and human and mouse RNA-Seq datasets)
from this study are available at NCBI Gene Expression
Omnibus as a superseries with accession number GSE171645
and can be directly located at the following URLs:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE171642
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE171643

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE171644

The MS proteomics data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE (84) partner re-
pository (http://www.proteomexchange.org) with dataset
identifier PXD026955 and 10.6019/PXD026955. The flow
cytometry data are available at FlowRepository (https://
flowrepository.org) under repository ID: FR-FCM-Z3MS. No
new software code was written for this article. All other data
are contained within the article.

Supporting information—This article contains supporting
information.
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