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RNA-binding proteins (RBPs) play significant roles in various cancer types. However, the
functions of RBPs have not been clarified in renal papillary cell carcinoma (pRCC). In
this study, we identified 31 downregulated and 89 upregulated differentially expressed
RBPs on the basis of the cancer genome atlas (TCGA) database and performed
functional enrichment analyses. Subsequently, through univariate Cox, random survival
forest, and multivariate Cox regression analysis, six RBPs of SNRPN, RRS1, INTS8,
RBPMS2, IGF2BP3, and PIH1D2 were screened out, and the prognostic model was
then established. Further analyses revealed that the high-risk group had poor overall
survival. The area under the curve values were 0.87 and 0.75 at 3 years and 0.78
and 0.69 at 5 years in the training set and test set, respectively. We then plotted a
nomogram on the basis of the six RBPs and tumor stage with the substantiation in
the TCGA cohort. Moreover, we selected two intersectant RBPs and evaluate their
biological effects by GSEA and predicted three drugs, including STOCK1N-28457,
pyrimethamine, and trapidil by using the Connectivity Map. Our research provided a
novel insight into pRCC and improved the determination of prognosis and individualized
therapeutic strategies.

Keywords: RNA-binding proteins, renal papillary cell carcinoma, prognostic model, bioinformatic, candidate
drugs

INTRODUCTION

Renal cell carcinoma (RCC), which accounts for 3% of adult malignancies, is a fatal malignancy of
the urinary system (Huang et al., 2017). RCC consists of three subtypes: renal clear cell carcinoma
(ccRCC), renal papillary cell carcinoma (pRCC), and renal chromophobe cell carcinoma (chRCC)
(Tabibu et al., 2019). ccRCC constitutes 70% of all RCC cases, whereas pRCC is the second common
subtype of RCC constituting 15% (Al Ahmad et al., 2019). Clinically, pRCC is considered as more
inert than ccRCC. However, advanced cases of pRCC have metastatic potential, which are more

Abbreviations: pRCC: renal papillary cell carcinoma; RBP, RBA-binding protein; DEGs, differentially expressed genes; GO,
Gene Ontology; KEGG, the Kyoto Encyclopedia of Genes and Genomes Database; PPI, protein–protein interaction; FC,
fold change; FDR, false discovery rate; ROC, receiver operating characteristic; AUC, area under the curves; GSEA, gene set
enrichment analysis; OS, overall survival; TCGA, the cancer genome atlas.
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lethal than ccRCC (Kaldany et al., 2019). Therefore, a
comprehensive analysis of vital genes in pRCC tumorigenesis
is typically necessary to evaluate the individual prognosis,
determine the therapeutic target, and predict potential drugs for
patients with poor prognosis.

RNA-binding proteins (RBPs) are a significant group of
cellular proteins containing RNA-binding domains, which play a
key role in the post-transcriptional regulation of gene expression,
such as RNA shearing, transport, stability, protein translation,
and subcellular localization (Burd and Dreyfuss, 1994; Glisovic
et al., 2008). Recent studies have revealed links between RBPs
and known cancer biomarkers (Kechavarzi and Janga, 2014;
Pereira et al., 2017). For example, high-risk HPV E7 activates
RBP RNASEH2A and PCNA expression, and PCNA directs
RNASEH2A activity with regard to DNA replication. The
induction of these two factors may promote DNA replication
and cancer cell proliferation (Xu et al., 2019). High expression
of RBP LARP1 co-associates with BCL2 and BIK in BCL2
messenger ribonucleoprotein (mRNP) complexes in epithelial
ovarian cancer and stabilizes BCL2 while destabilizing BIK,
which promotes ovarian cancer cell survival and leads to adverse
prognosis (Hopkins et al., 2016). RBP NELFE decreases the
stabilization of NDRG2 mRNA, which results in epithelial-to-
mesenchymal transition through the activation of the Wnt/β-
catenin signaling and promotion of the metastasis of pancreatic
cancer (Han et al., 2019). Thus, defects or dysfunctional RBP is
bound with tumorigenesis and tumor prognosis.

As the high-throughput sequencing platforms develop, the
vast amount of genomic data are applied for biomarker
prediction, prognosis analysis, and targeted therapy (Azad and
Li, 2013; Gounder et al., 2015). Bioinformatic analyses provide
abundant tools and specific algorithms to obtain, process,
and interpret biological data (Psarros et al., 2005). In this
study, we conducted a series of bioinformatic analyses on
the basis of the biological data downloaded from the cancer
genome atlas (TCGA) database and finally sifted six differentially
expressed RBPs associated with pRCC. Our results might provide
a new direction for the understanding of progression and
prognosis of pRCC.

MATERIALS AND METHODS

Data Acquisition
The FPKM transcriptome profiling data of 32 normal samples
and 289 pRCC samples were obtained from the TCGA database
(Wang et al., 2016). Clinical data were downloaded from the
TCGA database. A total of 1542 RBP genes were obtained from
the published literature (Gerstberger et al., 2014).

Data Processing of Differentially
Expressed Genes (DEGs)
We used limma package in R software to identify differentially
expressed genes (DEGs) of RBPs between the tumor and normal
groups. The identification was based on cutoffs of |log2 fold
change (FC)| > 0.5 and false discovery rate (FDR) < 0.05.

Functional Enrichment Analyses and
Protein–Protein Interaction Network
Gene ontology (GO), which contained three terms (biological
process [BP], cellular component [CC], and molecular function
[MF]), was applied to investigate the biological function
enrichment. The Kyoto Encyclopedia of Genes and Genomes
database (KEGG) was applied to identify the potential biological
pathways. All GO and KEGG enrichment analyses were
conducted on R software through the clusterProfiler R package
with a P value less than 0.05. The protein–protein interactions
(PPIs) among DEGs were checked using the Search Tool for the
Retrieval of Interacting Genes (STRING) database1 (Gao et al.,
2013). Cytoscape 3.7.2 (Doncheva et al., 2019) was used for the
visualization of the PPI network. Subsequently, the molecular
complex detection (MCODE) plug-in in Cytoscape was loaded
to filter out significant modules from the PPI network with score
>5 and node counts >5.

Prognostic Model Construction and
Analyses
After establishing a combination by merging gene expression and
overall survival (OS), we conducted univariate Cox regression
to select prognosis-related RBP genes (P < 0.01). We applied
randomForestSRC package in R software to conduct the
random survival forest-variable hunting algorithm to predict the
significant RBP genes from initially screened candidates. On the
basis of these genes, a prognostic model was constructed by
multivariate Cox regression, and the rick score was calculated
according to the following formula:

Risk Score
N∑
i=1

αixi

N represents the number of selected genes; α is the coefficient
of genes in the Cox regression analysis, and x indicates the gene
expression value. P values computed by Kaplan–Meier (KM)
analysis were then sorted to sift the best combination of six genes.
pRCC patients from the TCGA database were divided randomly
into the training set and test set by using createDataPartition
function in caret R package, and patients in either set were
further categorized into the high-risk group and low-risk group
according to their median risk score. The survival R package
and pROC R package were conducted to construct a receiver
operating characteristic (ROC) curve and measure the accuracy
of prognosis. In addition, we plotted a nomogram to calculate the
feasibility of OS using the nomogramEx R package.

Gene Set Enrichment Analysis
Considering that SNRPN and RRS1 were intersections between
critical module 1 of the PPI network and prognosis-related
combination, gene set enrichment analysis (GSEA) v4.1.0 was
downloaded from Broad Institute, and Hallmark gene set V7.2
collection was downloaded as the target set to analyze the
potential mechanism of actions of two genes.

1https://string-db.org/
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Prediction of Candidate Small-Molecule
Drugs
We identified differentially expressed RBPs of the high and
low-risk groups by applying the limma R package. Then, the
Connectivity Map2 was used to predict small molecules as
potential targeted drugs for pRCC (Lamb et al., 2006).

2https://portals.broadinstitute.org/cmap/

Statistical Analysis
We used the Perl language3 to merge the transcriptome and
clinical data. All statistical analyses were performed in Cytoscape
3.7.2 (Doncheva et al., 2019), GSEA v4.1.0 (Subramanian et al.,
2005) and R version 3.6.3 with the following packages: “limma”

3https://www.perl.org/

FIGURE 1 | Flowchart of analyzation on RBPs in renal papillary cell carcinoma (pRCC).

FIGURE 2 | The differentially expressed RBPs. (A) Volcano plot of differentially expressed RBPs reaching the threshold of adj. P < 0.05 and | log2FC| ≥ 0.5.
(B) Heatmap plot of 120 differentially RBPs expression between tumor and normal samples in pRCC.
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FIGURE 3 | Functional enrichment analyses of 251 upregulated and 129 downregulated RBPs. (A) GO analysis on upregulated RBPs. (B) GO analysis on
downregulated RBPs. (C) GO analysis on all the DERBPs. (D) KEGG analysis on upregulated RBPs. (E) KEGG analysis on downregulated RBPs. (F) KEGG analysis
on all the DERBPs.
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(Ritchie et al., 2015), “clusterProfiler” (Yu et al., 2012), “survival,”
“randomForestSRC,” “caret,” “pROC,” “nomogramEX.”

RESULTS

Exploration of DEGs
The flowchart of this study is illustrated in Figure 1. RNA
sequencing data containing 32 normal samples and 289
tumor samples of pRCC and clinical data were downloaded
from the TCGA database. The list of 1542 RBP genes was
acquired from published literature (Gerstberger et al., 2014).
Finally, 380 RBP-coding genes containing 129 downregulated

and 251 upregulated genes met our inclusion criteria of
adj. P < 0.05 and |log2FC| ≥0.5 (Supplementary Table 1).
The expression of DEGs was plotted in a heatmap for
visualization (Figures 2A,B). 285 tumor samples were
selected after filtering out samples which were lack of clinical
survival information.

Functional Enrichment Analyses of DEGs
Gene ontology and KEGG analyses were conducted on
downregulated and upregulated genes using the clusterProfiler
R package. The upregulated RBPs were conspicuously enriched
in BPs, including ncRNA metabolic process, ncRNA processing,
ribonucleoprotein complex biogenesis, and RNA splicing,

FIGURE 4 | PPI network based on 380 differentially expressed RBPs and critical subnetworks. (A) Visualization of PPI network conducted on Cytoscape. Red nodes
represent upregulated RBPs and green nodes represent downregulated RBPs. (B) Visualization of three MCODE modules. Visualization of module 1 (C), module 2
(D), and module 3 (E).
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whereas the downregulated RBPs were enriched in the
regulation of translation, RNA splicing, and regulation of
the cellular amide metabolic process. CC analyses demonstrated
that the upregulated RBPs were notably enriched in the
ribosomal subunit, ribosome, spliceosomal complex, and
cytosolic ribosome, whereas the downregulated RBPs were
enriched in the cytoplasmic ribonucleoprotein granule,
ribonucleoprotein granule, and spliceosomal complex. With
regard to MF analyses, the results indicated that the upregulated
RBPs were significantly enriched in the catalytic activity,
acting on RNA, ribonuclease activity, nuclease activity, and
mRNA 3′–UTR binding, and the downregulated RBPs were
enriched in the translation regulator activity and catalytic
activity, acting on RNA, translation regulator activity, nucleic
acid binding, translation factor activity, and RNA binding

(Figures 3A,B). As for the KEGG analyses, we discovered that
the upregulated RBPs were largely enriched in the pathways of
the ribosome, spliceosome, and RNA transport (Figure 3D).
The downregulated RBPs were primarily enriched in the
RNA transport pathway and mRNA surveillance pathway
(Figure 3E). Furthermore, we performed GO and KEGG
analyses on all the DERBPs in order to have a more scientifically
comprehensive understanding. The GO results revealed that
DEGs were mainly enriched in RNA splicing and RNA catabolic
process in BP analysis, cytoplasmic ribonucleoprotein granule
and ribonucleoprotein granule in CC analysis, as well as
catalytic activity and acting on RNA, nuclease activity in MF
analysis (Figure 3C). According to KEGG analysis, DEGs were
significantly enriched in RNA transport, RNA transport and
Coronavirus disease–COVID-19 (Figure 3F).

FIGURE 5 | Identification of prognosis-related RBPs and validations of prognostic risk score model in training set and test set. (A) Volcano plot represented the
prognosis-related RBPs of univariate Cox regression analysis. (B) Random survival forest analysis filtered out 10 best related genes. (C) The top 20 signatures were
screened out among 1023 combinations according to the P value of Kaplan–Meier analysis. The risk score distribution, survival status distribution and heatmap of
six RBPs expression in the training set (D) and test set (G). ROC analysis for predictive OS of pRCC patients at 1, 3, and 5 years in the training set (E) and test set
(H). Kaplan–Meier analysis for overall survival (OS) of different risk groups in the training set (F) and test set (I).
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PPI Network Construction and Crucial
Module
The PPI network was constructed by using the STRING database
and visualized by applying Cytoscape (Figure 4A). This PPI
network comprised 346 nodes and 3164 edges. Furthermore, we
extracted three modules using plug-in MCODE in Cytoscape
according to the cutoff of node counts >5 and score >5
(Figure 4B). Module 1 consisted of 85 nodes and 1366 edges;
module 2 comprised 13 nodes and 33 edges, and module 3
included 15 nodes and 38 edges (Figures 4C–E). The results
of GO and KEGG for three modules indicated that the genes
in module 1 were primarily enriched in the ribonucleoprotein
complex biogenesis, cytosolic ribosome, structural constituent
of ribosome, and ribosome pathway. The genes in module 2
were enriched in DNA alkylation, chromatoid body, regulatory
RNA binding, and MicroRNAs in cancer, whereas the genes
in module 3 were significantly enriched in the mitochondrial
translational elongation, organellar large ribosomal subunit,
structural constituent of ribosome, and RNA transport pathway
(Supplementary Tables 2, 3).

Prognostic Risk Score Model
Construction and Validation
A combination of 346 RBPs from the PPI network and OS
was analyzed through univariate Cox regression to confirm
prognosis-related RBPs (Figure 5A). Sixty RBPs were sorted
out by the cutoff of P value < 0.01. The randomForestSRC

TABLE 1 | Clinical features of pRCC patients in the training and test set.

Features Subgroups All
(n = 285)

Training
set

(n = 143)

Test set
(n = 142)

Age <60 118 62 56

≥60 165 81 84

NA 2 0 2

Gender Male 209 100 109

Female 76 43 33

Pathological
Stage

I 170 67 103

II 21 13 8

III 50 29 21

IV 15 9 6

NA 29 25 4

T Staging T1 191 84 107

T2 32 21 11

T3 58 38 20

T4 2 0 2

NA 2 0 2

N Staging N0 49 30 19

N1 23 10 13

N2 4 2 2

NA 209 101 108

M Staging M0 95 55 40

M1 9 7 2

NA 181 81 100

R package was applied to perform Random survival forest
analysis, thereby distinguishing the RBP genes with the best
association with prognosis. In addition, 10 genes (EXO1,
RBPMS2, PABPN1L, PIH1D2, INTS8, RRS1, CPSF4L, IGF2BP3,
SNRPN, and NPM3) were screened out from the 60 prognosis-
related RBPs (Figure 5B). Subsequently, multivariate Cox
analysis was conducted to establish a prognostic model related
to OS, and we further performed a KM analysis on the
210 = 1023 models formed by 10 genes to determine the
best risk score model (Figure 5C). Comparing the log10−l
rank P value of these 1023 models, we finally sorted out
the prognostic risk score model containing six RBPs (SNRPN,
RRS1, INTS8, RBPMS2, IGF2BP3, and PIH1D2). The risk score
of each pRCC patient was calculated as follows: Risk score
= (0.2729931 × SNRPN) + (0.9340297 × RRS1) + (1.8014324
× INTS8) + (−0.5129049× RBPMS2) + (1.7546410× IGF2BP3)
+ (−0.4098881× PIH1D2).

We allocated pRCC patients into the training and test sets
to evaluate the predictive capabilities of the model, and then
patients in each set were divided into the high- and low-risk
groups considering their median risk score (Table 1). Expressions
of survival status and heatmap of each set were also shown
(Figures 5D,G). ROC analyses were utilized to estimate the
prognostic model. The area under the curve (AUC) values in
the training set were 0.9 at 1 year, 0.87 at 3 years, and 0.78 at
5 years, whereas the AUC values in the test set were 0.88 at
1 year, 0.75 at 3 years, and 0.69 at 5 years (Figures 5E,H). The
results indicated that patients in the high-risk group showed a
significantly lower survival probability than those in the low-risk
group (Figures 5F,I).

We conducted an independent prognosis-related analysis on
the training and test sets by using univariate and multivariate
COX regression analyses to appraise the clinical factors in
prognosis. The univariate results indicated that in the training
and test sets, the stage and T staging could be considered as
independent prognostic factors for the OS of pRCC patients
(Figures 6A,B). In multivariate analysis, tumor stage and T
staging could be considered as independent prognostic factors
in the training set (Figure 6C). Nevertheless, only tumor stage
can be considered as an independent prognostic factor in the test
set (Figure 6D). Finally, the nomogram was constructed with six
selected genes and tumor stage to evaluate the mortality risk at 3
and 5 years (Figure 7A). Furthermore, we plotted the calibration
curves, which demonstrated the ideal conformity between
speculated outcomes and observed outcomes (Figures 7B,C).

Gene Set Enrichment Analysis
We found that SNRPN and RRS1 were intersections between the
prognostic model and module 1 of the PPI network and then
made a KM analysis for OS (Figures 8A,B). Given that the levels
of SNRPN were negatively correlated with survival, whereas
RRS1 was positively correlated with survival, GSEA analysis was
applied in the low-expression and high-expression groups. In the
SNRPN low-expression group, the gene sets were enriched in
mitotic spindle, E2F targets, and G2M checkpoints (Figure 8C).
On the contrary, in the RRS1 high-expression group, the genes
sets in hallmark collection were enriched in DNA repair, E2F
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targets, G2M checkpoints, MTORC1 signaling, MYC targets, and
unfolded protein response (Figure 8D).

Screening of Candidate Small-Molecule
Drugs
We applied the limma R package to identify the differential
expression of RBPs in different risk groups. Consequently, 297
RBPs consisting of 261 upregulated and 36 downregulated
RBPs reached the threshold of adj. P < 0.05 and |log2FC|
> 1. The prediction of small-molecule drugs was based on
the 297 RBPs. Finally, three small molecules (STOCK1N-28457,
pyrimethamine, and trapidil) were selected on the basis of the
enrichment score (>0.6), P value (<0.05), and percent non-null
(>70, Table 2).

DISCUSSION

Recently, RBPs were becoming important by the profound
study conducted on its roles in various cancers and increasingly
regarded as crucial factors in post-transcriptional regulation
(Dong et al., 2019; Singh et al., 2018; Soni et al., 2019). The
dysfunction of post-transcriptional regulation, which was related
to the origin of cancer, were associated with gain−of−function
mutations of oncogenes and loss−of−function mutations
of the tumor suppressor (Masuda and Kuwano, 2019;

Vogelstein and Kinzler, 2015). To the best of our knowledge,
this study focused on the role of RBPs in the progression and
prognosis of pRCC for the first time. Here, we integrated RNA
sequencing data of pRCC from the TCGA database and sorted
out differentially expressed RBPs between tumor and normal
samples. We further conducted GO and KEGG enrichment
analyses and established the PPI network for these RBPs.
Moreover, we constructed an OS-predictive model to predict
the prognosis of pRCC patients and performed ROC analyses
to evaluate the feasibility of our model. Subsequently, GSEA
was conducted to determine the biological functions of the
two selected RBPs.

As for the results of biological functions and pathway
enrichment analyses, DEGs were enriched in the ribosome
and post-transcriptional modification pathways, such as RNA
splicing, RNA transport, spliceosome, and translation. Several
studies in recent years have reported that aberrant RNA
modification and RNA metabolism were of great value in various
cancers (Delaunay and Frye, 2019; Li et al., 2017b). Li et al.
(2019) reported that alternative RNA splicing events, which
were probably adjusted by RBPs, were prevalent in liver cancer
affecting tumorigenesis in the metabolism-related pathways. In
addition, the manipulation of alternative splicing was proven
to be a new method to suppress tumorigenesis in glioblastoma
by Mogilevsky et al. (2018). Moreover, Will discovered that
spliceosome consisted of five snRNPs and numerous proteins,

FIGURE 6 | Identification of independent prognostic factors. Outcomes of univariate prognostic analysis conducted on training set (A) and test set (B). Outcomes of
multivariate prognostic analysis conducted on training set (C) and test set (D).
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FIGURE 7 | Nomogram for predicting the probability of patient mortality based on six RBPs as well as tumor stage, and calibrations of nomogram in terms of
conformity between predicted outcomes and observed outcomes at 3 and 5 years. (A) Nomogram for evaluating the possibility of pRCC patients mortality at 3 and
5 years. Calibration for assessing the conformity between nomogram OS and observed OS at 3 years (B) and 5 years (C).

which catalyzed pre-mRNA splicing (Will and Lührmann, 2011).
The variable levels of RNA and protein components affected the
splice site, and a research conducted by Dvinge et al. (2019)
showed that the spliceosome shaped the global transcriptome of
breast cancer. In ovarian cancers, Li et al. (2017a) found that
spliceosome could promote proliferation and invasion by the
upregulation of an associate factor. Previous studies have shown
the relationship and possible mechanisms between RBPs and
spliceosome (Naro and Sette, 2013; Sutandy et al., 2018).

Subsequently, through the application of univariate Cox
regression analysis, random survival forest analysis, multivariate
Cox analysis, and KM test, we determine six RBP-coding
genes: SNRPN, RRS1, INTS8, RBPMS2, IGF2BP3, and PIH1D2.
The risk score model was then constructed to predict the
prognosis of patients. Notably, patients with high risk scores had
worse prognosis, implying that individual therapeutic schedules

should be considered. The ROC curve of the risk score
model revealed that the six-RBP signature was comparatively
reliable in predicting prognosis with the AUC values of 0.87
and 0.75 at 3 years and 0.78 and 0.69 at 5 years in the
training and test sets, respectively. A nomogram comprised
an independent prognostic factor, and six-RBP signature was
established to assist the prediction of 3 and 5 year OS in
clinical treatments.

In addition, we performed GSEA on SNRPN and RRS1
because they were concurrently parts of the subnetwork of
PPI. Small nuclear ribonucleoprotein polypeptide N (SNRPN)
was widely regarded as a spliceosome component (Jing et al.,
2015). As shown in the results of GSEA, low-expression
SNRPN was enriched in the E2F targets. E2F was a family
of transcription factors, which had various functions such as
controlling the cell cycle, regulating transcription, and apoptosis
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FIGURE 8 | The survival curves and GSEA for samples with high and low expression of SNRPN and RRS1. (A) Kaplan–Meier analysis for overall survival (OS) based
on the expression of SNRPN. (B) Kaplan–Meier analysis for overall survival (OS) based on the expression of RRS1. (C) The enriched gene sets in HALLMARK
collection by samples with low SNRPN expression. (D) The enriched gene sets in HALLMARK collection by samples with high RRS1 expression.

TABLE 2 | Results of CMap analysis.

Cmap name Mean n Enrichment p Specificity Percent non-null

STOCK1N-28457 −0.717 3 −0.93 0.00052 0.0051 100

Pyrimethamine −0.678 5 −0.773 0.00108 0.0067 80

Trapidil −0.58 3 −0.889 0.00266 0.0124 100

AH-6809 0.679 2 0.934 0.00833 0 100

Mercaptopurine −0.61 2 −0.908 0.01714 0.0137 100

7-aminocephalosporanic acid −0.389 4 −0.699 0.01717 0.0311 75

Lobelanidine 0.477 4 0.689 0.01936 0.0067 75

5230742 −0.648 2 −0.897 0.0209 0.0383 100

Emetine −0.42 4 −0.677 0.02401 0.2765 75

Spaglumic acid 0.598 2 0.891 0.02463 0.0397 100

Exisulind 0.524 2 0.891 0.02487 0 100

Loxapine 0.47 4 0.667 0.02751 0.0106 75

Debrisoquine 0.441 4 0.64 0.041 0.0204 75

Altizide 0.413 4 0.639 0.04132 0 75

Oxybenzone 0.431 4 0.634 0.04416 0.1706 75
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(Johnson and Schneider-Broussard, 1998). Moreover, the E2F
targets played significant roles in several cancers. For example,
Park et al. (2018) announced that the E2F targets were activated
by EPEL to promote cell proliferation of lung cancer. Meanwhile,
Sun et al. (2019) researched on the roles of E2Fs in breast cancer
and considered E2F4 and 6 as biomarkers, with E2F1, 3, 5, 7,
and 8 as potential targets of therapy. Dong et al. (2018) reported
that the inhibition of E2F downregulated the ability of BRD4
binding with the promoter of miR-106b-5p and inhibited its
transcription, which resulted in the cellular senescence of gastric
cancer cells (Sutandy et al., 2018). High-expression RRS1 was
enriched in mTORC1 signaling. The mTORC1 signaling pathway
was a classical pathway connecting to tumorigenesis (Dong et al.,
2018). He et al. (2018) and Guigon et al. (2010) reported that the
growth of pancreatic cancer and thyroid cancer were inhibited
by the suppression of mTORC1 signaling (Poburski et al., 2016).
Experiments on the interaction mechanism of TRAF6 and p62
were carried out by Linares et al. (2013). The results indicated
the importance for lung cancer cell proliferation through the
activation of mTORC1 (Guigon et al., 2010). Furthermore, we
made a prediction of potential small-molecule drugs, which
might be of therapeutic benefits for pRCC patients and had a
certain degree of reliability.

Our study investigated the relationship between RBPs and
pRCC for the first time and proposed a novel direction
for exploring the tumorigenesis and prognosis of pRCC.
We determined six RBPs, which were linked with prognosis,
constructed a reliable prognostic OS-predictive model, and
hypothesized three potentially useful drugs. The six RBPs could
act as potential therapeutic targets of pRCC and contribute to
the development of clinical treatment. Nevertheless, our study
had several limitations. First, our prognostic model was only
constructed on the TCGA database, which lacked of clinical
data from the GEO database to evaluate. Meanwhile, the lack of
clinical characteristics of clinical data from TCGA might decrease
the credibility of our research. Moreover, our results were based
on RNA sequencing, and patients might exhibit inter-individual
heterogeneity. Finally, prospective clinical studies should be
conducted before using the six-RBP prognostic model.

CONCLUSION

We applied a series of bioinformatic analyses on the aberrantly
expressed RBPs, which were affiliated with tumorigenesis,

invasion, and prognosis, to investigate their potential functions,
action pathways, and prognostic values. Subsequently, we
identified six RBPs, which were highly associated with prognosis
of pRCC, and constructed a six-RBP prognostic model to predict
the OS and optimize the predictive ability of the staging system.
Moreover, we selected two important RBPs and evaluated their
biological effects and made a prediction of potential drugs. Based
on previous reports, this study focused on the prognostic values
of RBPs in pRCC and provided new insights into pathogenesis
and therapeutic strategies of pRCC for the first time.
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