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Generation of a macroscopic 
entangled coherent state using 
quantum memories in circuit QED
Tong Liu1, Qi-Ping Su1, Shao-Jie Xiong1, Jin-Ming Liu2, Chui-Ping Yang1 & Franco Nori3,4

W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum 
dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic 
W-type entangled coherent state using quantum memories in circuit QED. The memories considered 
here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal 
does not require initially preparing each NVE in a coherent state instead of a ground state, which should 
significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in 
a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk 
are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the 
circuit.

Unlike bipartite systems, it has been proven that there exist two inequivalent classes of multipartite entangled 
states, such as GHZ states1 and W states2, which cannot be converted to each other by local operations and 
classical communications. Relative to the tripartite entangled states, GHZ states are fragile: if any one qubit is 
traced out, the remaining bipartite states are separable states. However, W states are robust against qubit loss 
and qubit-flip noise because they maintain bipartite entanglement. W states are important for quantum commu-
nications. For example, W states can be used as quantum channels for quantum teleportation3, quantum dense 
coding4, and quantum key distribution5.

Over the past years, a number of theoretical ideas have been proposed for creating a discrete-variable W-class 
entangled state = ∑−

⊗ −W P 0 1n DV n z
n

1,1
1 ( 1)  of qubits (i.e., two-state particles or two-level quantum systems)6–13, 

where Pz is the symmetry permutation operator for the qubits (1, 2 ···n), and ∑ ⊗ −P 0 1z
n( 1)  denotes the 

totally-symmetric state in which (n −​ 1) qubits out of a total of n qubits are in the state |0〉​, while the remaining qubit is 
in the state |1〉​. As an example, consider a three-qubit case (i.e., n =​ 3), for which the W state is 

= + +W ( 001 010 100 )
DV2,1

1
3

. Experimentally, the discrete-variable W states |Wn−1,1〉​DV have been created 
with up to eight trapped ions14, four optical modes15, three superconducting phase qubits coupled capacitively16, 
atomic ensembles in four quantum memories17, and two superconducting phase qubits plus a resonant cavity18.

On the other hand, there is much interest in entangled coherent states (ECSs)19–28. In this work we focus on a 
macroscopic W-type ECS (i.e., continuous-variable W state), described by

α α α α α α α α α α= − ... + − ... + ... + ... −− −W c c c , (1)n CV n1,1 0 1 1

where ∑ ==
− c 1i

n
i0

1 2 , with ci ≠​ 0 (i =​ 0, 1,..., n −​ 1), α  ( α− ) is a coherent state, α is a complex number, and 
α α α〈 |− = − | | exp( 2 ) 02 , when |α| is large enough. The W state (1) is of fundamental interest in quantum 

mechanics and plays an important role in quantum information processing (QIP) and quantum communications. 
For instance, the W state (1) can be used to test quantum nonlocality without inequality29,30 and the violation of 
the Bell inequalities because such state is greater than that for any states involving two spin-1/2 particles30,31. In 
addition, ref. 32 has shown that there exists a quantum information protocol which is not suitable for GHZ-type 
ECSs but can only be accomplished with the W state (1). Moreover, the W state (1) is a necessary resource for 
remote symmetric entanglement32, which allows two distant parties to share a symmetric entangled state. For the 
past years, theoretical methods have been proposed for generating the W state (1) in some physical systems33–37. 
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Refs 32–34 have proposed how to generate the W state (1) of three/four modes with linear optical devices, and 
refs 36 and 37 have discussed how to create the W state (1) of three-cavity fields based on cavity QED. However, 
in these schemes, the W ECSs were prepared with photons or cavity fields, and thus decoherence may pose a 
problem due to photon loss or cavity-field decay.

Hybrid quantum systems, composed of superconducting qubits, nitrogen-vacancy centers (NVCs), 
nitrogen-vacancy center ensembles (NVEs), or/and superconducting microwave resonators/cavities, have 
attracted tremendous attention38–41. Recently, much progress has been made in this field. For instance, coherent 
coupling between a superconducting flux/transmon qubit and an NVE42,43 or between an NVC/NVE and a super-
conducting resonator44,45 has been experimentally demonstrated. Moreover, based on the hybrid systems, various 
quantum operations, such as entanglement preparation, quantum logic gates, and information transfer, have been 
investigated in theory40,46–49 and demonstrated in experiment42,50,51.

Inspired by previous works and the long decoherence time of NVEs, we here consider a hybrid system com-
posed of one-dimensional transmission line resonators (TLRs) each hosting an NVE and a qubit and connected 
to a coupler qubit A [Figs 1(a) and 2]. We then propose a way to generate a continuous-variable W-type entangled 
coherent state, described by Eq. (1), by using NVEs each located in a different cavity. Because of the long deco-
herence time of NVEs, the prepared W state can be stored for a long time. Note that NVEs have been recently 
considered as good memory elements in quantum information processing39,40,42,45–49,51.

As shown below, this proposal has the following features and advantages: (i) Different from the previous 
works33–37, the W state is prepared using NVEs (quantum memories) instead of cavity photons. Thus, the prepared 
W state can be stored for a long time due to the long decoherence time of the NVEs. (ii) Because cavity photons 
are virtually excited for most of the operation time, decoherence caused by the cavity decay and the unwanted 
inter-cavity cross talk is greatly suppressed. (iii) Each NVE is initially in the ground state. Thus, there is no need 
to initially prepare each NVE in a coherent state, which should greatly reduce its experimental difficulty. (iv) 
Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. This method is quite 
general and can be applied to prepare the proposed W state with atomic ensembles or other spin ensembles based 
on cavity/circuit QED.

There are several additional motivations of this proposal:

1.	 Planar superconducting TLRs with internal quality factors above one million (Q >​ 106) have been recently 
reported52, for which the lifetime of microwave photons can reach ~1 ms. Comparably, a lifetime of ~1 s for 
an NVE has been experimentally reported53. Hence, a NVE is a good memory element for storing quantum 
states, superior to using cavity photons as memories.

2.	 By local operation, the prepared W state of the NVEs can be mapped onto the cavities (see the “Quantum 
state transfer” subsection).

3.	 The NVEs could be prepared in the ground state at a 40–50 mK or higher temperature42,44. The strong cou-
pling of a superconducting qubit with a microwave resonator (e.g., g/2π ~ 360 MHz for a transmon qubit 
coupled to a TLR54,55) has been reported in experiments, and the strong coupling (~11 MHz) of an NVE to 
a TLR has recently been experimentally demonstrated44. Moreover, superconducting qubits, capacitively or 
inductively coupled to TLRs13,56–68, were previously employed for QIP. Hence, the model considered in this 
work is reasonable and physical.

Note that based on circuit QED, a number of proposals have been presented for creating entangled states (e.g., 
Bell states, NOON states, and GHZ states) of microwave photons distributed in different TLRs/cavities57,58,60,63,65,67. 
Instead of preparing entangled states of cavity microwave photons, this work focuses on preparing the NVEs in a 
continuous-variable W-type entangled coherent state.

In this work we will also discuss possible experimental implementation of our proposal and numerically cal-
culate the operational fidelity for generating a W-type entangled coherent state of three NVEs. Our numerical 
simulation shows that highly-fidelity implementation of W-type entangled coherent states with three NVEs is fea-
sible with rapid development of circuit QED technology. The numerical calculations in this work were performed 
using the QuTiP software69,70.

Results
W-state preparation.  Consider a hybrid system consisting of a coupler qubit A and three cavities, each 
hosting a qubit and an NVE [Fig. 1(a)]. Each cavity here is a one-dimensional transmission line resonator. The 
qubit and the NVE placed in cavity j are labelled as qubit j and NVE j (j =​ 1, 2, 3). The two levels of qubit A are 
denoted as |g〉​A and |e〉​A, while those of qubit j as |g〉​j and |e〉​j. The coupling and decoupling of each qubit from its 
cavity (cavities) can be achieved by prior adjustment of the qubit level spacings or the cavity frequency. For super-
conducting devices, their level spacings can be rapidly (within 1–3 ns65,71,72, (Yu, Y. & Han, S. private communi-
cation.)) adjusted by varying external control parameters (e.g., via changing the external magnetic flux threading 
the superconducting loop of phase, transmon, Xmon or flux qubits; see, e.g. refs 71 and 73–80). In addition, as 
described in the Methods section, the coupling and decoupling of an NVE with a cavity can be made by rapidly 
adjusting the cavity frequency81,82.

Assume that the qubits, cavities, and NVEs are initially decoupled from one another [Fig. 1(b)]. The 
state-preparation procedure consists of four basic operations followed by a measurement on the state of each 
intra-cavity qubit, which is described below:

Step 1. Adjust the level spacings of the coupler qubit A so that it is resonantly coupled to each cavity [Fig. 1(c)]. 
Assume that the coupling constant of qubit A with cavity j is gAj

. In the interaction picture, the Hamiltonian reads
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Figure 1.  (a) Setup of the hybrid system consisting of a coupler qubit A and three cavities each hosting a qubit 
(a dark dot) and a nitrogen-vacancy center ensemble (a green oval). C1, C2 and C3 represent capacitors. An 
intracavity qubit can be an atom or a solid-state qubit. The coupler qubit A can be a quantum dot or a 
superconducting qubit. (b) Illustration of the decoupling among qubit A, cavity j, NVE j and qubit j (j =​ 1, 2, 3) 
before the W-state preparation. (c) The resonant interaction between qubit A and cavity j with coupling constant 
g A j

 (used in step 1). (d) The resonant interaction between qubit j and cavity j with resonant coupling constant grj 
(used in step 2). (e) The resonant interaction between qubit j and the pulse with Rabi frequency Ωe g j

 (applied for 
step 3). (f) The dispersive interaction between cavity j and qubit j with coupling constant gj and detuning δaj

, the 
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∑ σ σ= +
=

− +†H g a a( ),
(2)

I
j

A j A j A1
1

3

j

where σ =+ e gA A
 and σ =− g eA A

 are the raising and lowering operators for qubit A, while aj and †aj  are the 
annihilation and creation operators for the mode of cavity j (j =​ 1, 2, 3). We set = = =g g g gA A A A1 2 3

, which can 
be met by a prior design of the sample with appropriate values of the coupling capacitance C1, C2, and C3. Assume 
now that qubit A is initially in the state |e〉​A and each cavity is initially in the vacuum state. It is easy to show that 
the state ∏ ⊗= e0j c A1

3
j

 of the system, under the Hamiltonian (2), evolves into

∏ ⊗ − ⊗ .
=

g t e i g t W gcos( 3 ) 0 sin( 3 )
(3)

A
j

c A A c A
1

3

2,1j

Here, the state |W2,1〉​c of the three cavities (1, 2, 3) is given by

= + +W 1
3

( 1 0 0 0 1 0 0 0 1 ),
(4)c2,1

where |i〉​| j〉​|k〉​ is the abbreviation of the state | 〉i c1
| 〉j c2
| 〉k c3

 of cavities (1, 2, 3) with i, j, k ∈​ {0, 1}; |0〉​ and |1〉​ represent 
the vacuum state and the single-photon state, respectively. From Eq. (3), it can be seen that when the interaction 
time equals to π=t g/(2 3 )A , we can create the state |W2,1〉​c of the three cavities (1, 2, 3). Note that the coupler 
qubit A is in the ground state |g〉​A after the operation here and will remain in the ground state |g〉​A during the rest 
of the operations below.

Step 2. Adjust the level spacings of qubit A back to the original level structure such that it is decoupled from each 
cavity. In addition, adjust the level spacing of intra-cavity qubit j such that qubit j is resonantly coupled to cavity j 
[Fig. 1(d)]. The resonant coupling constant of qubit j with cavity j is denoted as grj. In the interaction picture, the 
Hamiltonian can be written as

∑ σ σ= +
=

− +†H g a a( )
(5)

I
j

rj j j j j2
1

3

where σ =+ e gj j
 and σ =− g ej j

 are the raising and lowering operators for qubit j. For simplicity, we set 
gr1 =​ gr2 =​ gr3 =​ gr, which can be achieved by tuning the level spacings of qubit j or adjusting the position of qubit j in 
cavity j (j =​ 1, 2, 3). It is easy to show that under this Hamiltonian (5), the time evolution of the state g nj c j

 of qubit j 
and cavity j is described by

→ − −g n ng t g n i ng t e ncos( ) sin( ) 1 , (6)j c r j c r j cj j j

where n c j
 and −n 1 c j

 are the photon-number states of cavity j. Assume now that qubit j is initially in the state 
|g〉​j. Choosing t =​ π/(2gr), one obtains the transformation → −g i e1 0j c j cj j

. As a result, the state |W2,1〉​c of 
the three cavities turns into the following state of the three intracavity qubits (1, 2, 3)

= + +W e g g g e g g g e1
3

( ),
(7)2,1

where |i〉​| j〉​|k〉​ is the abbreviation of the state |i〉​1| j〉​2|k〉​3 of intracavity qubits (1, 2, 3) with i, j, k ∈​ {g, e}. It should 
be noted that each cavity returns to its original vacuum state after the operation here and will remain in the vac-
uum state during the following operations.

The condition gr1 =​ gr2 =​ gr3 =​ gr is unnecessary. For the case of gr1 ≠​ gr2 ≠​ gr3, one can still obtain the state (7) 
from the state (4), by adjusting the level spacings of qubit j to bring qubit j on resonance with cavity j for a time 
tj =​ π/(2grj) (j =​ 1, 2, 3).

Step 3. Adjust the level spacings of intracavity qubits back to the original level configuration, such that they are 
decoupled from their cavities. Then apply a classical pulse to qubit j. The pulse is resonant with the |g〉​j ↔​ |e〉​j tran-
sition of qubit j [Fig. 1(e)]. The interaction Hamiltonian in the interaction picture is given by

dispersive interaction between cavity j and NVE j with coupling constant gb j
 and detuning δb j

, as well as the 
resonant interaction between qubit j and the pulse with Rabi frequency Ωj (applied for step 4). Here, 
δ ω ω= −a c e gj j j

, with the transition frequency ωe g j
 of qubit j and the frequency ωc j

 of cavity j, δ ω ω= −b c bj j j
 

and δ δ δ= −c a bj j j
, with ωb j

 being the frequency of a bosonic mode describing NVE j. Since qubit A is not 
involved during the operation of step 4, qubit A is dropped off in (f) for simplicity. Note that in (b,e), the 
frequency of cavity j is highly detuned from those of qubit A, qubit j and NVE j, while in (f) the frequency of 
cavity j is adjusted such that cavity j is dispersively coupled to qubit j and NVE j. The bottom dark solid line in 
(b–f) also represents the ground state (i.e., the vacuum state) of cavity j.
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∑= Ω + . .φ

=
H e g e h c( ),

(8)
I

j
e g

i
j3

1

3

j

where Ωe g j
 and φ are the Rabi frequency and the initial phase of the pulse, respectively. Set Ω = Ω = Ω = Ω ,e g e g e g eg1 2 3

 
which can be readily met by adjusting the pulse intensities. It is easy to find that under the Hamiltonian (8), one can 
obtain the following rotations

→ Ω − Ω

→ Ω − Ω .

φ

φ

−g t g ie t e

e t e ie t g

cos( ) sin( ) ,

cos( ) sin( ) (9)

j eg j
i

eg j

j eg j
i

eg j

We set t =​ π/(4Ωeg) and φ =​ −​π/2 to pump the state |e〉​j to |−​〉​j and |g〉​j to |+​〉​j. Here, ± = ±e g( )/ 2j j j
 are 

the rotated basis states of qubit j. Thus, the state (7) becomes

= − + + + + − + + + + − .
∼W 1

3
( )

(10)2,1

Step 4. Adjust the frequency of each cavity such that cavity j interacts with qubit j and NVE j [Fig. 1(f)]. Then 
apply a classical pulse (with frequency ωj equal to ωegj

) to qubit j [Fig. 1(f)]. Here, ωegj
 is the |g〉​ ↔​ |e〉​ transition 

frequency of qubit j. The system Hamiltonian in the interaction picture yields

∑ ∑

∑

δ σ δ

σ σ

= 


+ . .

+ 


+ . .



+ Ω +

=

−

=

=

+ −

† †H g i t a h c g i t a b h cexp( ) exp( )

( ),
(11)

I
j

j a j j
j

b b j j

j
j j j

4
1

3

1

3

1

3

j j j

where δ ω ω= −a c egj j j
 and δ ω ω= −b c bj j j

 are the frequency detunings (ωcj
 being the frequency of cavity j while 

ωbj
 being the frequency of a bosonic mode describing NVE j), bj is the bosonic operator for NVE j, gj is the 

off-resonant coupling constant of qubit j with cavity j, gb j
 is the coupling constant of NVE j with cavity j, and Ωj is 

the Rabi frequency of the pulse applied to qubit j [Fig. 1(f)]. Note that the second term of Eq. (11) describes three 
NVEs interacting with their respective cavities (see the Methods section). In a rotated basis {|+​〉​j, |−​〉​j}, one has 
σ σ σ σ= − ++ + −

  
( )/2j z j jj

 and σ σ σ σ= + −− + −
  

( )/2j z j jj
, where σ = + + − − −

z j jj
, σ = + −+


,j j
 and 

σ = − +−
 j j

. Hence, the Hamiltonian (11) can be expressed as

2C

5CnC
4C

3C
A

1C

Figure 2.  Diagram of a coupler qubit A and n cavities each hosting a qubit (a dark dot) and a NVE (a green 
oval). Qubit A is capacitively coupled to each cavity.
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∑

∑ ∑

δ σ σ σ

δ σ

= 


+ − + . .


+ 


+ . .

+ Ω .

=

+ −

= =

  



†

†

H g i t a h c

g i t a b h c

1
2

exp( ) ( )

exp( )
(12)

I
j

j a j z j j

j
b b j j

j
j z

4
1

3

1

3

1

3

j j

j j j

In a new interaction picture under the Hamiltonian σ′ = ∑ Ω= 
H j j z0 1

3
j
, one obtains from Eq. (12)

∑

∑

δ σ σ σ

δ

= 


+ − + . .


+ 


+ . .

.

=

Ω + − Ω −

=

  

†

†

H g i t a e e h c

g i t a b h c

1
2

exp( ) ( )

exp( )
(13)

I
j

j a j z
i t

j
i t

j

j
b b j j

4
1

3
2 2

1

3

j j
j j

j j

In the strong-driving regime δΩ  g2 { , }j j a j
, one can apply a rotating-wave approximation and eliminate the 

terms that oscillate with high frequencies. Thus, the Hamiltonian (13) becomes

∑ ∑σ δ δ= 


+ . .

+ 


+ . .


.

= =


† †H g i t a h c g i t a b h c1
2

exp( ) exp( )
(14)

I
j

j z a j
j

b b j j4
1

3

1

3

j j j j

Consider now the large detuning conditions δ  ga jj
 and δ . gb bj j

 It is straightforward to show that the 
Hamiltonian (14) changes to (for details, see ref. 84)

∑ ∑δ
λ σ δ δ= − − 


− + 

= =


† † † † †H
g

b b a a a a b b i t b i t b( ) exp( ) exp( ) ,
(15)j

b

b
j j j j j j j j

j
j z c j c jeff

1

3
2

1

3
j

j
j j j

where λ δ δ= +(1/ 1/ )j

g g

a b4
j bj

j j
 and δ δ δ= −c a bj j j

. As mentioned previously, each cavity is in the vacuum state 
after the first three steps of operation above. In this case, the Hamiltonian (15) reduces to

∑ ∑δ
λ σ δ δ= − − 


− + 

= =


† †H
g

b b i t b i t bexp( ) exp( ) ,
(16)j

b

b
j j

j
j z c j c jeff

1

3
2

1

3
j

j
j j j

where the first term is the vacuum contribution Stark shift of NVEs, while the second term describes the coupling 
between qubit j and NVE j, mediated by the mode of cavity j. Because of using the large detuning technique, the 
effective coupling λj is smaller than gj or gbj

 by at least one order of magnitude. Accordingly, the operation time for 
this last step of the operation (essentially based on a model via virtual transitions) would become longer by one 
order of magnitude, when compared with each of the first three steps of operation via resonant interaction.

In a new interaction picture under the Hamiltonian = −∑ δ
′′

=
†H b bj

g

j j0 1
3 bj

bj

2

, the effective Hamiltonian (16) can 

be rewritten as

∑λ σ= − +
=

− ∆ ∆


†H b e b e( ),
(17)j

j z j
i t

j
i t

eff
1

3

j
j j

where δ δ∆ = − g /j c b b
2

j j j
.

Let us now assume that the NVEs are initially in the state ∏ = 0j b1
3

j
. Thus, under the Hamiltonian (17), the 

joint state ⊗ ∏
∼

=W 0j b2,1 1
3

j
 of the three intracavity qubits and the three NVEs evolves into

α α α α α α α α α− + + − + + − + − + + + − −
1
3

( ),
(18)

with

α
λ

=
∆

− .∆e( 1)
(19)

j
j

j

i tj

Here, α  ( α− ) is a coherent state and we have set α1 =​ α2 =​ α3 =​ α for simplicity (which can be met for identical 
qubits, NVEs, and cavities). After returning to the original interaction picture by performing a unitary transfor-
mation = − −′U e eiH t iH t"0 0 , the state (18) becomes

ϕ β β β β β β

β β β

= − + + − + + − + −

+ + + − −

1
3

(

), (20)
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where a common phase factor is discarded, β  ( β− ) is a coherent state, and

β α α α= = =δ δ δexp exp exp (21)ig t ig t ig t/ / /b b b b b b1
2

1 2
2

2 3
2

3

for

δ δ δ= = .g g g/ / / (22)b b b b b b
2 2 2
1 1 2 2 2 2

The condition (21) is automatically satisfied for identical NVEs and cavities. The state (20) can be expressed as

ϕ = − + −

+ − + −

W e e e g g g W e e g g g e

W e g e g e g W e g g g e e

1
2 2

[ ( ) ( )

( ) ( )], (23)

1 2

3 4

where |W1〉​, |W2〉​, |W3〉​ and |W4〉​ are the macroscopic W-type entangled coherent states of three NVEs, given by

β β β β β β β β β

β β β β β β β β β

β β β β β β β β β

β β β β β β β β β

= − + − + −

= − + − − −

= − − − + −

= − − − − − .

W

W

W

W

1
3

( ),

1
3

( ),

1
3

( ),

1
3

( )
(24)

1

2

3

4

Now a measurement is separately performed on each intra-cavity qubit along a measurement basis { g e, }. 
If qubits (1, 2, 3) are measured in the state (i) |e〉​|e〉​|e〉​ or |g〉​|g〉​|g〉​, (ii) |e〉​|e〉​|g〉​ or |g〉​|g〉​|e〉​, (iii) |e〉​|g〉​|g〉​ or |g〉​|e〉​
|e〉​, and (iv) |e〉​|g〉​|g〉​ or |g〉​|e〉​|e〉​, one can see from Eq. (23) that the three NVEs are respectively prepared in the W 
states |W1〉​, |W2〉​, |W3〉​ and |W4〉​, respectively.

This method can be extended to a more general case. Consider a hybrid system composed of n cavities, each 
hosting a qubit j and an NVE j (j =​ 1, 2 ···n) and connected to a coulper qubit A, as shown in Fig. 2. Assume that 
the initial state of the system is ∏ ⊗ ⊗ ∏ ⊗ ∏= = =e g0 0j

n
c A j

n
j j

n
b1 1 1j j

. Employing the four-step procedure 
described above, it is straightforward to show that the n NVEs can be prepared in a W-type entangled coherent 
state. Let mj =​ 0 represent qubit j being measured in the state |g〉​, while mj =​ 1 indicates qubit j being measured in 
the state |e〉​. If the n intracavity qubits are measured in the state |m1m2 ···mn〉​, the n NVEs will be prepared in the 
macroscopic W-type entangled coherent state

β β β β β β β β

β β β β

− − + − −

+ + − − .

 

 

n
1 [( 1) ( 1)

( 1) ] (25)

m m

mn

1 2

Before ending this section, several points need to be addressed as follows:

1.	 From the description given above, one can see that only resonant interactions are used for the first three steps 
of operation, which can thus be completed within a very short time (e.g., by increasing the pulse Rabi frequen-
cies and the qubit-cavity coupling constants). In contrast, the last step of operation employs a large detuning, 
leading to a relatively long operation time. However, cavity photons were virtually excited during this step of 
operation. Hence, in the present proposal each cavity remains in a vacuum state for most of the operation time.

2.	 Coupling/decoupling the NVE with the cavity in step 4 requires dynamic tuning of the cavity frequency81,82. It 
is known that tuning the cavity frequency (e.g., via the insertion of the flux-tunable inductor in the resonator) 
can significantly reduce the quality factor of the cavity, which would decrease the fidelity of the prepared W 
state. Alternatively, to have the cavities coupled with or decoupled from the NVEs, one can choose to adjust 
the level spacings of the NVEs (e.g., by varying the external magnetic fields applied to the NVEs48,85). How-
ever, it is an experimental challenge to change the NVE level spacings quickly. Typically, it takes more than 
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Figure 3.  (a) Fidelity for step 1. (b) Fidelity for step 2. (c) Fidelity for step 3.
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1 ms to adjust the NVE level spacings (Saito, S. private communication.), which would significantly prolong 
the entire operation time and thus the operation fidelity would be expected to be low due to decoherence. 
Therefore, we choose using the cavity of adjustable frequency in this paper.

3.	 As shown above, the intracavity-qubit W state of Eq. (7) can be produced within a very short time, because 
the first two steps of operation, for producing this intracavity-qubit W state (7), employ resonant interactions. 
Alternatively, this intracavity-qubit W state (7) can be prepared via a detuned interaction between the coupler 
qubit A and each cavity13,64,68. Thus, there are no cavity photons excited during the entire state preparation. 
However, the time required for preparing the W state (7) becomes much longer due to the use of a detuned 
interaction, and thus decoherence from the qubits may pose a significant problem.

4.	 Placing a qubit in each cavity [Fig. 1(a)] is necessary in view of energy conservation. During the last step, each 
cavity remains in a vacuum state and thus there is no energy transfer from each cavity onto the NVEs. Note 
that the intracavity qubits are the ones that absorb energy from the pulses applied to them and then transfer 
their energy to the NVEs through interaction with the NVEs. Thus, in spite of initially being in the ground 
state, the NVEs can be prepared in a W-type entangled coherent state.

5.	 As discussed previously, a measurement of the states of each intra-cavity qubit is needed during preparation 
of the W-class entangled coherent states. To the best of our knowledge, all existing proposals for creating 
entangled coherent states of two components α  and α−  based on cavity QED or circuit QED require a 
measurement on the states of auxiliary qubits or qutrits63,85–94.

Possible experimental implementation.  Superconducting qubits play important roles in quantum 
information processing73,75,76,95–97. In addition, circuit QED is a realization of the physics of cavity QED with 
superconducting qubits or other solid-state devices coupled to a microwave cavity on a chip and has been consid-
ered as one of the most promising candidates for quantum information processing75,76,95–100. Above, we consid-
ered a general type of qubit for both the intracavity qubits and the coupler qubit. As an example of experimental 
implementation, let us now consider each qubit as a superconducting transmon qubit.

The dynamics of the lossy system, with finite qubit relaxation and dephasing and photon lifetime included, is 
determined by the following master equation

 





∑ ∑

∑ ∑
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where HIk is either HI1, HI2, HI3, or HI4; j represents qubit j (j =​ 1, 2, 3); σ = −e e g g ,z j jj
 σ = −e e g g ;z A AA

 
and ρ ρ ρΛ = Λ Λ − Λ Λ − Λ Λ+ + +[ ] /2 /2 , with σ σΛ = − −a b, , ,j j j A . In addition, κj is the decay rate of cavity j, κ ′j  is 
that of NVE j, γj (γA) is the energy relaxation rate of the level e  of qubit j (A), and γj,ϕ (γA,ϕ) is the dephasing rate of the 
level e  of qubit j (A).

The fidelity of the operation is given by101

ψ ρ ψ= , (27)id id

where ψid  is the output state of an ideal system (i.e., without dissipation and dephasing), while ρ is the 
output-state density operator of the system when the operations are performed in a realistic physical system.

We now numerically calculate the fidelity of operation. Since the first three steps employ resonant interactions, 
we will look at the operational fidelity for each of these steps to see how short one should make the typical opera-
tion time for each step to combat decoherence while still being able to generate the entanglement with high fidel-
ity. For simplicity, we will consider the ideal output state of the previous step of operation as the input state of the 
next step of operation when we analyze the operational fidelities for the first three steps. In addition, we will 
investigate the fidelity for the entire operation, which will be calculated by numerically solving the master equa-
tion with the initial state of the whole system as an input, but without making any approximation. Without loss of 
generality and for simplicity, we will consider identical transmon qubits, cavities, and NVEs. In this case, we have 
gAj =​ gA, grj ≡​ gr, gj ≡​ g, and ≡g gb bj

 (j =​ 1, 2, 3). We set Ω = Ωe g egj
 and Ωj =​ Ω (j =​ 1, 2, 3). The decoherence times 

of transmon qubits and NVEs used in the numerical simulation are: γ γ= =ϕ ϕ
− − 15j A,

1
,
1  μs, γ γ= =− − 25j A

1 1  μs 
(which is a conservative estimate compared with those reported in experiments102–104). In addition, we choose 
κ =− 1j

1  μs and κ ′ =− 1j
1  ms in the numerical simulation (j =​ 1, 2, 3).

A. Fidelity for the first three steps.  The operation fidelities are plotted in Fig. 3(a–c), which are for step 1, 
step 2, and step 3, respectively. Figure 3 shows that the fidelity for step 1, step 2, or step 3 increases drastically with 
gA, gr, or Ωeg and reaches a high value . ≤ ≤0 998 1  for gA/(2π), gr/(2π), Ωeg/(2π) ∈​ [5 MHz, 50 MHz], which 
corresponds to the operation time ~3–30 ns. The analysis given here demonstrates that in order to combat deco-
herence while obtain the entanglement with a high fidelity ~1, one should make the typical operation time within 
a few nanoseconds for each of the first three steps, and a high fidelity ≥​0.998 can be achieved even by increasing 
the operation time to ~30 ns.
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B. Fidelity for the entire operation.  The fidelity for the entire operation is calculated based on Eq. (27), where the 
ideal output state is ψ ϕ= ⊗ ∏ = g0j c Aid 1

3
j

 [with ϕ  given by Eq. (20) or Eq. (23)] and ρ is obtained by numeri-
cally solving the master equation (26) for an initial input state ψ = ∏ ∏ ∏ ⊗ .= = =g e0 0j j j b j c Ain 1

3
1

3
1

3
j j

 We 
choose gA/(2π) =​ 50 MHz, gr/(2π) =​ g/(2π) =​ 5 MHz, and gb/(2π) ~ 4 MHz44. We here select gr =​ g because the  
resonant coupling constant gr and the off-resonant coupling constant g are both the same order of magnitude for super-
conducting qubits. Other parameters used in the numerical simulation are: Ωeg/(2π) =​ 50 MHz, Ω/(2π) =​ 100 MHz (avail-
able in experiments105,106), and δ = . g7 2a jj

 (obtained by numerically optimizing the system parameters). With the choice 
of these parameters, the fidelity versus δ=D g/b bj j

 is plotted in Fig. 4, which demonstrates that for D ~ 9, a high fidelity 
~93.2% can be achieved for the state ϕ  with |β| =​ 1.2. For D ~ 9, the entire operation time is estimated to be ~1.14 μs, 
much shorter than the decoherence times of transmon qubits and NVEs used in our numerical simulation but a little 
longer than the cavity decay time. Figure 4 also shows that the fidelity heavily depends on D (or the detuning δb j

).  
The fidelity reaches its maximum as D increases to 9. However, it drops down when D becomes larger than 9.  
This means that further increasing the detuning δb j

 will have an adverse effect on the fidelity. The interpretation for this is: 
As the detuning δb j

 becomes larger than the optimum value g9 b j
 (2π ×​ 36 MHz) (i.e., the value where the large detuning 

Figure 4.  Fidelity   versus reduced detuning δ=D g/b bj j
. The red squares correspond to the case without 

considering the errors and decoherence for the first three-step operation, while the blue dots correspond to the 
case after the errors and decoherence for the first three-step operation are taken into account. The parameters 
used here are described in the text.

Figure 5.  (a) The operational fidelity  , the amplitude |β| (or |−​β|), and the photon number of each cavity versus 
t −​ t0 (i.e., the time required for the last step of operation), for the case of considering the identical NVE-cavity 
coupling strengths and NVE-cavity frequency detunings. The blue, black, and green curves are plotted for reduced 
detuning δ= =D g/ 9b bj j

 and parameters used in Fig. 4. The blue curve represents the operational fidelity, which 
is calculated for an ideal state ψid  (φ ) with |β| =​ 1.2. For t −​ t0 =​ 1.08 μs (i.e., the time required for preparing the 
state ϕ  with |β| =​ 1.2 during the last step of operation), the fidelity   reaches the maximum ~93.2%. The black 
curve represents the value of |β|/2 or |−​β|/2. The green curve indicates the photon number (enlarged 10 times) of 
each cavity. (b) The operation fidelity versus t −​ t0 for inhomogeneous NVE-resonator couplings and unequal 
NVE-resonator frequency detunings. The brown, purple, and red curves represent the operational fidelities for 
NVE spin coherence times t =​ 10 μs, 100μs, and 1 ms, respectively. The maximum fidelities (corresponding to the 
peak values of the brown, purple, and red curves) are, respectively, 81.5%, 89.0%, and 90.3%.
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is well satisfied), the NVE-cavity coupling becomes weaker, which increases the operation time and thus the effect of 
decoherence from transmon qubits and NVEs on the fidelity becomes more apparent.

Note that although the entire operation time is longer than the cavity decay time used in our numerical simu-
lations, the effect of the cavity decay on the fidelity is negligible. This is because: the first three steps are completed 
within a very short time due to using the resonant interaction, and (as illustrated in Fig. 5) the number of photons 
occupied in each cavity during the last step of operation is quite low due to using a large-detuning technique. Indeed, 
to reduce decoherence from the cavity decay, one can employ a longer cavity-decay time in the numerical simulation, 
which however would require cavities with a higher-Q quality factor and thus may pose a challenge in experiments.

Figure 5 is plotted by choosing the detuning D =​ 9 and using the same parameters for Fig. 4. For simplicity, 
Fig. 5 only shows the curves corresponding to the operation time t −​ t0 required for the last step of operation. 
Here, t is the entire operation time while t0 is the time required for the first three steps of operation. For the values 
of gA, gr, and Ωeg chosen above, t0 is ~36 ns. The blue curve represents the fidelity, which is calculated for an ideal 
state ψid  (ϕ ) with |β| =​ 1.2. The black curve represents the value of |β|/2 or |−​β|/2. The green curve indicates 
the average photon number for each cavity. The blue curve indicates that the fidelity increases when t −​ t0 
approaches 1.08 μs (which is the time required for the last step of operation for preparing the desired state ϕ  with 
|β| =​ 1.2). The maximum fidelity depicted by the blue curve of Fig. 5 is in good agreement with that shown in 
Fig. 4 for D =​ 9. In addition, the green curve shows that the average number of photons excited in each cavity is 
less than 0.02, implying that the cavity photons are almost not excited during the last step of operation.

In a realistic situation, it may be a challenge to obtain identical NVE-resonator frequency detunings and 
homogeneous NVE-resonator coupling strengths. Thus, we numerically calculate the fidelity by setting 
δ δ δ δ= = ., 0 975b b b b1 2

 and δ δ= .1 025b b3
, = . =g g g g0 95 ,b b b b1 2

 and = .g g1 05b b3
. As shown in the brown, 

purple, and red curves of Fig. 5, one can see that a high fidelity 81.5%, 89.0%, 90.3% can be obtained for the NVE 
spin coherence times 10 μs, 100 μs, and 1 ms, respectively.

According to experimental reports81,82, the cavity frequency can be rapidly adjusted by Δ​ωc/
(2π) =​ 500~740 MHz. As a conservative consideration, for Δ​ωc/(2π) =​ 500 MHz, the detuning δbj

 changes to 
δ π= + × g9 2 500b bj j

 MHz, which can be further written as, e.g., δ ~g/ 134b bj j
 for the identical NVE-cavity 

coupling strengths gbj/(2π) ≡​ gb/(2π) =​ 4 MHz chosen above. This result shows that the decoupling of the cavities 
with the NVEs, which was required during the W-state preparation, can be well met by adjusting the cavity fre-
quency. As discussed previously, the coupling or decoupling of the qubits with the cavities can be readily made by 
adjusting the level spacings of the qubits.

T1 (energy relaxation time) and T2 (dephasing time) can be made to be on the order of 20–80 μs for state-of-the-art 
superconducting transmon devices102–104. The typical transition frequency of a transmon qubit is between 2 and 
10 GHz77,107. As an example, consider each cavity of frequency νc ~ 5 GHz. Hence, for the κ−j

1 used in the numerical 
calculation, the required quality factor of each cavity is Qj ~ 3.1 ×​ 104, which is accessible in experiments because a 
quality factor Q ~ 5 ×​ 104 for CPW resonators with loaded NVEs has been experimentally demonstrated44. The anal-
ysis given here shows that a high-fidelity implementation of the three-NVE W-type entangled coherent state W1 , 
W2 , W3 , or W 4  described by Eq. (24) is feasible with rapid development of circuit QED techniques.

Quantum state transfer.  Consider a cavity and an NVE inside the cavity. Based on Eq. (35) (see the 
Methods section), the NVE-cavity interaction Hamiltonian can be written as

= +† †H g a b ab( ), (28)I b

where we set δ =​ ωb −​ ωc =​ 0. Assume now that the initial state of the cavity and the NVE is given by |0〉​c⊗​|β〉​NVE, 
where |0〉​c is the vacuum state of the cavity while |β〉​NVE is the coherent state of the NVE, given by 
β β= − ∑

β
=
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Making use of the Hamiltonian (28), we can obtain the transformations = +− † † †e b e g t b i g t acos( ) sin( )iH t iH t
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I I .  
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where we have used =− † †e b e ia( ) ( )iH t n iH t nI I  and =−e 0 0 0 0iH t
c cNVE NVE

I .
In the same manner, after an evolution time t =​ π/2gb, the state β−0 c NVE

 of the cavity and the NVE is trans-
formed to β− ⊗i 0c NVE

. Given the above results, one can transfer a macroscopic W-type entangled coherent 
state from the NVEs into the cavities. For instance, the above state W1  of the three NVEs is transferred onto the 
three cavities, becoming

β β β β β β β β β= − + − + − .W i i i i i i i i i1
3

( )
(31)c1

Discussion
We should mention that in 2015, Song et al. proposed a scheme to generate a GHZ-type macroscopic entangled 
coherent state of NVEs that are coupled to a superconducting flux qubit85. In contrast, we here proposed a proto-
col for creating a macroscopic W-type ECS with NVEs coupled to different cavities. Hence, compared with85, our 
proposal is for a different system and it differs in both the prepared states and the coupling structure.

A method has been presented to generate a continuous-variable W-type entangled coherent state of NVEs in 
circuit QED. As shown above, this proposal offers some distinguishing features and advantages. The prepared 
W state of NVEs can be mapped onto the cavities by local operations. Our numerical simulations show that the 
high-fidelity implementation of W-type entangled coherent states with three NVEs is feasible with rapid devel-
opment of circuit QED technology.

Figure 6.  (a) Schematic diagram of electronic and spin energy levels of a nitrogen-vacancy center. (b) The 
ground electronic-spin levels of an NV center in the presence of an external magnetic field parallel to the 
crystalline axis. Here B and E represent the magnetic field and energy, respectively. (c) Illustration of the cavity 
decoupled from the NV center. Here, ωc is the cavity frequency, while ω0,−1 (ω0,+1) is the energy gap between the 
|ms =​ 0〉​ and |ms =​ −​1〉​ (|ms =​ +​1〉​) levels of the NV center. The cavity frequency ωc is sufficiently larger than 
ω0,+1 and ω0,−1, such that the cavity mode is highly detuned (decoupled) from both the |ms =​ 0〉​ ↔​ |ms =​ −​1〉​  
transition and the |ms =​ 0〉​ ↔​ |ms =​ +​1〉​ transition. (d) Illustration of the cavity being coupled to the 
|ms =​ 0〉​ ↔​ |ms =​ +​1〉​ transition with a detuning δ =​ ωc −​ ω0,+1, but decoupled from the |ms =​ 0〉​ ↔​ |ms =​ −​1〉​ 
transition of the NV center.
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Methods
NVE-cavity interaction Hamiltonian.  As shown in Fig. 6(a), the energy levels of an NV center consist 
of a ground state 3A, an excited state 3E and a metastable state 1A. Both 3A and 3E are spin triplet states while 
the metastable 1A is a spin singlet state108,109. The NV center has an S =​ 1 ground state with zero-field splitting  
Dgs/(2π) =​ 2.88 GHz between the |ms =​ 0〉​ and |ms =​ ±​1〉​ levels [Fig. 6(a)]. By applying an external magnetic field 
along the crystalline axis of the NV center48,84, an additional Zeeman splitting between |ms =​ ±​1〉​ sublevels occurs 
[Fig. 6(b)].

If we need to eliminate the coupling of the cavity with the NV center, one can adjust the cavity frequency ωc 
to have ωc sufficiently larger than ω0,+1 and ω0,−1, such that the cavity mode is highly detuned (decoupled) from 
both the |ms =​ 0〉​ ↔​ |ms =​ −​1〉​ transition and the |ms =​ 0〉​ ↔​ |ms =​ +​1〉​ transition [Fig. 6(c)]. Here, ω0,+1 (ω0,−1) 
is the transition frequency between the two levels |ms =​ 0〉​ and |ms =​ +​1〉​ (|ms =​ −​1〉​). On the other hand, one 
can adjust the cavity frequency such that the cavity mode is coupled with the transition between the ground level 
|ms =​ 0〉​ and the excited level |ms =​ +​1〉​, but still decoupled from the transition between the two levels |ms =​ 0〉​ 
and |ms =​ −​1〉​ [Fig. 6(d)]. Note that for a superconducting transmission line resonator, the rapid tuning of cavity 
frequencies by a few hundred MHz in 1–2 nanoseconds has been demonstrated in experiments81,82). During the 
W-state preparation described in the Results section, we assume that the level splitting of the NV center is fixed.

An NV center is usually treated as a spin while an ensemble of NV centers is treated as a spin ensemble (i.e., an 
NVE). Let an NVE be placed at an antinode of a single mode of the electromagnetic field. When the cavity is cou-
pled to the |ms =​ 0〉​ ↔​ |ms =​ +​1〉​ transition, but decoupled from the |ms =​ 0〉​ ↔​ |ms =​ −​1〉​ transition [Fig. 6(d)], 
the system Hamiltonian in the interaction picture reads (in units of ħ =​ 1)

∑ τ τ= +δ δ

=

− + −†H g a e a e( ),
(32)C

k

N

k k
i t

k
i t

,NVE
1

where δ =​ ωc −​ ω0,+1, ωc is the eigenfrequency of the cavity mode, a (a†) is the corresponding annihilation (crea-
tion) operator of the cavity mode, τ = = + =+ m m1 0k s k s  and τ = = = +− m m0 1k s k s  are the raising 
and lowering operators for the kth spin, and gk is the coupling strength between the cavity and the kth spin. We 
then define a collective operator
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2 , and g  is the root mean square of the individual couplings.

Under the condition of a large N and a very small number of excited spins (compared to the number N), b† 
behaves as a bosonic operator and the spin ensemble behaves as a bosonic mode. Thus, we have [b, b†] ≈​ 1, and 
b†b|n〉​b =​ n|n〉​b48,110, where

= †n
n

b1
!

( ) 0
(34)b

n
b

with |0〉​b =​ |ms =​ 0〉​1|ms =​ 0〉​2 ···|ms =​ 0〉​N. It is easy to verify that the frequency ωb of the bosonic mode describing 
the NVE is equal to the transition frequency ω0,+1 between the ground level |ms =​ 0〉​ and the excited level |ms =​ +​1〉​  
of each spin (i.e. ωb =​ ω0,+1). For simplicity we have defined |ms =​ +​1〉​ =​ |+​1〉​ and |ms =​ 0〉​ =​ |0〉​.

Therefore, the Hamiltonian (32) can be further rewritten as

= +δ δ−† †H g e a b e ab( ), (35)C b
i t i t

,NVE

with =g N gb . Based on Eq. (35), one can find that for the case of three NVEs each placed in a cavity, the 
Hamiltonian for the three NVEs interacting with their respective cavities would be the second term of Eq. (11).

NVE-cavity coupling selection.  During the last step of the W state preparation, we would require 
the coupling of each cavity with the |ms =​ 0〉​ ↔​ |ms =​ +​1〉​ transition while decoupling each cavity from the 
|ms =​ 0〉​ ↔​ |ms =​ −​1〉​ transition. The advantage of this is that the created W state has a mode frequency equal 
to ω0,+1, which is adjustable by varying the magnetic field applied to the NVEs [Fig. 6(c,d)]. Instead of using the 
coupling of each cavity with the |ms =​ 0〉​ ↔​ |ms =​ +​1〉​ transition, one can employ the coupling of each cavity with 
the |ms =​ 0〉​ ↔​ |ms =​ ±​1〉​ transition (i.e., the transition between the ground state |ms =​ 0〉​ and the degenerate 
excited states |ms =​ ±​1〉​). However, there is an inevitable shortcoming, i.e., the created W state has a fixed mode 
frequency, which is equal to ω0,±1 =​ 2π ×​ 2.88 GHz [Fig. 6(a)] and thus cannot be adjusted.
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