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Abstract

Previous research revealed that people’s judgments of causality between a target cause
and an outcome in null contingency settings can be biased by various factors, leading to
causal illusions (i.e., incorrectly reporting a causal relationship where there is none). In two
experiments, we examined whether this causal illusion is sensitive to prior expectations
about base-rates. Thus, we pretrained participants to expect either a high outcome base-
rate (Experiment 1) or a low outcome base-rate (Experiment 2). This pretraining was fol-
lowed by a standard contingency task in which the target cause and the outcome were not
contingent with each other (i.e., there was no causal relation between them). Subsequent
causal judgments were affected by the pretraining: When the outcome base-rate was
expected to be high, the causal illusion was reduced, and the opposite was observed when
the outcome base-rate was expected to be low. The results are discussed in the light of sev-
eral explanatory accounts (associative and computational). A rational account of contin-
gency learning based on the evidential value of information can predict our findings.

Introduction

Recent research has investigated the so-called "causal illusion" or "illusion of causality", a phe-
nomenon that consists in believing that a causal relation exists between a potential cause, C,
and an outcome, O, when they are causally unrelated but coincide frequently [1]. For instance,
when a bogus medicine is used to treat a given symptom that disappears spontaneously very
often, it is common to mistakenly believe that the remission of the symptom is caused by the
medicine. Causal illusions have been typically identified in contingency learning experiments
conducted in the laboratory, but they have been proposed to underlie many everyday supersti-
tions and irrational beliefs [2-6], thus giving birth to a fruitful research field that taps into both
theoretical and societal issues. Even in laboratory experiments, a relevant amount of evidence
has been collected in computer tasks that used meaningful scenarios, such as the typical medi-
cine-evaluation task, in which participants are asked to judge the effectiveness of a medicine in
treating a fictitious disease. These experiments have revealed important information that can
be used to alleviate the undesired effects of the causal illusion in real life situations, such as
pseudomedicine usage or self-medication [7].
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The experimental paradigm typically used to investigate causal illusions is the contingency
learning task [8,9]. In this task, the participant is presented with a series of trials (e.g., medical
records of fictitious patients) in which the cause C and the outcome O can either occur or not
occur. Thus, there are four types of trials in the task, and they can be arranged in a contingency
table like the one depicted in Fig 1: in type a trials, both the potential cause and the outcome
occur; in type b trials, only the potential cause occurs; in type c trials, the outcome, but not the
potential cause, occurs; finally, in type d trials, neither the potential cause nor the outcome
occurs [10].

For a causal relation to exist (unless there is an uncontrolled external factor), the outcome
must be contingent on the potential cause. Following our medical example, this means that, if
the medicine is actually a cause of the remission of the disease, then the remission must be
observed more frequently when the medicine is taken than when it is not taken. This reasoning
is formalized in the widely used contingency index AP [8,10]:

a __c
a+b c+d’

AP = P(O|C) — P(O|-C) = (1)
where P(O|C) and P(O|~C) are the conditional probabilities of the outcome given the presence
and the absence of the cause, respectively. The letters a, b, c and d are the frequencies of each
of the four types of trials (see Fig 1) that can be used to compute the two mentioned condi-
tional probabilities. The AP index takes on values between -1 and 1. The closer to zero this
value is, the weaker the association between the potential cause and the outcome, and therefore
the causal relation between them becomes implausible. When P(O|C) equals P(O|-C), the
contingency is null (i.e., AP = 0), and we conclude that the potential cause does not actually
affect the probability of the outcome. Under some circumstances, however, people tend to
believe that there is a causal relationship between the potential cause C and the outcome O,
despite their contingency being null. That is, they develop a causal illusion [1].

One of the factors that are relevant for the formation of a causal illusion is the probability
with which the outcome of interest occurs, P(O) (e.g., how often the symptoms of a disease
remit). Even when there is no actual causal relation between a potential cause (e.g., a medicine)
and an outcome (e.g., remission of the symptoms), high levels of P(O) lead to strong percep-
tions of causality, or causal illusions. This is sometimes called the outcome-density bias [11-
13]. Thus, if a medicine is followed by the remission of the symptoms with high probability
(e.g., seven in ten times), then it will seem to be an effective treatment, even if it is actually use-
less and the remissions occur just as frequently in its absence.

Additionally, some factors that are external to the experimental setting and precede the
training session can also affect causal learning [14-16] and, therefore, may also modulate the
causal illusion. Imagine the following situation, inspired by the usual medicine-evaluation task
that is used in contingency learning experiments: You are a doctor who is testing a new medi-
cine to treat common flu. You test the medicine on ten volunteers who are currently suffering
from the flu. A few days after, three of them (i.e., 3 out of 10) feel better. Given this situation,
would you be inclined to think that the new medicine is effective? We believe that most people
would conclude that this medicine is not effective at all, because the rate of remissions when
the medicine is used is rather low, that is, P(O|C) = .30 (three type a trials against seven type b
trials).

Now consider a similar scenario, only changing the name of the disease: instead of treating
common flu, now the fictitious doctor is treating cancer, and she gets the same results: three
out of ten remissions when the medicine is used, that is, P(O|C) = .30. It is likely that, in this
latter scenario, you would conclude that the medicine is highly effective. Why do we expect
this difference between the two scenarios? After all, both decisions are based on the same
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Fig 1. Contingency table for one potential cause and one outcome.

https://doi.org/10.1371/journal.pone.0212615.9001

observed information (i.e., success rate of 30%). Thus, the scenarios in this example differ only
in the implicit assumptions that people make. When we approach the common flu scenario,
our previous experience with the world dictates that we should expect a high rate of spontane-
ous remissions (much higher than 30%): almost everybody who catches a flu ends up feeling
better after a few days. Therefore, the actual observed rate of remissions when using the medi-
cine is actually lower than the expected base-rate, suggesting that the medicine is not working
well. On the other hand, when we are presented with the cancer scenario, our assumptions are
different: we know that it is highly unlikely that cancer remits spontaneously. That is, in the
cancer scenario, we assume that the spontaneous remission base-rate is very low, much lower
than 30%. Hence, the observed remission rate when using the treatment is much higher in
comparison, suggesting that the medicine works. In sum, what makes these two scenarios so
strikingly different is the previous knowledge (and expectations) about their respective out-
come base-rates, or P(O|=C). A piece of information that was deliberately absent from the
description of the problem and, thus, is assumed spontaneously by the reader.

In these two examples, previous knowledge about outcome base-rate affects the way people
interpret the available information. Current theories about contingency learning that are used
to model causal illusions provide mechanisms that could accommodate the effect of the base-
rate expectations that we have just illustrated. One of the ways in which this can be achieved is
by means of cell-weighting mechanisms. That is, by giving more importance to some pieces of
information (i.e., each of the cells in Fig 1) than to others. For example, in the case of the
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medicine for the flu (first scenario), because we know that the outcome base-rate, P(O|
=C), is high, we would expect being exposed to a lot of fortuitous outcome occurrences,
and consequently grant these cells (a and c) less importance. This means that we would
not be impressed enough by the rather small number of type a trials (3 out of 10) because
they could be attributed to chance. In the second scenario, by contrast, the expectation of
alow P(O|=C) (i.e., patients suffering from cancer rarely recover from the disease without
a treatment) would make outcome occurrences (cells a and c) very salient, because we
expect that they would appear with extremely low probability. Therefore, the scarce type a
trials cannot be interpreted as mere coincidences that result from chance. Rather, they
would be important enough to judge the medicine as effective. In fact, a rational, Bayesian
analysis of causal induction concludes that, whenever a learner knows or expects that the
cause and the outcome occur with low probability (as in the cancer scenario), then he or
she should weight type a trials more heavily than the rest of them when making a causal
judgment [17].

In this article, we report two experiments that aimed to reveal how the expectations about
the outcome base-rate, P(O|-C), affect the subsequent contingency learning phase, modulat-
ing the causal illusion. The predictions follow the same rationale as the example provided
above (common flu vs. cancer) and align with the optimal Bayesian reasoning account by
McKenzie & Mikkelsen [17]. In addition to the usual judgment of causality that is used to
assess the causal illusion, we included a novel type of question (evidential value question) to
investigate the extent to which each type of trial (a, b, c and d) was given importance to judge
the causal relation. The experiments reported here resemble others in the literature [18],
although our aims are different: Here we focus on the causal illusion, and consequently we
deal with null contingencies only, and compare between different assumed base-rates (a test
that was absent in the cited article).

Ethics statement

The procedure used in these two experiments was examined and approved by the Ethical
Review Board of the University of Deusto. The participants were informed before the experi-
ment that they could quit the study at any moment by closing the browser window. The data
collected during the experiment were sent anonymously to the experimenter only upon
explicit permission by the participant, indicated by clicking on a "Submit" button. If the partic-
ipant clicked on the "Cancel" button, the information was erased. No personal information
(i.e., name, IP address, e-mail) was collected. We did not use cookies or other software to
covertly obtain information from the participants.

Experiment 1

In this experiment, we used the standard contingency learning task with a completely new
cover story in which participants had no previous experience and, thus, no clear expecta-
tions. Half of our participants were exposed to a pretraining phase in which they learned
that the outcome base-rate was high (High base-rate group). The other half of participants
was not pretrained (Control group). Then, after the usual training phase showing a null
contingency between the potential cause and the outcome that was identical for all partici-
pants, we assessed the causal illusion in both groups. We expected the High base-rate
group to show little or no causal illusion compared to the Control group. In sum, this
experiment represents the "flu scenario” described in the example above, in which the out-
come base-rate is assumed to be high.
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Method

Participants and apparatus. Sixty-five anonymous Internet users took part in the study
through our virtual laboratory website [http://www.labpsico.deusto.es/]. The computer pro-
gram randomly assigned each participant to one of two groups, a High base-rate group
(n =36) and a Control group (n = 29). The sample size was decided after running an unpub-
lished pilot study with similar design (but a different cover story), on a smaller sample
(N = 26), which produced nonsignificant results in the expected direction. To achieve enough
power, we decided to at least double the number of participants used in the pilot study. The
experiment was programmed in JavaScript, a web-based language that is interpretable by most
browsers.

Procedure. The experiment was a modified version of the standard contingency learning
task that we have used previously to study causal illusions [1]. The procedure, materials and
data are publicly available at the Open Science Framework [19]. Participants were instructed
to imagine that they were scientists working on a distant-future space colony, under the threat
of a race of evil aliens. According to the instructions (available online [19]), some of the aliens
had an armored skin resistant to heavy laser weapons, and thus were extremely dangerous.
However, other aliens had a mutation (called "XG Vulnerability") that impaired the develop-
ment of their armor. Therefore, the mutation made these aliens vulnerable to humans’ weap-
ons. Participants were told that the mutation appeared naturally in the alien population. To
further study the aliens’ development and physiology, a number of alien eggs were captured.
This sci-fi setup was aimed at suggesting to the participants that the outcome of interest (i.e.,
the mutation) occurred spontaneously with a given, unspecified, base-rate.

The crucial difference between the High base-rate group and the Control group was the
presence of a pretraining phase in the former to induce the base-rate expectations. After the
instructions were given, participants in the High base-rate group were presented with a sample
of different alien eggs. On each trial, the picture of an alien egg and its alphanumeric label (a
randomly generated string, e.g., "Egg AV35") were displayed on the top panel of the screen.
The goal of the participant was to predict whether or not the current egg would present the
mutation "XG Vulnerability" by clicking on one of the two available buttons (labeled "It will
develop the XG Vulnerability" and "It will NOT develop the XG Vulnerability"). Immediately
after making this prediction, the outcome information was displayed on the bottom panel of
the screen. If the current alien egg had the mutation, a picture of an alien and a shield crossed
out in red was displayed, together with the sentence "The alien has the XG Vulnerability". In
the opposite case, a picture of the alien and the sentence "The alien does NOT have the XG
Vulnerability" were presented. After a delay of one second, a button labeled "Next egg" was
available to proceed to the next trial.

A series of 20 pretraining trials were delivered in the High base-rate group. Fourteen eggs
gave birth to mutants showing the vulnerability, that is, the base-rate of the outcome was high
(.70). At the end of the sequence of 20 trials presented in random order, the screen showed a
sentence highlighting the high base-rate: "As you have seen, the number of eggs resulting in
mutant aliens with the XG Vulnerability is very high". This was a means to ensure that the
base-rate expectation manipulation worked.

Immediately after learning this information, the next screen asked about the base-rate of
the mutations by means of a base-rate judgment: "Imagine you see 100 alien eggs. Of these
100, how many of them would give birth to aliens with the XG Vulnerability mutation?". The
question was answered by clicking on a numerical scale from 0 to 100. In the Control group,
this judgment was collected without any pretraining (immediately following the instructions),
which means that they had no informed reasons to prefer one value over others. Thus, the
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base-rate judgment served as a means to check whether or not the pretraining phase worked as
intended to install high base-rate expectations in the high-base-rate group.

After collecting the base-rate judgment, all participants were exposed to the contingency
training phase, which was identical in both groups, and similar to the "active" version of the
contingency learning task we used in previous experiments [20]. The instructions to this train-
ing phase made clear to the participants that their goal was to test the effectiveness of a newly-
developed mutagenic agent that, when sprayed on the unhatched eggs, might increase the
chances to give birth to a mutant alien with the XG Vulnerability. To this end, the participants
saw a series of different eggs (each one labeled with a unique alphanumeric code). This infor-
mation was presented on the top panel of the screen. Then, the participants had the opportu-
nity to decide whether or not to apply the agent to the egg for testing purposes. This was
indicated in the middle panel with the sentence "You can use the mutagenic agent now (by
pressing the spacebar)" and a picture of a test tube filled with a green liquid. This information
stayed on the screen for three seconds during which the participants had to make their deci-
sion. After the three seconds passed, the panel showed the corresponding feedback: if the par-
ticipant pressed the spacebar, then the sentence "You have used the mutagenic agent” and a
picture of the test tube pouring the liquid appeared; if the participants did not press the space-
bar, then the sentence "You have not used the mutagenic agent” and the same picture crossed
out in red were presented. After one second, the information about the outcome occurrence
was displayed on the bottom panel: if the current egg gave birth to a mutant alien (outcome-
present trial), then the picture of an alien with a shield crossed out in red appeared accompa-
nied by the sentence "The alien has the XG Vulnerability"; otherwise (outcome-absent trial),
the picture of the alien appeared together with the sentence "The alien does NOT have the XG
Vulnerability". Below this information, a button labeled "Continue" was available to proceed to
the next trial. In the contingency training phase, the sequence contained 50 trials, out of which
35 showed an alien with the XG Vulnerability mutation, that is, P(O) was .70. During the train-
ing phase, the eggs produced mutants with the same probability (i.e., .70) regardless of the par-
ticipants’ decisions, which means that the mutagenic agent was completely ineffective.
Importantly, this is the same probability of the outcome that was used in the pretraining phase
of the High base-rate group. The order in which mutant and non-mutant aliens appeared dur-
ing the session was randomized for each participant.

After the 50 eggs were presented, the participants were asked to answer several questions.
The first one was a causal judgment, with a wording similar to the one we used in previous
studies [2,3]: "To what extent do you think that the mutagenic agent was effective to produce
aliens with the XG Vulnerability?". This was answered on a scale from 0 (labeled "Not effective
at all") to 50 ("Moderately effective") to 100 ("Perfectly effective”). Following the causal judg-
ment, we asked a confidence judgment: "To what extent are you sure about your previous
answer?", on a scale from 0 ("Not sure at all") to 100 ("Completely sure"). This was aimed at
capturing the uncertainty in the causal estimation.

The next two questions concerned the perceived probabilities of the outcome, conditional
on the presence/absence of the potential cause, i.e., P(O|C) and P(O|~C), and were presented
in random order for each participant. They were worded in terms of frequencies rather than of
probabilities, to make them easier to understand by participants [21]. That is, for the P(O|C)
question, "Imagine you are presented with 100 more eggs, and that the mutagenic agent is
used on all of them (i.e., 100). Out of these 100 eggs, how many of them do you think would
give birth to aliens with the XG Vulnerability?"; and for the P(O|-C) question, "Imagine you
are presented with 100 more eggs, and that the mutagenic agent is used on none of them (i.e.,
0). Out of these 100 eggs, how many of them do you think would give birth to aliens with the
XG Vulnerability?". Both questions were answered on a numeric scale from 0 to 100.
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Finally, we collected a new measure called “evidential value questions”. Four screens were
presented in random order for each participant, preceded with a screen with the sentence
"Now observe the following records from the study". Each record contained the information of
one type of trial (i.e., a, b, ¢, and d). That is, in the screen corresponding to a type a trial, the
mutagenic agent was used and the alien developed the mutation; in the screen corresponding
to a type b trial, the mutagenic agent was used but the alien showed no mutation, and so on.
Below this information, a question was displayed. For type a and type d trials, the question
read: "Please, indicate whether you think that the result of this record is due to MERE
CHANCE or is COMPELLING EVIDENCE in favor that the mutagenic agent helps to pro-
duce aliens with the XG Vulnerability". For type b and type c trials, the question read: "Please,
indicate whether you think that the result of this record is due to MERE CHANCE or is COM-
PELLING EVIDENCE against that the mutagenic agent helps to produce aliens with the XG
Vulnerability". The question was answered by clicking on one of the available buttons, labeled
"coincidence" or "evidence". The questions corresponding to the four types of trials (a, b, c,
and d) were presented in these questions in random order. The aim of these questions was to
explore potential differences between the groups in the informational value attributed to each
type of trial.

Results and discussion

Judgments. All the data collected in Experiment 1 and Experiment 2 are available at the
Open Science Framework [19]. Table 1 contains the descriptive statistics for the five types of
judgment collected (Base-rate, Causal, Confidence, and the two conditional probabilities). No
heteroscedasticity problems were detected (all Levene’s tests p > 0.55). However, since the
data of some of the judgments are not normally distributed (e.g., base-rate judgments in the
pretrained groups in both experiments), we used robust estimation by adopting the Yuen’s test
[22,23], based on trimmed means (trim proportion was set to default, 0.20), which compen-
sates for this problem at the cost of statistical power. Both standard (non-corrected) and robust
analyses are reported for completeness, and they produce similar results.

First, we ensured that the pretraining phase led participants to develop high expectations
about the outcome base-rate (i.e., we conducted a manipulation-check). Base-rate judgments
were significantly higher in the High base-rate group than in the Control group, #(63) = 6.293,
p < 0.001, d =1.57 [Yuen’s test: £(33.0) = 4.96, p < 0.001, & = 0.74]. In other words, the manip-
ulation worked as intended to encourage higher expectations about the outcome base-rate. In
fact, the mean base-rate judgment in the pretrained group was very close to the normatively
expected value assuming that participants start from a uniform prior: that is, before pretrain-
ing, the prior on the base-rate could be uniform, Beta (1, 1). Updating this prior with the
observed data (14 mutants, 6 non-mutants) yields a posterior with Beta (1+14, 1+6), whose
mean is 0.68, close to the mean value (one-sample t-test, p = 0.90). In the Control group,

Table 1. Descriptive statistics of the five judgments collected in Experiment 1.

Control group High Base-rate group
Judgment M SD 95% CI M SD 95% CI
Base-rate 39.55 15.64 | [33.86, 45.24] 64.33 15.89 | [59.14, 69.53]
Causal 50.62 23.68 | [42.00 59.24] 33.06 28.76 | [23.66, 42.45]
Confidence 70.59 25.98 | [61.13, 80.04] 62.83 28.84 | [53.41, 72.26]
P(O|C) 52.41 23.47 | [43.87, 60.95] 61.89 21.58 | [54.84, 68.94]
P(O|-C) 60.00 19.64 | [52.85, 67.15] 61.00 20.49 | [54.31, 67.69]

https://doi.org/10.1371/journal.pone.0212615.t001
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https://doi.org/10.1371/journal.pone.0212615.9002

however, the judgments were significantly lower than 50 (p = 0.001), which suggests that lay
people with have no additional information intuitively assign a relatively low base-rate to the
occurrence of mutations [24]. As long as there is significant difference between the groups in
the expected direction, the manipulation can be considered successful.

Causal judgments were our main dependent variable. They are depicted in Fig 2. As we
expected, participants in the High base-rate group gave lower causal judgments than did par-
ticipants in the Control group, #(63) = 2.644, p = 0.01, d = 0.66 [Yuen’s test: #(38.1) = 3.10,

p =0.004, £ = 0.48]. This difference cannot be attributed to differences in their confidence,
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because the two groups did not differ significantly in their confidence judgments (see Table 1),
#(63) = 1.125, p = 0.265, d = 0.28 [Yuen’s test: #(36.4) = 0.755, p = 0.455, £ = 0.14]. In sum, these
were the main results we predicted.

Next, we examine the answers given to the two conditional probability questions (Table 1),
which were collected with exploratory aims. The analyses revealed no significant between-
group differences for the P(O|C) question, #(63) = 1.692, p = 0.096, d = 0.42 [Yuen’s test: ¢
(30.6) = 1.94, p = 0.062, & = 0.32], and for the P(O|~C) question, #(63) = 0.199, p = 0.843,
d=0.05 [Yuen’s test: #(37.9) = 0.61, p = 0.546, £ = 0.10].

In addition, we used the conditional probability questions to compute a perceived AP index
(as Eq 1 implies, it is the subtraction of the two conditional probability questions) that could
indirectly inform us about the perceived causality. This variable did not differ between groups,
£(63) = 1.197, p = 0.236 [Yuen’s test: #(24.4) = 1.55, p = 0.133, £ = 0.265], showing values close
to zero (in the Control group, M = -0.0759, SD = 0.327; and in the High Base-rate group,

M =0.009, SD = 0.244). Furthermore, the AP index computed from the conditional probability
questions did not correlate with causal judgments in either group (r =-0.017, p = 0.932, and r
=-0.29, p = 0.086, respectively). Taken together, these results could suggest that people do not
combine the two pieces of the conditional probability information to obtain the causal judg-
ment, although we must remain cautious as the experiment was not designed for this purpose.
The same analyses were conducted on the predictions by the Power PC model for generative
relationships [25], with identical (non-significant) results.

Finally, we have conducted simulations to study the process of Bayesian update of the base-
rate knowledge from the prior distribution (before any information is given) to the posterior
distribution, in light of the data provided during the pretraining and training phases. We used
beta distributions to model the belief update process, by means of the MASS package [26,27]
for R. These analyses are described in detail in the S1 Appendix file.

Probability of the cause. Because we know from previous studies that the probability of
the cause, P(C), biases causal and contingency estimations [28-31], and that previous knowl-
edge and expectations can indeed affect the contingency judgment by actively biasing behavior
[32], we examined the possibility that the two groups differed in this variable. The P(C) was
computed as the proportion of trials in which the participant decided to use the mutagenic
agent during the training phase: in the High base-rate group, M = .60, SD = .26, 95% CI [.51,
.68]; and in the control group, M = .63, SD = .23, 95% CI [.55, .72]. There were no significant
differences in P(C) between the groups, #(63) = 0.563, p = 0.575, d = 0.14 [Yuen’s test: £(31.80)
=0.482, p = 0.633, £ = 0.08]. Therefore, this potential confounding variable was controlled for.
That is, the significant between-group differences in the causal judgments that we reported
above cannot be attributed to between-group differences in the overall level of P(C).

Additionally, the scatter plot in Fig 3 indicates that P(C) did increase the causal judgments
in the Control group, B = .52, #(27) = 3.16, p = .004. This result, sometimes known as the
“cause-density bias”, has been found recurrently in the literature [30,33]. On the other hand,
the slope was not significantly different from zero in the High base-rate group, = .08, #(34) =
0.47, p = .64. However, these conclusions must be taken with caution, as the slopes in the two
groups did not differ significantly from each other, according to the Fisher’s transformation
test (they were only marginally significant): Z = 1.88, p = 0.060.

Since participants were allowed to respond freely during the training phase, there could be
individual differences in the overall contingency experienced by each participant [28,31] that
might explain the pattern found in the judgments. Thus, we used the trial-by-trial data to com-
pute the contingency to which each participant was actually exposed, according to two popular
models, AP and Power PC (generative version), as seen in Table 2.
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Fig 3. Scatter plot depicting the relation between P(C) and causal judgments in the two groups of Experiment 1, including marginal densities. Shaded areas

represent 95% Cls for the regression slopes.
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The actual AP and Power PC values experienced by participants did not correlate with the
causal judgments in either group (all ps > 0.086), which is further evidence that participants
are not following the normative rules in this null contingency setting.

Evidential value questions. The last variable in being examined was the answer given to
the evidential value questions, summarized in Fig 4. This was an exploratory measure to collect
information about intuitive cell-weighting mechanisms in our experiment. Participants were
asked to categorize each trial type (a, b, ¢, and d) as either “coincidence” or “evidence”.

These data were analyzed by means of a GLM with logit link function for Binomial distribu-
tions (as the responses were either 0, “coincidence”, or 1, “evidence”). Group, Type of trial and

their interaction were introduced as fixed factors, with random intercept at the subject level.
The model converged at AIC = 302.6, with no significant effects (all ps > 0.063). Table 3 con-
tains the marginal estimated means for each variable (converted to logit scale, where positive

numbers indicate tendency to answer “evidence”). In the Control group, cells ¢ significantly
tended to be treated as a “coincidence”. In the High base-rate group, this happened to all trial

Table 2. Indexes obtained for the two models, AP and Power PC, computed from the actual training data in Experiment 1. The models cannot be computed for

some participants (due to division by zero errors), so these cases are removed.

Control group High Base-rate group
Model n M SD 95% CI n SD 95% CI
AP 28 0.06 0.19 | [-0.02, 0.13] 31 -0.03 0.15 | [-0.09, 0.02]
Power PC 27 -0.05 0.48 | [-0.14, 0.24] 31 -0.37 0.93 | [-0.71, -0.03]
https://doi.org/10.1371/journal.pone.0212615.t002
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types except b. Post-hoc contrasts revealed that no trial type differed between the two groups
(all ps > 0.093). In sum, the results from this novel dependent variable were inconclusive.

Experiment 2

Experiment 1 examined the effect of high base-rate expectations on the subsequent develop-
ment of a causal illusion. As we planned, expecting that the outcome would occur with high
probability prevented (or reduced) the illusion, compared to a group in which this expectation

Table 3. Evidential value questions in Experiment 1: Marginal estimated means (logit scale).

Group Trial Type Marginal estimated mean 95% CI
Control a 0.307 [-0.704, 1.318]
b -0.608 [-1.645, 0.428]
c -1.454 [-2.583, -0.325]
d -0.419 [-1.444, 0.606]
High base-rate a -0.986 [-1.932, -0.041]
b 1.380 [-1.759, 0.102]
c 1.544 [-2.524, -0.496]
d -0.161 [-3.336, -1.026]

https://doi.org/10.1371/journal.pone.0212615.t003
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was not pretrained. This was similar to the first situation presented as an example in the Intro-
duction, in which observing a high rate of remissions when using a medicine for common flu
did not lead to the conclusion that the medicine worked.

In Experiment 2, we used exactly the same procedure, but with a low outcome base-rate.
That is, the situation in Experiment 2 was similar to the second scenario presented in the
Introduction, in which a doctor is likely to believe that a treatment for cancer is working in
spite of a relatively low remission rate when the medicine is used. Accordingly, we expected
that, in Experiment 2, our participants would increase their causal illusion after a low base-rate
pretraining. The Control group (without pretraining), in line with previous reports in which
low outcome-density conditions were used, should show little or no overestimation of causal-
ity [13,34]. Thus, Experiment 2 complements Experiment 1 because it extends the predictions
to a low, rather than high, outcome base-rate.

Additionally, Experiment 2 allows us to examine an alternative explanation for the results
in Experiment 1. Since the pretraining phase is a series of cause-absent trials, participants in
the pretrained (high base-rate) group would be overall exposed to a lower proportion of cause-
present trials, or P(C), if we take into account the whole experimental session. A growing liter-
ature indicates that high P(C) is one of the factors that promote the illusion (i.e., the so-called
“cause-density bias”) [30,31,35]. Thus, the lower judgments found in the High base-rate group
in Experiment 1 could be due to participants experiencing an overall lower exposure to cue-
present trials, if we assume that participants integrated both pretraining and training phases
into one experience. Note that in Experiment 2, however, this potential explanation would
lead to the opposite prediction to that we expressed before for this experiment. That is, in
Experiment 2, the Control (i.e., not pretrained) group would still be exposed to proportionally
more cause-present trials compared to the pretrained Low base-rate group, which would lead
to higher judgments according to the prediction of the cause-density effect, but our prediction,
based on low expected base-rates, is that the pretrained group should exhibit stronger illusions
than the control group, due to the higher weight given to outcome-present trials, as they are
assumed to be rare. Therefore, we could use Experiment 2 to discard an explanation for the
results based on the cause-density bias.

Method

Participants and apparatus. Since, based on previous literature, we expected that observ-
ing the causal illusion in a low outcome-density setting would be more difficult than it was in
high outcome-density settings, we decided to at least double the number of participants used
in Experiment 1. We recruited 132 participants through our website. Two of them were
excluded from the analysis because of a data collection error. Thus, the final sample consisted
of N = 130 participants: 65 in the Control group and 65 in the Low base-rate group.

Procedure. The procedure was identical to that used in Experiment 1, with the following
two differences. First, the Low base-rate group was pretrained to expect the outcome with a
low base-rate. That is, during the pretraining phase in this group, 6 out of 20 eggs gave birth to
mutant aliens with the XG vulnerability, hence P(O) = .30. Second, during the training phase,
all participants were exposed to the same low P(O): only 15 out of 50 eggs gave birth to mutant
aliens (i.e., 30%).

Results and discussion

Judgments. All the data collected in Experiment 1 and Experiment 2 are available at the
Open Science Framework, [19]. Table 4 shows the descriptive statistics for the judgments in
Experiment 2. Base-rate judgments were significantly lower in the Low base-rate group than in
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Table 4. Descriptive statistics of the five judgments collected in Experiment 2.

Judgment M
Base-rate 40.05
Causal 2391
Confidence 57.29
P(O|C) 39.25
P(O]-C) 38.80

https://doi.org/10.1371/journal.pone.0212615.1004

Control group Low Base-rate group
SD 95% CI M SD 95% CI
15.34 | [36.32, 43.77] 26.20 10.53 | [23.64, 28.76]
21.82 | [18.60, 29.21] 32.15 24.34 | [26.24, 38.07]
29.20 | [50.19, 64.39] 52.20 30.41 | [44.81, 59.59]
20.01 | [34.38, 44.11] 37.58 20.28 | [32.66, 42.51]
20.79 | [33.75, 43.85] 40.05 24.19 | [34.17, 45.93]

the Control group, #(128) = 6.00, p < 0.001, d = 1.05 [Yuen’s test: £(58.7) = 9.04, p < 0.001, § =
0.73]. This indicates that the pretraining phase successfully lowered the outcome base-rate
expectations. As in Experiment 1, in fact the base-rate judgments in the pretrained group were
very close to the normatively expected value if one assumes a uniform prior, that is, a posterior
Beta (1+6, 1+14) yields a mean of 0.32. Still, base-rates seemed slightly underestimated,
because in the Control group the judgments were lower than 50, p = 0.001, and in the Low
base-rate group they were lower than 32. This aligns with Experiment 1 in suggesting that peo-
ple systematically assume a low prior on the base-rate.

Causal judgments of the two experiments are shown in Fig 2. Although the mutagenic
agent was completely useless in both groups, it was perceived as more effective in the Low
base-rate group, #(128) = 2.03, p = 0.044, d = 0.36 [Yuen’s test: #(75.3) = 1.92, p = 0.045,§ =
0.242], in line with our prediction. That is, our manipulation increased the causal illusion in a
condition, low P(O), in which it is typically weak.

No differences were found in the confidence judgments that were requested immediately
afterwards, #(128) = 0.97, p = 0.332, d = 0.17 [Yuen’s test: £(74.0) = 1.03, p = 0.305, § = 0.132,
which suggests that participants were similarly confident in their causal ratings in the two
groups (see Table 4). This was also found in Experiment 1.

The participants’ estimations of the conditional probabilities were fairly similar for both
questions in the two groups, a result that also aligns with the previous experiment. Thus, we
found no between-group differences for P(O|C) question, #(128) = 0.470, p = 0.639, d = 0.08
[Yuen’s test: #(75.3) = 0.839, p = 0.404, £ = 0.110], and for the P(O|-C) question, #(128) =
0.315, p = 0.753, d = 0.05 [Yuen’s test: £#(72.3) = 0.833, p = 0.408, £ = 0.125].

As in Experiment 1, we computed the perceived AP index as the difference between the two
conditional probability questions. Again, this variable did not differ between groups, #(128) =
0.710, p = 0.479 [Yuen’s test: #(58.5) = 0.462, p = 0.646, £ = 0.07], showing values close to zero
(in the Control group, M = 0.004, SD = 0.217; and in the Low base-rate group, M = -0.024,

SD = 0.249). The perceived AP index did not correlate with causal judgments: r = -0.132,

p =0.296, and r = -0.052, p = 0.679, in the Control and Low base-rate groups, respectively. The
same analyses were also conducted on the predictions by Power PC model, with identical
results, and consistent with those from Experiment 1. In sum, it seems that participants do not
use either of these rules to produce their causal judgments.

Finally, simulations of the Bayesian belief update process are described in the S1 Appendix
file. By modeling the process with beta distributions, we show how the knowledge of the base-
rate is updated in light of the information given in the pretraining and training phases.

Probability of the cause. As in Experiment 1, we computed the proportion of trials in
which the participants decided to use the mutagenic agent, that is, the probability of the cause,
or P(C). This probability was significantly higher in the Low base-rate group (M = .70, SD =
.184, 95% CI [.66, .74]) than in the Control group (M = .62, SD = .216, 95% CI [.57, .67]), t
(128) = 2.425, p = .017, d = .04 [Yuen’s test: #(76) = 3.19, p = 0.002, £ = 0.38].
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Fig 5 suggests that this difference does not challenge the conclusions derived from our
main dependent variable, the causal judgments. As a simple regression analysis shows, P(C)
was not a significant predictor of the causal judgments in either group, which means that this
variable did not play a role in explaining the differences in the judgments: = .18, #(63) = 1.49,
p = .14 (Control group); B = .01, #(63) = 0.05, p = .96 (Low base-rate group). This contrasts
with Experiment 1, in which we found (at least in the Control group) a significant effect of P
(C), or cause-density bias, indicating that those participants with higher rates of responding
gave higher judgments. That is, in a high P(O) setting (Experiment 1), we found a cause-den-
sity bias, but it was absent in the low P(O) setting (Experiment 2). The finding that P(C) effects
do not appear when P(O) is low has been reported in the past, both in observational tasks [34]
and in active tasks like the one used in this article [20], and suggests that the outcome- and the
cue-density biases are not symmetrical. Rather, a high P(O) setting is needed in order to reli-
ably observe the cause-density bias. However, this conclusion again must be cautious because
here we were manipulating the base-rate via a pretraining phase, and therefore we lack the
optimal conditions to make a fair comparison (see the references for properly controlled tests
of this hypothesis).

Additionally, the trial-by-trial data were used to compute the predictions made by the AP
and the Power PC indexes (Table 5). As in Experiment 1, these indexes did not correlate with
the judgments (all ps > 0.123), suggesting again that causal judgments were not directly based
on the contingency information as computed by these two theories.

Evidential value questions. Finally, Fig 6 depicts the proportion of cells classified as "evi-
dence" in the evidential value questions. These data were analyzed by means of a GLM identi-
cal to that in Experiment 1. The model converged at AIC = 608.7. Only the effect of trial type
was significant (p = 0.014), although the main effect of Group was close to significance level
(p = 0.055), indicating that, overall, all cells were more likely treated as coincidence in the Con-
trol group than they were in the Low base-rate group. However, there was no interaction
(p = 0.557). See Table 6 for details. Post-hoc contrasts revealed that no trial type differed
between the two groups (all ps > 0.148). Type c trials tended to be the least likely to be catego-
rized as “evidence”, but this was significant only in comparison to b trials (p = 0.045), so this
does not seem a solid result.

General discussion

Previous research suggested that prior knowledge and expectations can greatly impact the out-
put of learning processes [14,16,36-38]. The present two experiments show that the expecta-
tion of a particular piece of information, the outcome base-rate, is able to modulate the
illusion of causality in a standard contingency learning task. When participants believed that
the outcome would appear with high base-rate (Experiment 1), then the illusion of causality
that is normally observed (and was indeed found in the Control group) was reduced. Con-
versely, when participants believed that the outcome would appear with a low base-rate
(Experiment 2), the illusion of causality became strong even in a situation (i.e., low probability
of the outcome) in which it is typically weak or unobserved [13,34].

In these two experiments, the pretraining phase can be seen as a way to induce expectations
and beliefs prior to the actual, standard contingency learning phase. The effect of prior knowl-
edge and beliefs on contingency learning has been studied in the past. Notably, people’s prior
knowledge has been shown to modulate contingency and causal learning. For instance,
although contiguity between cause and effect is one of the cues to infer causality, prior knowl-
edge about the potential causal mechanism can modulate it so that a noncontiguous stimulus
is perceived as causal [36]. A more systematic investigation about the interplay between prior
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Fig 5. Scatter plot depicting the relation between P(C) and causal judgments in the two groups of Experiment 2, including marginal densities. Note that the fitted
regression lines are relatively flat in both groups, suggesting that the two variables are not linearly related (see main text). Shaded areas represent 95% ClIs for the
regression slopes.

https://doi.org/10.1371/journal.pone.0212615.9005

knowledge and contingency learning was reported by Fugelsang and Thompson [16]. In three
causal learning experiments, these authors manipulated two factors, (a) the plausibility of the
potential causes prior to the experiment (e.g., eating a food item is a plausible causal candidate
of allergic reactions, while doing homework is not), and (b) the actual contingency between
the potential causes and the outcomes. They found, in line with White’s [39] previous observa-
tions, that the participants’ judgments were more likely based on the contingency when the
causal candidate was plausible than when it was implausible. That is, pre-existing beliefs were
able to modulate the extent to which contingency was used in the participants’ judgments. The
novelty of our experiments with respect to previous ones is that the prior beliefs concerned a
very specific attribute of the causal learning situation, namely, the expected outcome base-rate.
This attribute was also easily manipulated during the experimental session, by means of a pre-
training phase. We used a completely unusual cover story (aliens, mutations) to alleviate any
pre-existing bias caused by prior knowledge external to the experiment. Although some previ-
ous works investigated manipulations of base-rate, most of them were designed to produce

Table 5. Indexes obtained for the two models, AP and Power PC, computed from the actual training data in Experiment 2. The models cannot be computed for
some participants (due to division by zero errors), so these cases are removed.

Control group Low Base-rate group
Model n M SD 95% CI n M SD 95% CI
AP 64 -0.02 0.21 | [-0.07, 0.04] 62 0.01 0.17 | [-0.03, 0.06]
Power PC 62 -0.03 0.24 | [-0.09, 0.03] 61 0.004 0.21 | [-0.05, 0.06]

https://doi.org/10.1371/journal.pone.0212615.t005
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different predictions from two popular competing models, namely AP and Power PC [18], so
they do not allow to investigate the effect of base-rate manipulations on the causal illusions,
which implies using null contingencies. Note that in our experiments both models produce
similar predictions (see the Results sections above).
It is worth commenting the overall deviance of the current pattern of results with respect to
the most common standard indexes of contingency. Our analyses showed that people’s judg-
ments of causality do not conform to the predictions of the AP model or the Power PC model.
The same conclusions were found when we computed the predictions by these models from

Table 6. Evidential value questions in Experiment 2: Marginal estimated means (logit scale).

Group Trial Type Marginal estimated mean 95% CI

Control a -1.068 [-1.712, -0.424]
b -0.830 [-1.442, -0.197]
c -2.173 [-2.999, -1.347]
d -1.246 [-1.910, -0.583]

Low base-rate a -0.830 [-1.452, -0.207]
b -0.306 [-0.902, 0.290]
[ -1.078 [-1.721, -0.434]
d -0.450 [-1.051, 0.150]

https://doi.org/10.1371/journal.pone.0212615.1006
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the conditional probability questions (i.e., “perceived contingency”) and from the actual trial-
by-trial data (i.e., “actual contingency”). Our participants seem to use information in a way
that is not directly captured by these two models.

Next, we describe several ways in which the results of our two experiments might be
accounted for. As we will argue, all the following explanations offer partial or imperfect fit to
our findings, but the last one in being discussed is flexible enough to account for the whole set
of results.

First, we will discuss the associative learning account, which has been traditionally pro-
posed as a suitable general framework for causal learning. Most associative models assume
that, during the whole learning session, the context plays a role as a potential alternative cause
that stays in the background. This means, among other implications, that (a) whenever the
potential cause is not present, the outcome occurrence can be attributed solely to the context,
and (b) the context can compete with the potential cause in predicting the outcome. From this
perspective, our pretraining phases, in which the target potential cause (i.e., mutagenic agent)
was not presented, can be understood as contextual training phases. In Experiment 1, this
means that, by the end of the pretraining phase, the context would have acquired some excit-
atory associative strength, as it has been repeatedly paired with the outcome (70% of the trials).
Then, during the subsequent training phase, the context would have been a relatively strong
competitor of the target cue, leading to lower causal judgments in the pretrained group than in
the Control group. That is, the context, given its previous association with the outcome, could
block further learning about the target potential cause [40]. Thus, blocking is a commonly
observed learning phenomenon, predicted by the associative theory, that can easily explain
what happened in Experiment 1. However, it is more difficult to apply the same explanation to
Experiment 2, in which the pretraining phase took place with a low base-rate schedule, and the
result was in the opposite direction to Experiment 1 (i.e., previous contextual training led to
higher, not lower, causal judgments for the target cause). In principle, and without additional
assumptions, the associative theory would predict a weaker blocking effect (or no blocking
effect whatsoever) in Experiment 2, but not the opposite result (stronger judgments in the pre-
trained group).

Additionally, certain associative theories propose that the learning rate parameters of the
potential causes (i.e., associability, or salience) can change as a result of previous learning or
exposure to the stimuli [41,42]. Thus, the pretraining phase in Experiment 1 (high outcome
base-rate), in which the context is repeatedly paired with the outcome, could gradually increase
the attention to the context, as in Mackintosh’s theory [41], which in turn could reduce further
learning about the potential cause during the training phase. However, again, this argument
cannot be directly applied to Experiment 2 to explain the results in the opposite direction (at
least without making additional assumptions): why should pretraining the context with low
outcome base-rate lead to stronger, not weaker, association with the potential cause, as com-
pared with a Control group with no pretraining at all? In sum, the two associative accounts dis-
cussed here cannot completely explain the results of both Experiments 1 and 2, at least without
making additional assumptions.

The rest of the potential explanations of our results are not based on associative theories,
but on the computational constraints of the rules that could be applied to judge causality by
combining different pieces of information (e.g., the AP and similar rules). One potential expla-
nation is that the sensitivity of the causal judgments to the base-rate manipulation could be
due to a difference in the perception of the conditional probabilities of the outcome (given the
cause and the absence of the cause), the two pieces of information that are contrasted in the AP
rule (Eq 1). Note that the pretraining phase represents, in fact, additional exposure to the prob-
ability of the outcome given the absence of the cause, P(O|~C), i.e., the outcome-base rate.
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Thus, the difference in the judgments could be due to participants in the experimental groups
in both experiments having extra experience with one of the two conditional probabilities
involved in the computation of contingency, and therefore higher chances of capturing this
information accurately. However, this explanation seems to fall short to reproduce our results,
given that we collected conditional probability judgments, and they were accurate in capturing
the actual contingencies: in all conditions of both experiments, these judgments were close to
the actual programmed values of these probabilities, irrespective of the amount of experience
with each piece of information (see Tables 1 and 3). It seems that conditional probabilities
were accurately estimated, whereas causal judgments were biased. This is in line with some
theories proposing that biases emerge at the moment of combining the acquired information
to make the judgment, rather than during the encoding/learning process [30,43]. Nonetheless,
one must bear in mind that, in our experiments, these conditional probability judgments were
requested after the causal and confidence judgments, which could have contaminated the
result.

A closely related possibility to partly explain the results is based on the cause-density bias
that we mentioned above: the higher the P(C) (i.e., the more cause-present trials a participant
is exposed to), the stronger the overestimation of null contingency [30,35]. In fact, if pretrained
participants somehow merged the two phases (pretraining and training), despite being sepa-
rated by several screens including a judgment and further instructions, they would indeed be
experiencing a larger amount of cue-absent trials (cells ¢ and d in Fig 1) than those participants
in the control groups, and this might bias contingency estimations. Crucially, the cause-den-
sity bias could explain the results of Experiment 1 (higher judgments in the group with more
exposure to cause-present trials), but not those of Experiment 2 which show the opposite
pattern.

Additionally, recall that we computed the amount of cause-present trials during the training
phase, or P(C). Since participants were free to use the mutagenic agent (i.e., introduce the tar-
get cause) as often as they wished, if there were systematic differences between groups in the
amount of cause-present trials during the training phase, these could still explain the results.
We showed that this was not the case. In both experiments, the groups without pretraining
showed the expected behavior concerning this variable: in Experiment 1 (high probability of
the outcome), there was a positive correlation between P(C) and judgments (i.e., a cause-den-
sity effect), while in Experiment 2 (low probability of the outcome), this correlation was absent,
as we found in previous studies [20] [34]. Moreover, in the pretrained groups, we found no
correlation between P(C) and judgments in either experiment, which suggests that the final
causal judgment seems to be affected directly by our expectation manipulation rather than by
other factors that are introduced later during the training phase, like the number of cause-
present trials. This is also in line with the abovementioned accuracy of the answers given to the
conditional probability questions in all groups: biases in the causal judgments appear to be
dependent on assumptions made before the training phase starts.

A further possibility to explain the results concerns the plausibility of the causal candidate.
As we discussed above, several studies have tried to identify the conditions that determine
when the contingency is relevant for causal judgment [16,39], concluding that contingency
information can be sometimes overridden by other cues. One of the factors that matter is the a
priori plausibility of the causal relationship (e.g., eating a food item is a more plausible cause of
allergy than is doing homework): previous research suggests that, in the extreme case, if the
plausibility is low, participants can ignore the contingency data. In our Experiment 1, the high
base-rate pretraining could have promoted the belief that additional, hidden, causes were oper-
ating. Then, if hidden causes seem a plausible causal candidate, participants might discount to
some extent the role of the target cause, by virtue of the so-called “logic of exoneration” that is
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characteristic of most rational accounts of causal reasoning [44]. That is, if one potential cause
or hypothesis increases its plausibility, the rest of potential hypotheses are reduced accordingly.
Therefore, the judgment would be reflecting a priori plausibility of the target cause rather than
the actual experience acquired during the training phase. In line with this idea, some computa-
tional models of causal inference [45] propose that people bias their causal learning processes
by making a priori assumptions that are related to the plausibility of potential alternative
causes. For example, it has been proposed that people display a preference for simple models
(i.e., as few causal candidates as possible) with either very strong or null causal effects. This
assumption has been described as a “strong and sparse prior” [45]. According to this assump-
tion, one can predict that, when a hidden cause is repeatedly predicting the outcome (i.e., pre-
training phase in Experiment 1), people assume that it is unlikely that other causes could also
produce the outcome (i.e., they do not tend to consider additional causes if unnecessary),
which explains why they are reluctant to give high judgments to the target cause. In Experi-
ment 2, we can apply the same logic: in the pre-training phase, the hidden causes seem to pro-
duce little effect (i.e., there are few outcome occurrences), and therefore people are willing to
accept that other causes can play a role, in contrast with Experiment 1. However, this rationale
is insufficient to explain why participants in the Low base-rate group gave higher, not equal,
judgments to the target cause, compared to the Control group without pretraining. Therefore,
the explanations based on a priori assumptions about plausibility or simplicity cannot
completely account for the results of the two experiments.

Finally, we describe a last explanation that seems suitable for the whole set of results that we
have reported here. This explanation is based on the popular assumption that the different
pieces of information that are combined to produce a causal judgment are given different
degrees of evidential value, or subjective weights. Trial-weighting mechanisms have been pro-
posed to underlie many deviations of contingency judgments from the normative contingency
values as given by the AP index [46-48], which has given birth to weighted versions of the AP
rule that include a weight parameter for each trial type. Additionally, many other theoretical
models of contingency learning can be adapted to feature trial-weighting mechanisms. For
instance, the Rescorla-Wagner model [49] can instantiate such mechanism by including differ-
ent values for their two free parameters, alpha and beta [34].

Typically, the rank of subjective trial weights that has been documented in the literature is a
> b > ¢ > d[29,50-52], which would only explain the results of those conditions in which we
found an illusion of causality (i.e., Control group in Experiment 1, low base-rate in Experiment
2). To account for all the results presented here, the trial weights ranks should be different for
each condition. In particular, what we need to assume is that the prevalence of type c trials in
the pretraining phase of Experiment 1 should reduce the influence of outcome-present trials
(i.e., a and c) relative to outcome-absent trials (b and d) in the subsequent training phase.
Applying the same rationale, the inverse result would be found in Experiment 2: the low pro-
portion of type c cells in the pretraining phase could increase the weight of subsequent out-
come-present trials relative to outcome-absent trials when making the judgment. Are there
any extant models endowed with the capacity to make these predictions?

In this regard, associative models such as Rescorla-Wagner [49] offer additional flexibility
over non-associative or rule-based models [47] because the weights are determined by the
combination of their four free parameters (alpha and beta of the cue, the outcome and the con-
text), and additionally because these parameters can change as a result of previous experience
[41,42]. However, some have pointed out that arbitrary changes in the associability parameters
are not justified between conditions in which the same materials and cover story have been
used [53,54], which somewhat limits this flexibility. Importantly, no previous theory has pro-
posed explicitly that the weights are dependent on prior knowledge about outcome-base rates.
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Rather, these weights tend to be considered as fixed or stable, despite evidence that some
manipulations (e.g., goal-driven reasoning) can overcome the habitual neglect of d cells [55].

However, a rational analysis of the informativeness of each trial type offer predictions that
actually align with our results. MacKenzie and Mikkelsen [17] provided such analysis, accord-
ing to which, if certain assumptions are met, some types of trials are more informative than
others when judging potential causal relations. If the stimuli involved in the task (i.e., the
potential cause and the outcome) are assumed to occur with low probability, then their joint
occurrence (trials a) should be given the most weight, while their joint absence (trials d) should
be treated as the least important, with trials b and ¢ falling in between. That is, assuming rarity
of the cause and outcome, the mentioned trial weight rank a > b > ¢ > d is normatively cor-
rect. This would be the case of our Experiment 2, in which we pretrained participants to
believe that the outcome was a rare event, and then the illusion of causality appeared. On the
other hand, we can apply the same logic in the opposite direction. Assuming that the cause
and the outcome would occur very frequently would lead participants to a different trial weight
rank in which type a trials are less prominent. This would explain the results of our Experi-
ment 1, in which pretraining in a high outcome base-rate background led to lower illusion of
causality. Thus, the prediction from a rational account of information usage [17] fits well with
our two experiments simultaneously, in contrast with the rest of the accounts that we have
described, which offer only partial solutions.

So far, we have focused on our main dependent variable, causal judgments. The results con-
cerning our evidential value questions were not completely clear, although they are partially in
line with the causal judgments, and thus deserve a comment in this section. These questions
were intended as a rather direct measure of the subjective evidential value granted to each trial
type (i.e., the trial weights that we mentioned in the previous paragraph). In Experiment 1, the
Control group was exposed to the typical conditions in which the causal illusion appears (i.e.,
high probability of the outcome) [13,34]. Thus, we would expect that in this group the most
important trials would be those that support the causal relation, that is, a and d, and this is
what we found, although the results were not significant (only c trials were consistently catego-
rized as “coincidence”). To be consistent with causal judgments, in the High base-rate group
we would expect that g and d trials should be less important than in the Control group. Our
data show that all but b trials were significantly categorized as “coincidence” in the High base-
rate group. Then again, this could not be confirmed because the results of the omnibus analy-
ses were nonsignificant. In Experiment 2, the effects of trial type and group were significant
(the latter only marginally, though). The ordered rank of trial types was consistent between
groups, indicating a prevalence of type b and d trials (or, more clearly, a tendency to treat c tri-
als as “coincidence” more often than the rest of trials). However, we found no significant dif-
ferences between trial types (except for b vs. ¢), so we refrain from drawing conclusions. When
interpreting the evidential value answers, one must keep in mind that the amount of trials of
each type was different for each experiment and also for each participant, given that they were
free to choose when to use the cause. This different exposure to the trial types could have influ-
enced the subsequent measure. In addition, since the evidential value questions were not
planned as our main dependent variable, they were collected with exploratory aims at the end
of the session. Therefore, they could have also been contaminated by the previous tasks.
Finally, as they were collected as a binary response, they seem not to be sensitive enough to be
informative in this design. In sum, this variable yielded no conclusive results. Further studies
could consider assessing the relative importance of each trial type with more sensitive mea-
sures (e.g., ratings) instead of dichotomous responses, while trying to control for extraneous
variables.

PLOS ONE | https://doi.org/10.1371/journal.pone.0212615 March 5,2019 20/25


https://doi.org/10.1371/journal.pone.0212615

@ PLOS | 0 N E Outcome base-rate expectations

Another limitation of our studies can in fact be applied to the vast majority of contingency-
learning experiments. In this standard procedure, causes and effects are binary (either they
occur or they do not), and time is discretized into trials. Thus, participants can only observe
whether there is a joint occurrence of the potential cause and the outcome within a given trial
(i.e., a particular moment in time). There is no possibility, hence, to observe the temporal
dynamics of causality. For example, it could be that the mutagenic agent actually works to pro-
duce the mutation, but it needs some time before the effect is observed, and therefore we
observe a seemingly null contingency. Making this type of assumptions can also distort the
way base-rates are interpreted [56]. For example, observing a long period of time in which
nothing happens (i.e., cells 4) might induce the expectation of a very low base-rate of all events.
Currently, we have no way to gain insight into this question without using a completely differ-
ent procedure that actually involves time.

Conclusions

To sum up, we have reported two experiments in which the outcome base-rate expectations
were successfully manipulated in opposite directions (Experiment 1 vs. Experiment 2). These
expectations led to a modulation of the causal illusion in the causal judgments that is compati-
ble with a rational account of cell information usage [17] that translates to differential weight-
ing of the four trial types when estimating causality. Further research should disentangle the
role of cell-weighting mechanisms in the causal illusion.

The contribution of our experiments is not only to advance in our understanding of the
basic cognitive processes involved in causal judgment. Rather, they can provide insight to
develop certain applications. Previous research has proposed that causal illusions such as those
reported here entail both good and bad consequences for people [57]. On the one hand, the
causal illusion could underlie many every-day irrational beliefs, attitudes and behaviors: pseu-
domedicine usage, paranormal beliefs, pathological gambling, and superstitions [2,7,58-60].
These practices can even be dangerous (e.g., when one person resorts to a pseudomedicine,
abandoning a valid treatment). On the other hand, certain types of biases, including the causal
illusion, seem to be associated to optimism and positive attitude: for example, causal illusions
are apparently weaker in depressed people [61,62], although see [63,64]. Therefore, it would be
desirable to design ways to bring the causal illusion under our control, to prevent it when it
leads to harmful behaviors [65], and to promote it when it fosters wellbeing [66]. In this regard,
our two experiments illustrate a means to either prevent causal illusions (Experiment 1) or to
enhance them (Experiment 2) by shaping the assumptions that people make before collecting
the contingency information. That is, one potential application of Experiment 1 to prevent
pseudomedicine usage would be to show that certain health conditions (precisely those that
are frequently treated with pseudomedicine, such as homeopathy) possess, in fact, a large
chance of spontaneous remission (e.g., back pain, headache). In other words, they have a high
outcome base-rate. Thus, when one patient knows that the remission base-rate is high without
taking any treatment, and decides later to try a pseudomedicine, he/she would be less likely to
develop a misleading causal illusion, just as our participants in Experiment 1. Conversely, the
rationale of Experiment 2 can be used to take advantage of base-rate knowledge in those situa-
tions in which a causal illusion is positive. For example, it could be applied to the academic
context to strengthen self-confidence in students who aim to get difficult-to-obtain or unlikely
outcomes (e.g., prizes and other indicators of academic success): if they are first aware of the
low base-rate of these events, they will more likely attribute their occurrence to their efforts
and actions when they eventually experience such events (as in Experiment 2).
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