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STING, the Endoplasmic Reticulum,
and Mitochondria: Is Three a Crowd
or a Conversation?
Judith A. Smith*

Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States

The anti-viral pattern recognition receptor STING and its partnering cytosolic DNA sensor
cGAS have been increasingly recognized to respond to self DNA in multiple pathologic
settings including cancer and autoimmune disease. Endogenous DNA sources that
trigger STING include damaged nuclear DNA in micronuclei and mitochondrial DNA
(mtDNA). STING resides in the endoplasmic reticulum (ER), and particularly in the ER-
mitochondria associated membranes. This unique location renders STING well poised to
respond to intracellular organelle stress. Whereas the pathways linking mtDNA and STING
have been addressed recently, the mechanisms governing ER stress and STING
interaction remain more opaque. The ER and mitochondria share a close anatomic and
functional relationship, with mutual production of, and inter-organelle communication via
calcium and reactive oxygen species (ROS). This interdependent relationship has potential
to both generate the essential ligands for STING activation and to regulate its activity.
Herein, we review the interactions between STING and mitochondria, STING and ER, ER
and mitochondria (vis-à-vis calcium and ROS), and the evidence for 3-
way communication.

Keywords: STING, cGAS, mitochondria, endoplasmic reticulum, unfolded protein response, reactive
oxygen species
INTRODUCTION

Nature has a dramatic capacity for repurposing. The same pattern recognition receptors (PRRs) that
recognize pathogen-associated molecular patterns (PAMPs) on invaders such as bacteria and
viruses also respond to endogenous products, particularly those generated during tissue damage
(damage associated molecular patterns or DAMPs (1)). For example, Toll Like Receptor 4 (TLR4)
not only recognizes bacterial cell wall lipopolysaccharide, but also responds to components of the
extracellular matrix such as fibrinogen and fibronectin that are released during infectious and
immune damage (2, 3). Not all endogenous PRR stimuli are from infection-mediated tissue damage,
as PRRs are also involved in normal physiologic function. For instance, TLRs direct development
and cell fate in Drosophila, C. elegans and mice (4). In the brain, TLRs modulate neuronal
connectivity and function (5). “Sterile” PRR engagement also drives pathology: In autoimmune
disease (e.g. lupus), nucleotide-activated receptors such as TLR7 (RNA) and TLR9 (DNA) respond
to material released from apoptotic cells, regulating inflammation in a cell-specific manner (6, 7).
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Most PRRs, such as TLRs, C-lectin type receptors, Retinoic acid-
inducible gene I (RIG-I) like receptors, inflammasomes and
Nod-like Receptors (NLRs), reside on the plasma membrane,
within endosomes or within the cytosol. These locations prime
PRRs to respond to both pathogen and endogenous products in
the extracellular space or cytosol. In contrast, Stimulator of
Interferon Gene (STING) resides in the endoplasmic reticulum
(ER), particularly in ER-mitochondrial appositions, with its
triggering face to the cytosol (8). This unique location is not
only useful for detecting cytosolic invaders; the organelle
associations position STING to respond to alarm signals
generated by the mitochondria and ER. Interestingly, the multi-
molecular inflammation generating machinery triggered by RIG-I
family PRRs and inflammasomes, including the lynchpin
mitochondrial anti-viral signaling protein (MAVS) aggregates at
the mitochondria (9); The MAVS C-terminal transmembrane
domain inserts in the outer mitochondrial membrane where it
nucleates the formation of filamentous signaling platforms (10,
11). Involvement of, and crosstalk between these organelles may
critically contribute to PRR signaling by increasing signal
amplitude and providing further context (intracellular stress). In
this review, we will focus on the crosstalk between STING, ER and
mitochondria. Although many previous lines of inquiry have
focused on dyads in this triangle (Figure 1, conceptual
framework for this review), we posit that DAMP-stimulated
STING signaling may reflect three-way communication between
these organelles and STING.
Frontiers in Immunology | www.frontiersin.org 2
THE KEY PLAYERS: CGAS AND STING

Viruses depend exclusively upon host building blocks and
machinery to produce the RNA and DNA strands that encode
their genomes. During some portion of their lifecycle (e.g.
uncoating, creating progeny), viral genomic nucleic acid will be
present in the host cytosol. Thus, sensors of cytosolic nucleic acids
such as STING constitute a vital defense that has been in place
across 600million years of evolution (12, 13). STING directly binds
cyclic-di-nucleotides (CDNs). STING also “senses” cytosolic
dsDNA indirectly via its “partner” in detection, cyclic-GMP-
AMP (cGAMP) synthase (cGAS); upon binding dsDNA, cGAS
generates endogenous cyclic-di-nucleotides that serve as the actual
STING ligands. Although multiple molecules may detect cytosolic
dsDNA in addition to cGAS (e.g. Gamma interferon inducible
protein 16 (IFI16), Dead box helicase 41 (DDX41)), cGAS is the
primary dsDNA-sensor required for STING activation by dsDNA
(14, 15). The role of these other sensors remains unclear, though
IFI16 promotes cGAS activation and enhances STING
phosphorylation, translocation, and Tank binding kinase 1
(TBK1) recruitment (16, 17). DDX41 may promote IFN-induced
cGAS expression (18). cGAS senses cytosolic DNA, but in the
resting state in macrophages and other cell types, the vast majority
of cGAS resides inside the nucleus, sequestered by chromatin (19–
21). One study from Barnett et al. also placed cGAS at the plasma
membrane via an N-terminal phosphoinositide interaction; the
basis for this discrepancy with the other studies is not clear (22).
FIGURE 1 | STING stimulation by stressed organelles: an interactive triad. STING plays a critical role in preserving health but also mediates disease, even in the
absence of infectious triggers. Mitochondrial DNA (red lines) has recently emerged as a trigger of STING activation. The endogenous ligand mediating the ER-STING
reciprocal relationship is not clear. The endoplasmic reticulum (ER) and mitochondria share a very close anatomic and functional relationship, and together modulate
homeostatic and pathologic levels of intracellular calcium (Ca2+) and reactive oxygen species (ROS). This relationship may generate the “missing ligand” for ER
stress-mediated STING activation via mitochondrial DNA release.
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Recent cryo-electron microscopy structural data has elucidated the
inhibitory relationship between chromatin and cGAS that prevents
self-recognition: an acidic patch on the nucleosome histone H2A-
H2B heterodimer occupies the dsDNA binding site, preventing
cGAS activation and dimerization (23–27). This new information
begs the question of how nuclear cGAS responds to pathogenic
challenges, as described in the setting of HIV2 recognition (28).
Perhaps nuclear proteins such as non-POU domain-containing
octamer-binding protein (NONO) extract cGAS from the
nucleosomes during infection to enable response to nucleus-
located viruses. The mechanism by which nuclear cGAS access
cytosolic dsDNA is equallymysterious. Clarification of this process
awaits further study.

cGAS recognizes dsDNA at least 45nt in length, retrovirus-
transcribed cDNA and Y-form DNA with an overhanging stretch
of guanines (29–31). Retroviral triggers of cGAS include both
pathogen-derived nucleic acid and potentially endogenous
retroviruses (30, 32). cGAS directly binds the DNA deoxyribose
sugar phosphate backbone, explaining the sequence-independence
of recognition (33). DsDNA recognition is both length and
concentration dependent, requiring a size ~1 kb at more
physiologic levels (31). DsDNA-bound cGAS forms liquid-phase
like droplets, potentially increasing local DNA concentration and
valency (34). The formation of two by two structures (2 strands of
DNA, 2 cGAS molecules) induces a conformational change in
cGAS, which activates its nucleotidyl-transferase enzymatic
activity (35). Using ATP and GTP as initial substrates, cGAS
catalyzes the production of an asymmetric cyclic-di-nucleotide
product with a 2’-5’ phosphodiester bond between the 2’ hydroxyl
of GMP and 5’ phosphate of AMP, and a 3’-5’ phosphodiester
bond linking the 3- hydroxyl of AMP back to the 5’ phosphate of
GMP, referred to as 2’3’-cGAMP (36, 37). STING also binds the
bacterial second messenger cyclic-di-GMP, which was the first
identified ligand for STING, cyclic-di-AMP produced by Gram-
positive bacteria such as Staphylococcus and Listeria, and bacterial
origin 3’3’-cGAMP (38–40). Interestingly, the affinity of STING
for bacterial products is much lower (>1–2 logs) than the
endogenously generated 2’3’-cGAMP, suggesting an anti-viral
evolutionary priority (37, 41, 42). Another possibility is that
bacteria serendipitously coopted STING’s CDN-binding capacity
to enhance type I interferon (IFN) production by the host cells,
which benefits multiple bacterial species (13, 43, 44).

In its inactive state, the STING molecule, which has 4
membrane-spanning helices, resides in the ER plasma membrane
as a dimer, with its v-like CDN binding domain facing the cytosol
(45). Upon binding cGAMP, STING undergoes a conformational
change that enables a lid-like 4-pass beta sheet toflopdownover the
CDN binding site in a “closed” position, and rotates the cytosolic
portion 180 degrees. This rotation allows for higher order STING
oligomerization and lateral stacking (46–48). CDNs such as cyclic-
di-GMP stabilize STING in a more open position vs. cGAMP,
perhaps explaining their lower affinity and activity (41, 49). Inmost
vertebrates, with few exceptions, this lid also contains a flexible
extended random coil C-terminal tail (CTT, amino acids 341–379
in humans) that has binding sites for TBK1 family kinases (TBK1
and Inhibitor of nuclear factor kappa B kinase (IKK)e) (50). Some
Frontiers in Immunology | www.frontiersin.org 3
TBK1 associates constitutively with STING dimers, but the TBK1
dimer’s kinase domains face away from each other, preventing cis-
phosphorylation (51). The higher order structures promote TBK1
trans-phosphorylation and activation. STING phosphorylation on
Thr376 enhances TBK1 association ~20-fold (47). TBK1 also
phosphorylates STING on Ser365/366 (mouse/human), forming
abinding site for the interferon-regulatory transcription factor IRF3
(52). TBK1phosphorylates IRF3, enabling the dimerization of IRF3
required for nuclear entry (53). The kinase domain of STING-
attached TBK1 cannot access the cis-IRF3 molecule and thus relies
on the close proximity of otherTBK1molecules to accomplish IRF3
activation (51). Changes in STING localization appear to be very
important for specific activation steps in the TBK1-IRF3 signaling
pathway. Following CDNbinding, STING transits via the ERGolgi
intermediate compartment (ERGIC) to the Golgi in a Coat protein
complex II (COPII), Sar1 GTPase, ADP ribosylation factor (Arf1)-
dependentmanner (54, 55). Blocking this transitionwithagents like
Brefeldin A, or the Shigella flexneri IpaJ protein prevents TBK1
association and phosphorylation (55, 56). Activated TBK1-STING
then clusters together in peri-nuclear punctae where IRF3 is
phosphorylated in multi-molecular “signalosome” complexes.
These multi-molecular complexes also result in the activation of
nuclear factor kappa-B (NF-kB), which then cooperates with IRF3
to induce the prototypic IFN gene IFNB1 and promotes pro-
inflammatory cytokine transcription. For a summary of cGAS-
STING activation, see Figure 2.

STING is most widely known for IFN stimulation, and
secondarily pro-inflammatory cytokine stimulation via NF-kB.
However, STING triggers multiple signaling cascades: STING
activates MAP kinase signaling, STAT6, inflammasomes (e.g.
NLR family pyrin domain containing 3 (NLRP3)), autophagy
and apoptosis (57–62). STING also suppresses translation,
inhibiting viral infection, independently of eukaryotic initiation
factor 2a (63). The detailed mechanisms by which STING initiates
these different functions remain to be elucidated. Consider NF-kB
activation for example: multiple reports document the necessity of
the CTT and TBK1 for NF-kB activation (50, 58, 64). TBK1 does
appear to be critical for IRF3 activation, an observation that has
borne up over time. However, in myeloid cells, either TBK1 or
IKKe can mediate NF-kB activation (50). TBK1 or IKKe activates
Mitogen-activated protein kinase kinase kinase 7 (TAK1) and thus
inhibitor of nuclear factor kappa-B kinase subunit (IKKb/IKKa),
resulting in inhibitor of kB (IkB) phosphorylation, IkB
proteasomal degradation and nuclear factor kappa B (NF-kB)
nuclear translocation (58). In myeloid cells, STING-dependent
NF-kB activation did not require Tumor necrosis factor associated
factor 6 (TRAF6). An alternatively spliced form of STING lacking
the CTT, designated as MITA-related protein (MRP), functions as
a dominant negative of IFN production yet activates NF-kB
signaling independently of TBK1 (65). In the setting of
genotoxic DNA damage, STING activates NF-kB independently
of cGAS (and cGAMP) via association with p53, TRAF6, and
IFIT16 (66). The zebrafish STING CTT contains an extra tail-end
module that enhances NF-kB activation through increased
recruitment of TRAF6 (67). In zebrafish, TRAF6 was essential
for both NF-kB and IRF3 activity. Interestingly, TBK1 deletion in
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zebrafish only decreased IFN production by ~60% and NF-kB not
at all, suggesting some flexibility and substitution capacity in
STING modular functional domains. Together, these studies
support context-dependent requirements for TBK1-family
kinases and specific NF-kB activating pathways.

Evolution poses other questions regarding primordial STING
function and NF-kB activation. Recognizable STING and cGAS
orthologs are present in unicellular choanoflagellates, pre-dating
NF-kB (68). Nematostella vectensis, a sea anemone that diverged
from human ancestors >500 million years ago, possesses a STING
molecule with only ~29% aa identity to human STING, but
virtually an identical crystal structure to the STING core (12).
Interestingly, the Mab-21 domain containing nucleotidyl-
transferases such as cGAS date back as far as STING, but the
Nematostella homologue makes 3’3’-cGAMP, not 3’2’-cGAMP
(12).Nematostella cGAS also lacks the zinc-binding region present
in vertebrates that is required for dsDNA binding. TBK1 and NF-
kB also date back to Nematostella, but the CTT only developed in
vertebrates, so it is not clear if primordial (pre-CTT) STING
stimulates NF-kB in a TBK1-dependent manner (13). Thus, even
though all the components were present early in evolution, their
interactions and scope of activity remain a mystery.

The mechanisms by which STING induces autophagy are also
not entirely clear. It has been proposed that the STING coremoiety
(lacking the CTT) contains a primordial autophagy function: In
reconstitution experiments in HEK293 cells, the STING core was
sufficient for initiating autophagyupon stimulationwith exogenous
cGAMP. Further, this core autophagy function exerted anti-viral
activity – particularly against DNA virus such as Herpes Simplex
Frontiers in Immunology | www.frontiersin.org 4
Virus 1 (HSV1), but not the RNA virus Sendai virus (SeV). In this
report, upon transit to the Golgi, the CTT-deleted STING core
initiatedMicrotubule-associated protein 1A/1B-light chain 3 (LC3)
lipidation through a non-canonical mechanism involving WD
repeat domain phosphoinositide-interacting protein 2 (WIPI2)
and Autophagy related 5 (Atg5), but not Unc-51 Like Autophagy
Activating Kinase 1 (ULK1) and the Vacuolar protein sorting 34
(VPS34) complex. Although Mammalian target of rapamycin
(mTOR) regulates autophagy, STING did not dephosphorylate or
inhibit mTOR (54). However, in a recent report examining S365A
andCTT deletionmutants inmice, HSV-1 viral resistance was IFN
independent, but required the CTT and TBK1 for both autophagy
and viral resistance. S365 phosphorylation was also important for
enhancing NF-kB activation in macrophages (64). Multiple
components of the cGAS-STING activation cascade interact with
autophagy relatedmolecules andpathways:TBK1hasbeennoted to
activate mitophagy via phosphorylation of Calcium Binding And
Coiled-Coil Domain 2 (NDP52), p62, TAX1BP1 and optineurin
(69). Following translocation to the Golgi, STING co-localizes with
p62, LC3 and Atg9a (59). cGAS may also participate in autophagy
induction independently of STING: cGAS binds Beclin1, releasing
Run domain Beclin-1 interacting and cysteine-rich containing
(RUBICON, a potent negative regulator of autophagy) thus
stimulating autophagy (70). In summary, multiple signaling
routes link STING-cGAS signaling with autophagy, and
activation of any particular pathway(s), or dependence upon
specific STING moieties, may be context-dependent.

STING also stimulates apoptosis and cell death via multiple
mechanisms (71). During “intrinsic” apoptosis, mitochondria
FIGURE 2 | cGAS and STING activation. Cytosolic dsDNA from viruses, mitochondria or nucleoids formed during nuclear breakdown bind cGAS, triggering its catalytic
formation of 2’3’ cGAMP. 2’3’ cGAMP serves as a ligand for STING, which resides in the ER with its ligand binding domain (LBD) facing the cytosol. TM=transmembrane
domain. Bacterial cyclic-di-nucleotides, such as cyclic-di-AMP, cyclic-di-GMP and 3’3’ cGAMP also bind STING. Upon ligand binding, the cytosolic domains of STING close
over the di-nucleotide ligand and rotate 180 degrees, enabling lateral stacking. STING translocates to the Golgi where it oligomerizes. This oligomerization enhances trans-
phosphorylation of the STING CTT (C terminal tail)-associated TBK1 family kinases. TBK1 has a scaffold and dimerization domain (SDD), ubiquitin like domain (Ub) and
Kinase domain (KD). Activated TBK1 phosphorylates the STING CTT, enabling recruitment and subsequent phosphorylation of IRF3. TBK1 family kinases also activate
signaling pathways leading to NF-kB nuclear translocation. STING activation has diverse immune stimulatory outputs including pro-inflammatory cytokine responses
(via NF-kB), interferon responses (via IRF3), apoptosis and autophagy. STING/TBK1 structural cartoon adapted from (51).
January 2021 | Volume 11 | Article 611347
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form Bcl2 Associated X (BAX)/Bcl2 antagonist killer 1 (BAK)-
dependent micropores, resulting in mitochondrial outer
membrane permeabilization, release of cytochrome c, and
caspase activation (72). BAX/BAK macropores subsequently
enable herniation of inner mitochondrial membranes and
extrusion of mitochondrial DNA (mtDNA) (73). STING
promotes phosphorylation of receptor-interacting protein
kinase 3 (RIP3), which activates p53 upregulated modulator of
apoptosis (PUMA, another pro-apoptotic Bcl2 family member),
leading to mitochondrial outer membrane permeabilization (74).
IRF3 and p53 also coordinately upregulate PUMA and Noxa
(60). Moreover, activated IRF3 binds BAX directly via its BH3
domain, stimulating apoptosis (75). STING activation also leads
to mitochondria-induced apoptosis indirectly via ER stress and
its multiple pro-apoptotic programs (more on this connection
below and in (71)). When apoptosis is inhibited by infection or
genetically, STING-dependent type I IFN and TNF promote
regulated necrosis or “necroptosis” (76, 77). Depending upon
STING signaling strength and cell type, STING trafficking to
lysosomes following autophagy induction results in lysosomal
permeabilization and so called “lysosomal cell death” (61).
Lysosomal rupture induces potassium efflux, and secondary
NLRP3 activation, stimulating pyroptosis (61, 78). It should be
noted however, that STING-inflammasome cooperation does
not invariably increase pyroptosis (62).

Both cGAS and STING are subject to multiple types of
transcriptional and post-translational modifications and
regulation, reviewed extensively elsewhere (79–81), with a few
examples presented here. IFN increases cGAS and STING
expression, driving a positive feedback loop (18, 82). Both cGAS
and STING expression are suppressed by DNA methylation in
many tumors (83). PalmitoylationofSTING in theGolgi is essential
for its oligomerization and activity (84). cGAS can be inhibited by
ProteinKinase B (Akt) phosphorylation and glutamylation (TTLL4
andTTLL6) (85, 86).Complexubiquitinationcanactivateor inhibit
cGAS and STING by targeting them for degradation (79). The
autophagic flux stimulated by STING may facilitate its lysosomal
destruction post-stimulation in an ULK1-dependent manner (87).
The same pro-apoptotic caspases stimulated by cGAS-STING
operate to inhibit their activation: During intrinsic apoptosis,
initiator and effector caspases (Caspase 9 and Caspase 3) result in
cleavage of cGAS, STING and IRF3, thus limiting further STING
signaling (88, 89). Inflammasome processed caspase1 also cleaves
cGAS and inhibits its enzymatic activity following Gasdermin-D
dependent K+ influx (90, 91). Regulation of STING/cGAS activity
by ROS and calcium will be described below.
STING IN THE “STERILE” PATHOLOGY OF
DISEASE STATES

Although cGAS and STING are poised to respond to pathogens,
increasing evidence supports their critical role in a number of
“sterile” physiologic and pathologic conditions, including cancer,
heart disease, diabetes, neurodegenerative disease, lupus as well
as normal aging/cellular senescence (Figure 3) (92–98).
Frontiers in Immunology | www.frontiersin.org 5
For example, gain of function mutations in STING and
diminished nuclease activity lead to distinctive IFN-driven
autoinflammatory conditions such as STING Associated
Vasculopathy presenting in Infancy (SAVI) and Aicardi Goutieres
syndrome, respectively (93). Increased STING trafficking to the
Golgi (and sustained activation) results in autoimmunity in COPA
syndrome (99). Lupus patients show a strong type I IFN signature in
their peripheral blood, and a sub-group of lupus patients (~15%)
has elevated circulating cGAMP (100, 101). However some
autoimmune conditions dependent upon other PRRs may be
regulated by STING and worsen with STING deficiency (102,
103). In regards to cancer, STING essentially mediates the anti-
tumor effect of radiation (104). IFN promotes maturation and
antigen presentation by CD8a+ dendritic cells (DC) and thus
priming and activation of tumor infiltrating CD8 T cells and
Natural Killer (NK) cells (49, 105). Related to these consequences
of STING activation, STING agonists have shown promise as anti-
cancer therapeutic agents (106). On the other hand, STING can
promote toleragenic responses via Indoleamine-pyrrole 2,3-
dioxygenase (IDO), especially with low antigenicity tumors, and
induce the T cell exhaustion stimulus Programmed death ligand 1
(PDL1) (49, 107, 108). Inter-tumor cell cGAMP transfer and
subsequent STING activation can also facilitate metastasis (109).
Regarding cardiovascular disease, cGAS critically mediates
inflammation post-myocardial infarction (MI), and induces
CXCL10, iNOS expression and M1 differentiation. In this setting,
STING or cGAS deficiency improved post-MI survival (110).
STING activity may attenuate type I diabetes, but exacerbate type
II diabetes and the associated metabolic syndrome (97, 111, 112).
The dual positive and negative effects of STING on health mandate
caution in modulating STING activity therapeutically.

One of themajor questions posed by these observations relates to
the source of “endogenous” STING/cGAS ligands in sterile
pathology. In health, self DNA might be expected to be sequestered
in the nucleus and within mitochondria. However, it has become
clear that nuclei andmitochondria are not as “air tight” as previously
thought. To maintain the status quo in health, nucleases patrol the
cytosol and extracellular milieu, degrading rogue cytosolic nucleic
acids. Even in the face of this nucleotide cleanup crew, increasing
evidence suggestsmtDNAandunder certain conditions, nuclear and
extracellular DNA serve as stimuli for STING. Extracellular dsDNA
fromapoptotic cells canbe takenupbyendocytosis, or in the formsof
microvesicles and exosomes (113, 114). Internalized dsDNA
translocates from lysosomes (especially if deficient in DNAse) into
the cytosol (115). Extracellular cGAMP that evades Ectonucleotide
pyrophosphatase/phosphodiesterase family member 1 (ENPP1)
degradation can also be taken up by and stimulate cells (116).
Studies in senescence, infection, neurodegenerative diseases, cancer
and lupus have greatly elucidated the generation (and recognition) of
mitochondrial and genomic DNA ligands. Genomic DNA will be
discussed briefly, but the remaining focus will be on mtDNA.

Without killing the involved cell, genotoxic stress can result in
partial breakdown of the laminin nuclear envelope structure and
extrusion of so-called “micronuclei” into the cytoplasm (117). In
senescence, telomere dysfunction and breakdowns in DNA
repair lead to genotoxic stress. In cancer, genotoxic stress may
January 2021 | Volume 11 | Article 611347
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result from aberrant mitosis, mutation in DNA-repair enzymes as
well as exogenously applied radiation. Micronuclei only form
during cell division, and breakdown of the micronuclei envelope
duringmitosis is required for recognition (117, 118). This damaged
genomic DNA in micronuclei then becomes an available substrate
for cGAS (95). It is unclear how the extra-nuclear DNA avoids
nucleosomal inhibition of cGAS, unless the DNA dissociates from
histones. The chromatin state in micronuclei is not well described.
Once cytosolic micronuclei dsDNA stimulates cGAS, the resulting
cGAMP can also transfer across cellular boundaries via gap
junctions (109, 119). For instance in cancer, cGAMP from tumor
cells transfers to STING-expressing myeloid and B-cells that
produce natural killer cell-stimulating IFN (120). One bacterium,
Burkholderia pseudomallei, induces cell fusion, genomic instability
and aberrant mitosis resulting in micronuclei formation.
Interestingly, in this case, the micronuclei triggers STING
activation and IFN transcription but not IFN protein, and
STING/autophagy-dependent cell death. Polyethylene glycol
induced cell fusion also triggers IFN gene expression and
autophagy, suggesting a critical role for the cell fusion process
(121). Micronuclei detected in human Huntington’s disease
embryonic stem cell-derived neurons have been linked to
inflammation and autophagy (122).
FURTHER CUES ON ENDOGENOUS
LIGANDS FROM LUPUS AND RELATED
CONDITIONS: IMPORTANT ROLES FOR
NUCLEASES AND MITOCHONDRIAL DNA

Discovery of the linkage between nuclease deficiencies and type I
interferonopathies has thrown the requirement for nucleotide
“clean-up” into sharp relief. The cytosolic nuclease TREX1/
Frontiers in Immunology | www.frontiersin.org 6
DNAseIII was one of the first described molecular associations
with type I IFN-driven diseases (123, 124). TREX1 deficiency and
mutations have been implicated in Aicardi-Goutieres syndrome
(AGS), Familial chilblain lupus, systemic lupus erythematosus
(SLE) and retinal vasculopathy with cerebral leukodystrophy
(RVCL) (123, 125–127). Full deletions are more likely to be
associated with the severe early-onset manifestations, as in AGS,
whereas heterozygous deficiencies are more common in complex
milder or later onset conditions, such as familial chilblain
lupus (126). AGS also results from defects in RNAse H2, which
cleaves RNA from DNA to decrease DNA damage, and SAM
and HD Domain Containing Deoxynucleoside Triphosphate
Triphosphohydrolase 1 (SAMHD1), a dNTPase that acts at
stalled replication forks and regulates reverse transcription to
cDNA (128–130). Mice deficient in extracellular DNAseI develop
high titer anti-nuclear antibodies and glomerulonephritis (131).
Lysosomal DNAseII deficiency is embryonic lethal in mice, but
completely rescued by cGAS or STING absence. Interestingly
DNaseII-/-Ifnar (type I IFN receptor)-/- mice survive to adulthood,
but develop rheumatoid arthritis-like disease, most likely reflecting
the NF-kB stimulating activity of STING (132). TREX1, which is
located in the cytosol and localizes to the ER, is active against ssDNA,
nicked end dsDNA, and retroviral cDNA (produced for instance
during HIV-1 infection) (133). TREX1 may also degrade
endogenously transcribed retroviral elements (124, 134). Mutations
in the DNAse region are mostly associated with AGS, whereas
DNAse intact C-terminal truncations have been identified in
RVCL and SLE (93). The non-DNAse TREX1 functions may be
mediated through its association with and regulation of
oligosaccharyltransferase, as C-terminal TREX1 mutations result in
production of large amounts of immunostimulatory free
glycans (135).

The association of SLE-like type I IFN driven diseases with
these rare nuclease mutations serves as proof of principle
FIGURE 3 | Concept map of STING in sterile pathology. Irradiation, cancer, aging/senescence and infection can drive genotoxic stress, resulting in the generation of
micronuclei. Nuclease mutations, deficiencies, and mitochondrial DNA release lead to increased cytosolic dsDNA. These immediate drivers of cytosolic dsDNA are in red
boxes. STING aberrantly activated through these processes, as well as STING mutations and altered STING regulation (blue boxes) all result in pathologic disease states.
Excess STING-dependent IFN and inflammatory cytokines contribute to pathology (green boxes) in Type I interferonopathies, autoimmunity and post-MI (Myocardial Infarction).
However the effects of STING on other types of pathologies (Cancer, Diabetes) can vary (yellow boxes) depending upon the specific situation.
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regarding the importance of endogenous DNA in driving
autoimmune disease. Work over the last decade has shed light
on pathogenic mechanisms that may be more prevalent. Cells
from lupus patients, most prominently neutrophils tend to
extrude their nuclear contents in stringy structures rich in
histones and dsDNA known as neutrophil extracellular traps
(NETs). These NETS also contain inflammatory proteins such as
Cathelecidin LL37 antimicrobial peptides and High Mobility
Group Box 1 (HMGB1) (136). Wang et al. reported the
presence of mitochondrial (mt)DNA in ex-vivo stimulated
NETs and increased anti-mtDNA antibodies in lupus patients.
These antibodies correlated with IFN scores and disease activity
scores, including lupus nephritis scores, better than the standard
anti-dsDNA. This group also found mtDNA in NETs in SLE
subject kidney biopsies. MtDNA-anti-mtDNA complexes were
strong stimulators of plasmacytoid DC IFN, even more so than
anti-dsDNA. This group then performed a proof of concept trial
with metformin, which decreases mitochondrial respiratory
chain complex I and NADPH oxidase activity, suggesting that
oxidation played a key role in pathogenesis (137). MtDNA lacks
protective histones and DNA repair enzymes present in the
nucleus and thus, is more susceptible to oxidation. Oxidized
DNA is also resistant to TREX1 degradation, making this a
plausible scenario (138). This study concluded the IFN was
TLR9-dependent, but the evidence was very indirect.

Two further studies from 2016 further explored the relationship
between oxidized mtDNA and lupus. Caielli et al. reported that
neutrophils from healthy subjects that sustain mitochondrial
damage extrude DNA. This damaged mtDNA dissociates from
the mitochondrial transcription factor A mitochondrial (TFAM)
molecule that packages it into nucleoids en route to lysosomes for
degradation. Dissociation requires protein kinase A (PKA)-
mediated TFAM phosphorylation. Exposure of either type I IFN-
treated neutrophils or neutrophils from lupus patients to anti-RNP
immune complexes decreased the cAMP required for PKA
activation. The TFAM-associated nucleoids remained in the
cytosol, became oxidized and were released from the cell through
unclear means. TLR9 and RAGE participated in uptake of the
TFAM-associated oxidized mtDNA nucleoids by DC, thereby
stimulating IFN production. In support of this mechanism,
oxidized mtDNA autoantibodies were present in a fraction of
patients and oxidized mtDNA nucleoids visualized in SLE patient
neutrophils (139). In the report by Lood et al, they tied oxidized
mtDNA to STING-dependent IFN as follows: anti-RNP immune
complex stimulation increased mitochondrial ROS. Mitochondrial
ROS resulted in hypopolarization, translocation of mitochondria to
the plasma membrane and release of oxidized mtDNA into the
extracellular milieu. This oxidized mtDNA was a potent stimulus of
IFN production by peripheral blood mononuclear cells (PBMC)
and monocytic THP1 cells. In mice, injection of oxidized mtDNA
induced IFN in a STING-dependent manner. Furthermore, lupus
patient low-density granulocytes spontaneously released NETS
enriched in mtDNA in a mitochondrial ROS-dependent manner.
As proof of principle, they administered a mitochondrial ROS
antagonist (mitoTEMPO) to mice continuously via a pump,
decreasing disease severity in lupus prone MRL/lpr mice. MtDNA
Frontiers in Immunology | www.frontiersin.org 7
oxidation occurred independently of NADPH-oxidase, in Nox
knockout mouse cells and chronic granulomatous disease patients
(140). Together these reports firmly establish a link between
mitochondrial ROS, oxidized mtDNA and IFN generation in
lupus (summarized in Figure 4). Some of the differences, for
instance TLR9 vs. STING dependence, might reflect species in
some experiments (mouse vs. human) as well as mtDNA stimulated
target cell (DC vs. PBMC and monocytes).

Beyond lupus, mtDNA appears to play a role in STING
activation in other sterile diseases, such as cancer, and toxin-
stimulated injury. Cisplatin-induced acute kidney injury depended
upon mitochondrial damage and stimulation of STING.
Interestingly, in this report, STING stimulated NF-kB but not
type I IFN production, yet more evidence that different STING
outputs can be uncoupled (141). In regards to cancer, oxidized
mtDNA sensing by STING promoted the antitumor effect of
irradiated immunogenic cancer cells (142). DC appropriated
oxidized mtDNA released from dying irradiated tumors and
then cross-presented antigen to cytotoxic CD8 T cells.

Mitochondria also mediate STING stimulation in a variety of
infectious settings, in effect, functioning as both DAMP and
PAMP. STING plays an unanticipated role in responding to
RNA viruses, with mitochondria mediating the interaction.
Interestingly, many of these viruses express mitochondria
targeting proteins. Dengue virus M protein targets the
mitochondrial membrane, forming pores that result in swelling
and loss of membrane potential (143). NS2B3 cleaves mitofusins 1
(Mfn1) and Mfn2, influencing the structure and function of
mitochondria (144). Dengue-induced mitochondrial stress and
damage results in release of mtDNA into the cytosol (145). NS2B3
also directly cleaves STING, limiting production of type I IFN
(146). Encephalomyocarditis and influenza induce mtDNA release
into the cytoplasm via viroporins, stimulating cGAS and DDX41-
dependent immune responses (147). Although Herpesviruses are
DNA viruses, the HSV1 gene product UL12, that depletes TFAM
and results in enlarged mitochondrial nucleoids and mtDNA
release, is essential for full IFN production and anti-viral activity
(145). Different strains of Mycobacterium tuberculosis induce
varying amounts of mitochondrial stress and mtDNA release
stimulating cGAS/STING-dependent IFN (148, 149). M.
abscessus induces IFN and NLRP3 activity via mitochondrial
oxidative stress. In this setting, IFN and IL-1b exhibited a
mutually inhibitory reciprocal relationship (150).
STING AND THE ER: CROSS TALK
AND CROSS REGULATION

The studies highlighted above describe a connection between
mitochondria and STING activation via the release of mtDNA,
which is oxidized in many cases. Increasing evidence also supports
communication and cross-regulation between the ER and STING,
in which an ER stress response known as the “Unfolded Protein
Response” (UPR) takes center stage (UPR recently reviewed in
(151) and in (152), Figure 5). The ER serves as the protein-
producing factory of the cell. Different types of physiologic
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FIGURE 4 | Connection between oxidized mtDNA and Lupus. Stimulation of IFN-treated neutrophils or neutrophils from lupus patients with anti-RNP immune
complexes can lead to release of oxidized (ox) mtDNA by multiple mechanisms: 1) Stimulation of NETosis, with extrusion of DNA containing oxidized mtDNA. 2) Increased
mitochondrial ROS leads to membrane translocation and extrusion of oxidized mtDNA into the extracellular milieu. 3) Anti-RNP and type I IFN decrease the levels of cyclic
AMP (cAMP), a second messenger required for activation of protein kinase A (PKA), which normally phosphorylates TFAM, enabling its release from mtDNA. When TFAM
is released, the mtDNA can then go to the lysosome for degradation. If PKA is inhibited, TFAM remains associated with mtDNA in nucleoids that accumulate in
mitochondria and then are released from the neutrophils through unclear mechanisms. Extracellular oxidized mtDNA is sensed by monocytes in a STING-dependent
manner and internalized by pDC via RAGE receptors. Downstream of RAGE, the IFN-generating sensor in pDC is unclear, although both oxidized and non-oxidized
mtDNA stimulation of pDC is TLR9-dependent (139). The abundance of anti-mtDNA antibodies in lupus and correlation with disease support the critical involvement of
these mechanisms in disease pathogenesis (137, 139, and 140).
FIGURE 5 | Unfolded Protein Response (UPR), STING and autophagy. When cellular insults or protein production demands compromise ER function, the ER initiates
the UPR. Misfolding proteins bind the chaperone BiP, releasing it from three stress sensors, IRE1 (blue), ATF6 (green) and PERK (red). IRE1 is a bifunctional kinase/
endonuclease that initiates JNK-dependent signaling and excises a 26bp stretch from the XBP1 mRNA, removing a premature stop codon via frameshift mutation. IRE1
also decreases ER load through more promiscuous endonuclease activity (RIDD). Upon release of BiP, ATF6 translocates to the Golgi, where S1 and S2 proteases
generate an active transcription factor. PERK kinase phosphorylates eIF2a, resulting in global translational attenuation apart from select mRNAs such as ATF4. ATF4
promotes transcription of the pro-apoptotic transcription factor CHOP and Ero1a oxidoreductase. PERK also leads to nuclear factor erythroid 2–related factor 2 (Nrf2)
nuclear translocation and resulting anti-oxidant responses. The UPR promotes STING activity and STING increases the UPR (right green arrows). This STING-dependent
increase in UPR also enhances autophagy of ER components (“ER-phagy”, left side), which can limit ER stress responses. Many questions remain regarding the
mechanistic details connecting STING, UPR and ERphagy.
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demands and insults that impact protein folding, including
increased protein production, misfolding proteins, nutrient
deprivation, hypoxia, calcium and oxidative dysregulation, all
lead to induction of the UPR. The UPR encompasses three
primary signaling arms set in motion by the activation of ER-
membrane associated stress sensors, serine/threonine-protein
kinase/endoribonuclease inositol-requiring enzyme 1 a (IRE1),
Protein Kinase R-like endoplasmic reticulum kinase (PERK) and
activating transcription factor 6 (ATF6).Verybriefly, in the absence
of stress, these sensors associate with an ER-protein folding
chaperone GRP78 (Immunoglobulin heavy chain binding protein
(BiP)). An overabundance of unfolded protein results in the release
of these sensors from BiP, thus activating UPR signaling. IRE1 is
both a kinase and endonuclease which processes the X-box binding
protein 1 (XBP1) transcription factor mRNA, yielding the active
transcription factor. XBP1 promotes production of ER chaperones,
ER associated degradation (ERAD) proteins, and ER expansion. In
certain settings, IRE1 also displays non-specific endonuclease
function decreasing protein load, a process termed Regulated
IRE1-dependent decay (RIDD). IRE1 kinase signals via NF-kB
and JNK pathways, stimulating inflammation, autophagy and
apoptosis. PERK is a kinase whose activity results in the
phosphorylation of eukaryotic initiation factor 2 a (eIF2a).
Phosphorylation inhibits global mRNA translation apart from
select transcripts with 5’Cap-independent upstream open reading
frames such asATF4. PERKregulates amino acid acquisition, redox
status and apoptosis via induction of the C/EBP Homologous
Protein (CHOP) transcription factor. ATF6 is a proto-
transcription factor that traffics to the Golgi following BiP
dissociation. There, Site1 and Site2 proteases cleave ATF6 to an
active transcription factor that induces ER chaperones and with
XBP1, increases ER capacity. As the UPR accomplishesmuch of its
adaptive program through gene transcription, it is oftenmonitored
experimentally by quantitating UPR target gene expression.
Together these pathways re-establish proteostasis (proteome
homeostasis) by decreasing protein load, at least temporarily, and
enhancing ER function. If ER stress is profound or fails to resolve,
these pathways trigger apoptosis.

The UPR intersects with, and activates pro-inflammatory
signaling [extensively reviewed elsewhere (153–155)]. Moreover,
cells undergoing ER stress respond to PRRs with synergistic
cytokine production; thus, the UPR acts as an amplifier for
pathogen recognition (153, 156, 157). In TLR4-stimulated
macrophages, IFN-b was one of the most dramatically enhanced
cytokines by ER stress (157). Further, using chemicalUPR inducers
and oxygen-glucose deprivation, we found that ER stress was
sufficient for phosphorylation and nuclear translocation of IRF3
(158). Interestingly, IRF3activationwasonlySTING-dependent for
certain types of ER stress induction, such as oxygen glucose
deprivation and treatment with Thapsigargin, which induces ER
stress via inhibition of the calcium-regulating sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) pump (159). Oxygen glucose
deprivation can also increase cytosolic calcium via modulation of
SERCA, Ryanodine receptors (RyR) or other receptors (160, 161).
Tunicamycin, an UPR-inducing N-linked glycosylation inhibitor
resulted in IRF3 phosphorylation through a STING-independent,
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but ATF6-dependent mechanism (158). Calcium may be key for
STING activation by the UPR, but increased cytosolic calcium,
introduced with a calcium ionophore, was not sufficient in the
absence of ER stress.

The linkage between ER stress and STING activation detected
with in vitro pharmacologic manipulation was observed in several
disease models: Patrasek et al. reported that in early alcoholic liver
disease, alcohol induced ER stress, which resulted in STING
activated IRF3 and IRF3-dependent apoptosis (162). In
traumatic brain injury, a PERK inhibitor abrogated STING
activation and ameliorated damage (163). In a report from Cui
et al, Mycobacterium bovis STING activation of TBK1 and IRF3
was dependent upon ER stress (164). In this study, IRF3-BAX-
initiated apoptosis required TBK1 activity. We found that during
Brucella abortus infection, induction of the UPR was critical for
STING activation and induction of the STING-dependent type I
IFN program genes. However, this study also brought up an
interesting, somewhat thorny observation: Induction of the UPR
was STING dependent (lower in STING-/- cells), so there is
reciprocal regulation. Further, type I IFN enhanced UPR
induction (165). This type of reciprocal crosstalk was also
described in a report on heart inflammation and fibrosis.
Angiotensin II induced STING expression and increased IFN in
cardiac myocytes in an ER stress dependent manner. In this study,
STING-/- mice exhibited decreased ER stress following aortic
banding (166). Moretti et al. described STING activated ER stress
and autophagy induction in the setting of Listeria innocua
infection. Listeria c-di-AMP stimulated STING, resulting in
upregulation of ER stress markers, inhibition of mTOR and
autophagy. In this particular type of autophagy, “ER phagy”, ER
membranes that were autophagocytosed included ER markers, ER
stress proteins and STING. They observed a yin-yang relationship
between ER stress and autophagy: ERphagy reduced ER stress
(especially the PERK pathway). Inhibition of autophagy (and
increased ER stress) resulted in apoptosis. PERK deletion
decreased IFN production and autophagy, suggesting an ER-
stress feed forward mechanism (167). Putting these studies
together, ER stress can induce STING activity and STING
increases ER stress and ER stress-dependent autophagy.

A report by Wu et al. examined the molecular basis for the
UPR-STING connection by focusing on a STING gain of
function (GOF) mutant associated with SAVI (168). Patients
afflicted with SAVI develop early onset vasculitis, rash and
interstitial lung disease (169). SAVI is largely IRF3-
independent in mice, suggesting non-IFN STING activities are
important drivers of the inflammatory disease (170). Wu et al.
found increased expression of UPR markers, BiP and CHOP in
GOF human T cells, less so in B cells and not in macrophages,
MEFs or fibroblasts (UPR was cell type-dependent). In the Jurkat
cell line, the STING GOF mutant was not sufficient for UPR
induction but synergized with T cell receptor (TCR) stimulated
ER stress. In wild type murine T cells, TCR engagement typically
induces ER stress, but not apoptosis. In the wild type T cells, the
strong STING agonist DMXAA and TCR stimulation, but not
DMXAA alone, significantly increased ER stress. Similarly, the
GOF STING mutant synergized with TCR signaling to increase
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ER stress and IRF3-independent apoptosis. Furthermore, Wu
et al. defined a requisite “UPR motif” within STING, in aa322–
343, a highly conserved sequence encoding a helix on the exterior
of the STING dimer, next to the CDN ligand-binding domain.
Residues R331 and R334 were particularly important for UPR
function. A deletion around the IRF3 binding site (343–354)
abolished IFN, but not UPR or NF-kB outcomes (168).
STING AND CALCIUM

In addition to the UPR, a second related aspect of ER function,
calcium regulation, has been implicated in STING activation and
function. The ER serves as the primary calcium storage within
the cell, maintaining a huge gradient across the ER membrane.
ER calcium concentrations are estimated at 2mM with free
calcium at 500mM, whereas cytoplasmic calcium is in the 100–
100 nM range (171, 172). These high concentrations of calcium
are critical for optimum function of the ER protein-folding
machinery. ER-resident calcium binding proteins with low
affinity but high capacity include the chaperones calreticulin,
calnexin, BiP, grp94 and Protein disulfide isomerase (PDI) (173).
Calreticulin and calnexin work with Erp57, the thiol disulfide
isomerase, to form disulfide bonds and promote protein folding
(174). Calreticulin and calnexin also direct protein trafficking
through the ER and ERAD (175). The BiP ATPase prevents
protein aggregation (176). Calsequestrins and Chromogranins
further buffer ER calcium. Three families of proteins, SERCA,
Inositol triphosphate receptors (IP3R) and RyRs, mediate the
tremendous ER-cytosol gradient and regulate calcium release.
Expression and relative roles of these proteins is cell-dependent.
For instance, there are 3 SERCA genes with multiple splice
variants, but SERCA2b is most widely expressed, has the
highest calcium affinity of the SERCAs and is primarily
responsible for maintaining high ER calcium (177). Type 1
IP3R is located throughout the ER but type 3 IP3R localize to
the mitochondrial associated membranes (MAMs) and primarily
transmit calcium to mitochondria (178). RyRs are expressed
most prominently in muscle, but even at lower concentrations,
they may exert strong effects, as RyRs release ~20x more calcium
into the cytosol than IP3Rs (179). Stromal interaction protein 1
(STIM1) is a transmembrane calcium sensor that senses ER
calcium levels through its EF hand and other calcium binding
sites (180). When ER calcium is depleted, STIM1 translocates to
the plasma membrane where it binds the Calcium release-
activated calcium channel protein 1 (Orai1) resulting in
capacitative calcium entry, also known as Store operated
calcium channel (SOC) entry (181).

STING monomers share 2 Ca2+ binding sites when they form
dimers, andacertain amountof cytosolic calciumappearsnecessary
for activation (182). For instance, during dsDNA-stimulated
STING activation in macrophages, calcium chelators such as
BAPTA and mitochondrial calcium export inhibitors (CGP37157
sodium pump inhibitor) both reduce IRF3 and NF-kB activation
(183). W-7, a potent calmodulin inhibitor also reduced STING
activation by a pharmacologic STING-stimulating adjuvant (184).
Early sensing ofHCMV(human cytomegalovirus) andSendai virus
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membrane perturbations and ensuing STING activation is calcium
dependent (185). Cyclosporin A (the calcineurin inhibitor)
decreases mitochondrial calcium release and STING-dependent
IFN in macrophages (183). Short-term elevations in cytosolic
calcium increase STING activity through the following
mechanism: calcium binds and activates Calcium/calmodulin-
dependent protein kinase II (CAMKII), which then
phosphorylates 5’ AMP-activated protein kinase (AMPK) (186).
AMPK represses ULK1, which phosphorylates (and negatively
regulates) STING (87). However, saturating levels of cytosolic
Ca2+ (as following ionomycin treatment) can also inhibit STING
activation, so a happy medium is required by STING for optimal
function (187). The importance of the calcium-STING connection
has borne out in lupus: dipyridamole (a Ca channel blocker and
cGMP phosphodiesterase inhibitor) reduces cytokine production
in SLE T cells (188). CAMKIV is overexpressed in lupus nephritis
and CAMK deficiency or inhibitors (e.g., KN-93) decrease disease
in murine lupus models (189, 190).

Calcium homeostasis is also important for controlling STING
location in its basal state and during activation. The ER calcium
sensor, STIM1 physically interacts with and inhibits STING
activation and translocation to Golgi (191). Exogenously
increased STIM1 greatly decreases STING activation and UPR
induction. The STIM1-STING inhibition is mutual, in that STING
inhibits STIM1 translocation. When STING is absent, STIM1
enriches at the plasma membrane, and mediates increased
calcium entry via SOC.

Not only does calcium regulate STING activity and location, but
STING, in a reciprocal fashion,may regulate calcium levels. STING
associates closely with ER SERCA pumps and mitochondrial
calcium transporters VDAC1 and VDAC3 in the MAMs (192).
Direct association between STING and IP3Rs increases cytosolic
calcium release and drives lethal coagulation during sepsis (193).
The STING GOF mutant (chronic STING activity) exhibits
decreased ER Ca2+ release and lower influx across the plasma
membrane. However, acute T cell receptor signaling and
activation of the GOF mutant resulted in increased calcium-
dependent ER stress. Exacerbating this effect with the SERCA
pump inhibitor Thapsigargin (but not Tunicamycin) synergized
with the STING GOF mutation in inducing apoptosis (168). Thus,
STING may regulate calcium homeostasis and set thresholds for
calcium-mediated signaling and apoptosis. For a summary of
STING and calcium reciprocal regulation, see Figure 6.
THE ER MITOCHONDRIAL CONNECTION:
COMMUNICATION VIA ROS AND
CALCIUM

It is evident how mtDNA could stimulate STING via cGAS.
However, it is much less apparent how ER stress or calcium
mechanistically stimulates STING without an activating ligand.
This conundrum brings us to the base of our conceptual tripod
(Figure 1): the ER-mitochondria connection. The ER and
mitochondria share a close relationship, both anatomically in the
MAMs and functionally. Mitochondria host metabolic pathways,
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biosynthetic activities, ATP generation, and buffer calcium, generate
most of the cellular reactive oxygen species (ROS), and regulate cell
death by apoptosis. The ER synthesizes lipids and steroids, regulates
calcium, and through oxidative protein folding, generates ROS. We
hypothesize that the close connection and functional feedback
between these organelles may generate the “missing ligand” in the
form of released mitochondrial DNA. Below we will review their
interconnections (Figure 7) focusing on two “coins of the realm”,
calcium (touched on above) and reactive oxygen species (ROS).

Close apposition between ER membranes and mitochondria at
the MAMs or MERCs (mitochondria ER contacts) enables
phospholipid transfer, calcium movement, and redox control and
regulatesmitochondrial fusionandfission, inflammasomeactivation,
autophagy, and apoptosis (96, 194). Consider phospholipid synthesis
as a prime example of the ER mitochondrial partnership: ER
synthesized phosphatidylserine goes to the mitochondria where it
is decarboxylated to phosphatidylethanolamine, which then returns
to theER tobemethylated tophosphatidylcholine, themost common
lipid in cell membranes (195). During mitochondrial fission, the ER
first wraps around mitochondria (196). Constriction of the
mitochondria via ER-bound inverted formin 2 (INF2) requires
actin polymerization and increased ER-mitochondria calcium
transfer (197). Protein folding requires abundant ATP generated by
mitochondrial respiration.

Multiple molecular interactions anatomically bridge the two
organelles, facilitating the exchange of small molecules and
calcium. These interacting partners include mitofusin2 (Mfn2) on
the ER and mitofusin1 (Mfn1) on mitochondria, Vesicle associated
membrane protein B (VAPB) and Protein tyrosine phosphatase
interacting protein 51 (PTPIP51), IP3R3 and VDAC1 (voltage
dependent anion channel 1) ((198–200), Figure 7). Mitofusins not
only controls ER structure, but also regulate mitophagy and facilitate
Frontiers in Immunology | www.frontiersin.org 11
calcium transfer. VABP and PTPIP51 also facilitate calcium transfer
between ER andmitochondria and regulate autophagy (199). On the
mitochondrial side, the outer mitochondrial membrane is permeable
to calcium through the VDAC channels, but the innermitochondrial
membrane is much less so. However, the steep negative membrane
potential generated by respiration can drive the mitochondrial
calcium uniporter (MCU) (201). On the external surface, VDACs
form pores that allow release of small molecules such as ATP,
metabolites, superoxide anions, and cytochrome c. GRP75 stabilizes
the bridge between VDACs and IP3Rs (200). Therefore, when the
ER releases calcium, particularly through IP3R, the mitochondria are
well situated to act as a calcium buffer, maintaining optimally low
cytoplasmic calcium. Too much ER calcium release, though and the
mitochondria initiate apoptosis. ER stress sensors (more on this
below) and protein-folding chaperones also cluster at the MAMs,
including BiP, calnexin, calreticulin, ERp44, ERp57, and Sigma 1
receptor (202, 203).

Both ER and mitochondria generate ROS during normal
physiologic function and pathologic intracellular stress. ROS also
play a critical role in immunity, for instance in NF-kB induction,
macrophage phagocytic function and inflammasome activation
(204–206). The ER accounts for about 25% of total cellular ROS,
primarily produced during protein folding (207). Formation of the
inter- and intra-molecular disulfide bonds required for protein
structure requires an oxidizing milieu. The Protein disulfide
isomerase (PDI) oxidoreductase catalyzes the formation,
reduction and isomerization of disulfide bonds. PDI family
members ERp57 and ERp72 also form disulfide bonds (208). In
order to re-oxidize PDI, electrons are transferred to Endoplasmic
Reticulum Oxidoreductase 1 Alpha (ERO1a) via a flavin adenine
cofactor, and from there to molecular oxygen, ultimately
generating H2O2 (209, 210). During ER stress, ERO1a is one of
FIGURE 6 | Reciprocal effects of calcium on STING activity and STING on calcium homeostasis. Increases in cytosolic calcium (Ca2+) enhances STING activity
through multiple mechanisms: 1) calcium directly binds STING dimers, promoting cyclic-di-nucleotide signaling, 2) increased cytosolic calcium enhances
mitochondrial DNA extrusion (thus triggering cGAS), and 3) calcium stimulated calmodulin activates CAMKII, which phosphorylated AMPK, which then inhibits ULK1,
a STING inhibitor. SERCA pump inhibitors Thapsigargin (Tpg), infection and oxygen glucose deprivation (OGD) increase cytosolic calcium, thereby stimulating STING.
The mechanisms underlying these observations are not yet established. Too much calcium (as in ionomycin treatment) inhibits STING activity. On the right, STING
stimulates IP3R-dependent calcium release, a process that may be counteracted by SERCA activity. In its inactive state, STING sequesters STIM1 in the ER,
preventing extracellular calcium entry. STIM1 reciprocally “tethers” STING to the ER, inhibiting its activity.
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the key downstream targets induced by PERK (via CHOP) to
increase folding capacity (211). Too much ERO1a however causes
a hyperoxidizing environment, excessive ROS production and
thus induces ER stress (212). NADPH family oxidoreductases
NOX2, NOX4 and NOX5 also localize to the ER (213, 214). Other
ER oxidoreductases filling a similar role to ERO1 include vitamin
K epoxide reductase, quiescin sulfydryl oxidase and peroxiredoxin
IV (215). Glutathione peroxidases and GSH help scavenge excess
ROS (216). Binding of oxidized glutathione peroxidase to BiP
enhances its chaperone activity (217). GSH also reduces disulfide
bonds in improperly folded proteins. However, there are relatively
low levels of GSH in the ER, predisposing to the oxidizing
environment. Ratios of GSH:GSSG are 1:1–3:1 vs. 30–100:1 in
the cytosol (218).

Mitochondria generate the lion’s share of ROS in the cell via
fatty acid beta-oxidation, respiration (electron transport chain
(ETC) Complex I and III, cytochrome b5 reductase) and other
metabolic enzymes including monoamine oxidase, a-ketoglutarate
dehydrogenase, pyruvate dehydrogenase, flavoprotein ubiquinone
oxidoreductase (219). A subset of NOX4 localizes to the
mitochondria where it regulates mitochondrial bioenergetics
(220). Superoxide anions are the primary ROS produced by
mitochondria. Mitochondrial ROS are scavenged by super oxide
dismutases (SODs), glutaredoxin, glutathione, thioredoxin,
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glutathione reductases, peroxidase and peroxiredoxins (215,
216). Negative feedback loops also keep ROS generation in
check. For instance, mitochondrial ROS stabilize Hypoxia
inducible factor 1 alpha (HIF1a), which decreases the Krebs
cycle and electron transport chain (ETC) activity and stimulates
mitophagy (221–224). Mitochondrial fission and fusion also
exhibit cross-regulation with ROS; for instance, reactive oxygen
species modulator 1 (ROMO1) decreases ROS production and
maintains structural integrity by enhancing OPA1 Mitochondrial
Dynamin Like GTPase (OPA1) oligomerization (increasing
metabolic function and ROS production). However, excessive
ROS inactivates ROMO1, leading to cleavage of OPA1, loss of
mitochondrial cristae, mitochondrial fragmentation and decreased
respiration (225). As an example of positive feedback, excessive
ROS induces translocation of the fission-requiring dynamin
protein Drp1, and fission promotes mitochondrial ROS over-
production (226, 227).

ROS production and calcium fluxes intercommunicate within
organelles and between the ER, cytosol and mitochondria on many
different levels (Figure 7) [reviewed in (171)]. At steady state,
constitutive ER calcium release via IP3R supports mitochondrial
oxidative phosphorylation (228). However, boosting the Krebs cycle
dehydrogenases and activating NO synthase increases ROS. ER
calcium release that causes cytoplasmic Ca2+ spikes generates a
FIGURE 7 | ER-mitochondria connections at the ER mitochondria-associated membranes (MAMs). Mitochondria are closely associated with ER membranes
through multiple sets of molecular bridges, including the mitofusins (Mfsn) that regulate mitochondria fission/fusion, the inositol triphosphate receptor (IP3R) calcium
channel and non-selective voltage-dependent anion channel (VDAC) stabilized by GRP75, and Vesicle APC-Binding Protein (VAPB) and protein tyrosine
phosphatase-interacting protein 51 (PTIP51), which also regulate calcium flux. ER stress sensors inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK) and
folding chaperones (e.g. GRP78/BiP) congregate at the ER mitochondria- associated membranes (MAMs). STING is also enriched at the MAMs. In the resting state,
STING associates with STIM1. ER calcium is primarily regulated by three types of calcium channel: Sarcoplasma/ER calcium ATPase (SERCA), which pumps calcium
(Ca2+) into the ER, and the IP3Rs and ryanodine receptors (RyR), which release ER calcium. Mitochondrial respiration and the action of the electron transport chain
(ETC) generate ROS. Protein folding is the primary source of ROS generation in the ER. PERK indirectly induces (dashed arrow) Endoplasmic Reticulum
Oxidoreductase 1 Alpha (Ero1a) expression, which is one of the primary sources of ER ROS. ROS decrease ER calcium by inhibiting SERCA and activating IP3R
and RyR. ROS also stimulate the translocation of Stromal interaction molecule 1 (STIM1) from ER to plasma membrane, where it interacts with Calcium release-
activated calcium channel protein 1 (Orai1) to enable store operated calcium entry (SOC). SOC stimulates NADPH oxidase, generating a positive feedback loop. At
the mitochondria, too much calcium and ROS stimulate Bak/Bax mediated release of cytochrome c and extrusion of mitochondrial DNA (mtDNA). The mtDNA
stimulates cGAS production of 2’3’-cGAMP, an activating ligand for STING. Calcium regulating molecules are in green, apoptosis in solid yellow, and UPR-
associated molecules as in Figure 5.
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“nanodomain” of mitochondria-generated H2O2, which in turn
induces a positive feedback increase in calcium release (229). ROS
directly regulate the activity of ER calcium channels. For instance,
oxidation of RyRs causes calcium leak, further ROS generation and
muscle weakness (230). ROS inhibit SERCA by preventing ATP
binding, thus depleting ER calcium and increasing cytosolic
calcium. ERO1a highly enriches at the MAMs in normal
oxidizing conditions (231). ERO1a activity generates H2O2,
which oxidizes IP3Rs and results in increased activity and
calcium flux out of the ER (232, 233). In the cytosol, increased
calcium efflux via IP3R stimulates CAMKII, which then exacerbates
the situation by stimulating NOX2-dependent ROS production.
NOX2 can also stimulate mitochondrial ROS and mitochondrial
superoxide activates NOX2 (234, 235). A stressed ER in need of
more ATP for folding could thus communicate via ROS and
calcium to mitochondria to increase ATP production. However
too much cytosolic calcium or excess ROS results in opening of the
mitochondrial membrane permeability transition pore, resulting
in cytochrome c loss, compromise of ECT function (generating
more ROS) and initiation of apoptosis (232). Besides activating
ER calcium channels, ROS (hydrogen peroxide) also stimulate
translocation of STIM1 and possibly STIM2 to the plasma
membrane, increasing cytosolic calcium through SOC entry (236,
237). Here also, there is feed-forward reciprocal regulation: STIM1
and Orai1 calcium channels contribute to ROS generation by
NADPH oxidase, and NOX2 drives STIM1-mediated SOC entry
(238, 239). Putting these observations together, optimum calcium
concentrations and limited release enhances communication
between organelles and increases their function (i.e. protein
folding and metabolic respiration), but excess ROS production
and calcium movement out of the ER into mitochondria or
cytosol initiates problematic positive feedback loops that can
drive apoptosis.

The UPR further impacts ROS and calcium signaling and is in
turn regulated by them. The pharmacologic agent Thapsigargin, a
SERCA pump inhibitor, rapidly and potently induces the UPR by
depleting ER calcium. Oxidized cholesterol causes inflammatory ER
stress in macrophages (240). In skeletal muscle, free fatty acids
increase oxidative stress and mitochondrial dysfunction, thus
leading to ER stress and autophagy. The Sigma1R, which
modulates IP3R activity and calcium flux, decreases ER stress and
stabilizes IRE1 oligomerization and generation of pro-survival
responses (202, 241). TLR signaling induces IRE1 activation and
XBP1 production viaNOX2 by an unclear mechanism (156). In the
direction of ER stress to calcium/ROS, ER stress increases cytosolic
calcium to the point of calcium-dependent mitochondrial outer
membrane permeabilization and apoptosis. PERK, which is
abundant at the MAMs, contributes to ROS-driven mitochondrial
stress and apoptosis (242). PERK both increases ROS via ERO1a
induction and conversely induces anti-oxidant responses via nuclear
factor erythroid 2–related factor 2 (Nrf2). PERK directly
phosphorylates Nrf2, leading to its dissociation from Kelch-like
ECH-associated protein 1 (KEAP1) which prevents Nrf2 nuclear
translocation (243). With ATF4, Nrf2 induces SODs, Heme
oxygenase-1, glutathione transferase and uncoupling mitochondrial
protein 2 (UCP2) (215). PERK regulation of proteostasis (and
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oxidative ROS-generating protein folding) can also have a large
impact on cell capacity to survive ER stress (244).
EVIDENCE FOR A TRIAD OR GUILT BY
ASSOCIATION?

To this point, we have addressed the various dyads between STING
and mitochondria, STING and ER, and mitochondria and ER, but
what evidence is there for a three-way interaction? UPR activation
has been previously implicated in some of the same settings where
mitochondrial damage is now taking the spotlight. Consider the
case of STING and the RNA virusDengue virus. The elaboration of
viral mitochondria-targeting proteins and resulting mitochondrial
stress and damage was described above. Dengue replicates in ER-
derived vesicles and also induces theUPR. Viral induction of PERK
and IRE1 signaling pathways increase viral autophagy and
replication (245). Similarly, in the case of Cisplatin induced acute
kidney injury, Cisplatin has long been known to cause ER stress and
UPR activation (246). In these two scenarios, mtDNA-induced
STING activation and UPR coexist in the same pathologic setting,
but the whether these manifestations are interconnected or occur
independently is not yet clear.

More work on the relationship betweenUPR andmitochondria
had been done in cancer (Figure 8). One report suggested ER stress
contributes to mitochondrial exhaustion of CD8 T cells (247). In a
murine sarcoma model, tumor-infiltrating PD1+ cells had greater
levels of mitochondrial ROS. Mitochondrial ROS correlated with
mitochondrial dysfunction as evident by lower oxygen
consumption rates. PERK inhibition decreased mitochondrial
ROS in PD1+ cells. PERK inhibitor and ERO1 inhibitor treated T
cells exhibited both higher O2 consumption rates and improved
IFN-g production. IFN-g, produced by tumor-infiltrating CD8 T
cells and NK cells, enhances cytotoxicity and antigen presentation,
and exerts direct anti-tumor effects – although in some settings, the
cytokine may be pro-tumorigenic (248). Further, PERK deficiency
and PERK and ERO1a inhibitor treatment of T cells resulted in
higher energy reserve and enhanced anti-tumor activity in vivo.
Others have shown constitutive XBP1 activation by ROS (lipid
peroxidation byproducts more specifically) drives tumor
progression by limiting antigen presentation and T cell activation
(249). Thus, through IRE1 orPERK, theUPR canhave a deleterious
effectoncancer containment.However, STINGagonists (which can
increase ER stress) improve CD8 T cell anti-tumor activity, despite
increasing PDL1 expression (49). When it comes to T cell
regulation, STING may exert competing effects on IFN
production vs. ER stress and exhaustion. Thus, in developing
therapeutics, the various effects of STING agonists on
mitochondria and UPR signaling in CD8 T cells or their
interacting DCs will require clarification in specific contexts.

The effects of UPR/PERK-mitochondria signaling may also be
cell-specific. Myeloid derived suppressor cells (MDSC) have been
implicated in tumor progression. These cells show signs of UPR
activation correlating with chemoresistance (250). Thapsigargin
treatment expanded splenic MDSC and enhanced tumor growth
whereas the UPR inhibitor TUDCA had the opposite effect.
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Mohamed et al. reported that the PERK pathway was highly
activated in MDSC in tumors (251). PERK enhanced MDSC-
mediated immunosuppression via Nrf2, preventing oxidative
damage, mitochondrial DNA release and DNA sensing via
cGAS/STING. Ablating PERK in the myeloid branch delayed
tumor growth. In a separate report, CHOP contributed to MDSC
activity. However, the PERK effect noted by Mohamed et al. required
Nrf2, not CHOP. PERK deficient MDSC exhibited increased cellular
ROS, altered mitochondrial morphology, membrane potential,
reduced oxygen consumption and release of mtDNA. The mtDNA
activated STING and induced type I IFN. Blocking STING or IFNAR
restored the immunosuppressive effect of MDSC in the absence of
PERK. Thus, in the case of MDSC, PERK promoted suppressor cell
“well-being” and inhibited STING activation through its anti-oxidant
activities (251). Interestingly, Nrf2 also antagonizes STING expression
by mRNA destabilization (252).

Thus, in some settings STING agonists hold dramatic promise
as anti-tumor agents. However, other reports suggest they may
increase metastases and tumor progression. We are just beginning
to scratch the surface of how STING regulates different types of
tumors and the different cells in tumor environments.
Understanding the potential mechanisms by which ER stress
and mitochondrial dysfunction interact and regulate STING is
lagging further behind but a ripe area for further study.
SUMMARY AND PERSPECTIVE

An underlying hypothesis in this review is that ER stress may
activate STING in the absence of an obvious ligand via calcium/
ROS mediated mitochondrial damage and mtDNA release. To
Frontiers in Immunology | www.frontiersin.org 14
illustrate how this might work based on the previous discussion
consider cancer once more: In tumor microenvironments,
unregulated cellular proliferation may outstrip the neo-vascular
supply of nutrients including oxygen, glucose and amino acids.
This lack of nutrients negatively impacts ER function, triggering
the UPR. Hypoxia may directly uncouple electron transport and
damage mitochondria. However, it is also likely that the
disruptions in ER calcium homeostasis, ROS production and
stress will lead to mitochondrial damage and release of mtDNA
into the cytosol. cGAS would then sense the mtDNA and
generate cGAMP, which stimulates STING to produce type I
IFN. This scenario raises multiple questions: It may be a logical
fallacy to invoke crosstalk between all three corners of the triad;
just because A goes to B and B goes to C, doesn’t mean A requires
B to get to C. The effect of hypoxia on mitochondria may be
sufficient in the absence of ER stress to cause mtDNA release. ER
stress may activate STING in some unknown way without the
mitochondrial intermediary, for instance by stabilizing STING
oligomerization or altering STING trafficking.

The data presented above raise other questions regarding ER
stress-mitochondria-STING interactions: It is still unclear why
calcium mobilization during ER stress was necessary for
Thapsigargin and oxygen-glucose induced STING activation—
was it because of a unique calcium-dependent effect on
mitochondria and subsequent mitochondrial DNA release or
another mechanism? Was the role of the ER stress simply to
generate ROS? Another issue is how the UPR could trigger
mtDNA release without initiating apoptosis. The UPR triggers
multiple pathways converging on mitochondria-dependent
intrinsic apoptosis including suppression of anti-apoptotic
molecules, induction of pro-apoptotic molecules and JNK
FIGURE 8 | Different outcomes of PERK activation in T cells vs. MDSC and STING input. In T cells, PERK and ERO1a increase ROS production, leading to
mitochondrial dysfunction, increased exhaustion and lower IFNg production, rendering these PD1+ T cells less adept at fighting tumors. ROS-stimulated XBP1 also
decreases T cell activation. Although STING activation could make matters worse by increasing UPR induction and PDL1 expression, many studies indicate a
positive role for STING and type I IFN in pDC-dependent CD8 T cell activation and anti-tumor activities, suggesting a balance of effects. On the other hand, in
MDSC, PERK-stimulated Nrf2 activity predominates. Nrf2 prevents mitochondrial ROS and dysfunction. Mitochondrial ROS also leads to dsDNA extrusion and
STING activation, which further inhibit MDSC via Type I IFN signaling. MDSC promote tumor progression.
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signaling, in addition to the calcium and ROS dysregulation
described above (253). The decision between mitochondrial
DNA release and apoptosis may simply be a matter of degree
of ER stress and relative amount of mitochondrial destruction,
but such a threshold model would require further experimental
support. There is certainly evidence for a yin-yang balance
between apoptosis and mtDNA stimulation of STING in that
caspase deficiency increases STING induced IFN (254).
Alternatively, in addition to Bax-Bak pores, VDAC pores in
oxidatively stressed mitochondria enable mtDNA extrusion,
perhaps promoting STING activation short of apoptosis (255).

Let us come back full circle. What is the physiologic need for
repurposing PRRs such as STING? One possibility is the context
added by DAMPs; inside the cells, sufficient damage from pathogens
can trigger PRRs to amplify immune responses. However,
endogenous PRR stimulation represents a double-edged sword with
its own perils, as manifest by the involvement of STING in heart
disease, cancer and autoimmunity. In cancer, STING stimulation by
endogenous stressors not only can bolster innate and adaptive anti-
tumor immunity but can also undermine anti-tumor defenses.
Similarly, STING may drive type I interferonapathies, but STING
deficiency exacerbates autoimmunity triggered by other PRRs.
STING is particularly well situated to respond to organelle-
generated alarm signals resulting from disruptions in calcium
homeostasis and critically increased reactive oxygen species. The
Frontiers in Immunology | www.frontiersin.org 15
close apposition of ER and mitochondria and calcium-ROS cross talk
between these organelles offers the tantalizing possibility that stress
initiated in either organelle could ultimately generate the required
ligand for STING and regulate STING activity. It will be interesting to
see how elucidation of the underlying mechanisms leading from
intracellular stress and damage to STING activation unfolds. Linear
sequential pathways are much easier to assess via common tools
such as expression modulation or inhibitors, but reciprocal
regulation and mutually augmenting feedback loops present much
more of a challenge. Despite these issues, it remains important to
determine the key intermediaries and interactions within these
pathways under different scenarios, because this knowledge will
be critical for guiding therapeutic interventions.
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