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Cells in danger of being erroneously attacked by leucocytes express PD-L1 on

their surface. These cells activate PD-1 on attacking leucocytes and send them

to death, thus curbing erroneous, autoimmune attack. Unfortunately, cancer

cells exploit this mechanism: By expressing PD-L1, they guard themselves

against leucocyte attack and thereby evade immune clearance. Checkpoint

inhibitors are drugs which re-enable immune clearance of cancer cells by

blocking the binding of PD-L1 to PD-1 receptors. It is therefore of utmost

interest to investigate these bindingmechanisms. We use three 600 ns all-atom

molecular dynamics simulations to scrutinize molecular motions of PD-1 with

its binding partner, the natural ligand PD-L1. Usually, atomicmotion patterns are

evaluated against whole molecules as a reference, disregarding that such a

reference is a dynamic entity by itself, thus degrading stability of the reference.

As a remedy, we identify semi-rigid domains, lending themselves asmore stable

and reliable reference frames against which even minute differences in

molecular motion can be quantified precisely. We propose an unsupervised

three-step procedure. In previous work of our group and others, minute

differences in motion patterns proved decisive for differences in function.

Here, several highly reliable frames of reference are established for future

investigations based on molecular motion.
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1 Introduction

1.1 Medical background and clinical
significance

Immune system T-cells detect cancer cells as they develop,

and normally kill them (Smith-Garvin et al., 2009). However,

some cancer cells have developed mechanisms to escape this

important, immune–mediated clearance (Chen and Mellman,

2013) as follows: T-cells present a suicide tool (PD-1) on their

surface. In healthy individuals, this tool is activated (by PD-L1)

only if a T-cell should erroneously attack healthy tissue. PD-1 is

therefore called an “immune-checkpoint”.

However, some cancer cells also express PD-L1 on their

surface. They exploit the above checkpoint mechanism, abusively

activate the immune checkpoint molecules (Dong et al., 2002)

and thereby escape destruction. By increased expression of PD-

L1 and/or the release of immunosuppressive factors cancer cells

may survive even in a “hot”, immune-cell enriched surrounding.

Checkpoint inhibitors are drugs blocking the binding

between PD-1 and its natural ligand, PD-L1. Clinical trials

have proved their efficacy (Brahmer et al., 2012; Kwa and

Adams, 2018). More recently a phase III trial in metastatic

triple negative breast cancer patients showed a distinct

improvement in progression-free survival and overall survival

(Brahmer et al., 2018). This demonstrates the significance of the

target (PD-1) being expressed when a PD-L1 antibody is used

(Schmid et al., 2018; Cortés et al., 2019).

In order to further improve these promising therapies, a

better understanding of the molecular mechanism of the PD-1

receptor is necessary.

1.2 Rationale for multi-level clustering

To evaluate minute movements within molecular dynamics

trajectories, all frames need to be fitted to a certain

intramolecular region (i.e. domain) at a reference frame (point

in time). Such a fitting domain should not significantly deform

itself over time (along a trajectory), in order to serve as a stable

reference against which very small and intricate movement

patterns outside this domain can be detected.

In previous work, domains for fitting were usually selected

manually, based on secondary structure, such as beta-strands,

beta-sheets or alpha helices. We detect such stable regions in an

unsupervised procedure from the computed dynamics itself. In

particular for example, if parts of beta-strands participate in the

binding mechanics to be evaluated, they should not at the same

time be part of the domain to which fitting is performed.

A most direct approach would be clustering according to

small changes in distance between pairs of atoms over the whole

trajectory. However, it is known that molecular systems tend to

switch between metastable states, each of which may pertain over

considerable parts of the simulation. During such a metastable

state, some pairs of atoms might remain in close vicinity, with

little variation of their distances. For example, atoms in some

loop, which assumes a certain conformation characteristic for

this and only this meta-state. Clustering only during this meta-

state would send these pairs into the same cluster. However, as

the system switches to another meta-state, the very same pairs of

atoms could be detached from each other, become members of

different neighborhoods and end up in different clusters if

clustering would be performed only over this second meta-

state. In consequence, one single pass of clustering over the

whole trajectory might particularly conceal minute patterns of

motion, being of focal interest. Separate clustering of segments of

a trajectory is likely to take account of such minute differences

between meta-states and exclude these regions from semi-rigid

domains to be obtained.

Deriving rigidity directly and unsupervised from the

simulation is considered a promising advantage and basis for

future MD-studies.

1.3 Molecular structures

The molecular structure of the immune checkpoint PD-1 is

shown in Figure 1, generated with VMD (Humphrey et al., 1996;

Hsin et al., 2008; Cross et al., 2009) from PDB (Burley, 2013)

entry 4ZQK (Zak et al., 2017). Since 4ZQK does not contain the

complete structure of PD-1, we have modelled the missing parts

in silico already in our previous work (Roither et al., 2021). The

immune checkpoint receptor, PD-1, consists of several beta

strands in tight mutual binding and respective loops in

between, see Table 1. These loops protrude loosely from a

rather compact beta core and offer versatile modes of

interaction and binding. In particular, the residues 70 to 77,

comprising the CC′-loop, are crucial for interaction with the

natural ligand PD-L1 (Kundapura and Ramagopal, 2019), see

Figure 2. Details of this interaction have been investigated

experimentally by Zak (Zak et al., 2015) and in molecular

dynamics studies by Liu (Liu et al., 2017) and our group

(Roither et al., 2020; Tomasiak et al., 2020; Roither et al.,

2021; Tomasiak et al., 2021).

In the present work we draw on previous experience with the

same system (Roither et al., 2020; Roither et al., 2021) but focus

on unsupervised clustering, using a very efficient algorithm

(Kenn et al., 2016) previously developed for MHC-molecules

and T-cell receptors (Kenn et al., 2014).

2 Materials and methods

Molecular preparation and technical details of the molecular

dynamics (MD) simulation have already been reported (Tomasiak

et al., 2021). In Sections 2.1, 2.2, we briefly recapitulate essential
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points for completeness. The remaining subchapters Sections

2.3.1–2.3.5 refer to evaluation methods specific for this work.

2.1 Preparation of molecular complexes

Structural data for MD simulations were downloaded from

the protein data bank (PDB, https://www.rcsb.org/) using the

following entries: PDB-ID 4ZQK for the PD-1/PD-L1 system

(resolution: 2.45 Å) (Zak et al., 2015) and PDB-ID 5GGS for the

PD-1/pembrolizumab Fab fragment complex (resolution: 2.0 Å)

(Lee et al., 2016). Missing residues in the crystal structure of the

endogenous ligand PD-L1 in complex with the extracellular

domain of PD-1 (PDB-ID 4ZQK), were added from the PD-

1/pembrolizumab system (PDB-ID 5GGS), the N loop was taken

from the PD-1/nivolumab system (PDB-ID 5WT9), see Roither

et al. (Roither et al., 2020) for further preprocessing details. For

determining the protonation states at pH 7.0 the H++ Server was

used (http://biophysics.cs.vt.edu/) (Gordon et al., 2005). The

assignment of strands, sheets, and loops was made following

the classification of the Protein Feature View applet available

within the 4ZQK record of the PDB (see Figure 1B).

2.2 All-atom molecular dynamics

As described previously (Tomasiak et al., 2021) all-atom MD

simulations were performed with GROMACS 2021.2 (Hess et al.,

2008), using the Amber99sb-ildn force field (Lindorff-Larsen et al.,

2010) and an explicit watermodel. For the simulation box a rhombic

dodecahedron was chosen with a minimum distance of 2 nm

between the respective molecules and the box boundaries. The

PD-1/PD-L1 complex consists of 4099 atoms and 240 residues,

and the complex was solvated in TIP3P water (Jorgensen et al.,

1983). Solute molecules were replaced by sodium and chloride ions

to reach a physiological salt concentration of 0.15 mol/L.

For the energy minimization the method of steepest-descent

was chosen. Before production runs the systems were

equilibrated at NVT and NPT for 100 ps (time step 2 fs) each.

In the NVT equilibration run the temperature was set to 310 K

using a Berendsen-thermostat (Berendsen et al., 1984) with a

time constant of 0.1 ps and position restraint MD. Equilibration

in NPT ensembles was performed under the control of a

Berendsen-barostat (Berendsen et al., 1984) set to 1 bar with a

time constant of 1.0 ps.

All independent production runs had a simulation time of

600 ns with a time step of 2 fs using the LINCS algorithm (Hess,

2008) for constraining bonds to hydrogen atoms. For the van der

Waals interactions a single cut-off of 1.47 nmwas used and a cut-off

distance of 1.4 nm for the short-range neighbor list in the Verlet

scheme (Verlet, 1967) for neighborhood search. For electrostatic

interactions the particle-mesh Ewald (PME) algorithm (Darden

et al., 1993) was applied with a cut-off of 1.4 nm. Temperature

coupling was done with the velocity-rescaling algorithm (Bussi et al.,

2007) at a temperature of 310 K and for pressure coupling at 1 bar

the Parrinello Rahman algorithm (Parrinello and Rahman, 1981)

was used with a time constant of 2 ps. 30000 frames for each run

were obtained by saving coordinates, velocities, forces, and energies

FIGURE 1
Molecular structure of immune checkpoint molecule PD-1. (A) Cartoon representation of the extracellular domain of PD-1. A two-layer β
sandwich is formed by two β sheets GFCC’ (colored yellow, orange, red,magenta) and ABED (colored violet, blue, cyan, green) with loops connecting
the respective β strands (colored silver). (B) Sequence of the residues of PD-1. The β strands of the protein are depicted as yellow boxes and the
connecting loops as arrows. The figures were prepared using VMD version 1.9.3 (Humphrey et al., 1996).
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every 20 ps to a trajectory file. Three independent 600 ns MD

simulations with different initial velocities were carried out for

each system, summing up to a total simulation time of 600 ns *

3 = 1.8 μs.

Prior to the evaluation, all frames of each given trajectory

were fitted to the first frame of the trajectory, according to

minimum root mean square deviation (RMSD) at time t. In

mathematical terms, the Cartesian coordinates xi of all atoms i

were translated and rotated towards minimum RMSD of the

backbone within β-strands and α-helices:

RMSD(t) � ⎡⎣ 1
Nbb

∑Nbb

i�1

����xi(t) − xi(0)
����2⎤⎦1/2 → Min (1)

where xi(t) is the position of atom i at time t. For the precise

regions of secondary structure elements (β-strands and α-
helices), see Tables 1, 2. Nbb is the total number of backbone

atoms (N, Cα, CO) contained therein. Finally, the first 100 ns of

each trajectory were discarded to get rid of initial phase trends,

leaving 500 ns with Nt = 25000 frames for each trajectory to be

further analyzed.

2.3 Obtaining semi-rigid domains

Semi-rigid domains for a given trajectory were obtained in a

two-step process: First, “spatial clustering” was performed by

grouping Cα-atoms showing similar movements into each of the

clusters. Evidently, such a clustering does not need to (and will

not) yield exactly the same clusters if spatial clustering is

performed for different subsections of Nf frames each (called

“segments” in the following) of a trajectory: Some pairs of Cαs

will stay together in a given cluster over many segments, others

will not (Kenn et al., 2014). This fact is exploited to perform

“time-wise clustering” as a second step, by constructing new

clusters from those Cαs which stay together within spatial clusters

across successive segments with maximum fidelity. Such groups

of atoms form clusters even more stable over time and are hence

TABLE 1 Residues and secondary structure of PD-1. The assignment of strands and loops was chosen according to the classification of the Protein
Feature View applet available within the 4ZQK record of the PDB. The domains were named following canonical Ig-strand designations (Zak et al.,
2015). ResIDS and ResIDE indicate the starting and the ending residue ID of the according domain within chain B of 4ZQK. Res#S and Res#E indicate
the starting and the ending residue number of a domain (continuous numbering for the whole complex in the respective PDB file).

Domain ResIDS ResIDE Amino acid sequence 4ZQK

Res#S Res#E

NtermA′ loop 25 35 LDSPDRPWNPP 116 126

A′ strand 36 38 TFS 127 129

A’A loop 39 40 PA 130 131

A strand 41 45 LLVVT 132 136

AB loop 46 49 EGDN 137 140

B strand 50 55 NATFTCS 141 146

BC loop 56 61 FSNTSE 147 152

C strand 62 70 SFVLNWYRM 153 161

CC′ loop 71 75 SPSNQ 162 166

C′ strand 76 82 TDKLAAF 167 173

C’D loop 83 94 PEDRSQPGQDSR 174 185

D strand 95 99 FRVTQ 186 190

DE loop 100 104 LPNGR 191 195

E strand 105 110 DFHMSV 196 201

EF loop 111 118 VRRRNDS 202 209

F strand 119 129 GTYLCGAISLA 210 220

FG loop 130 132 PKA 221 223

G strand 133 136 QIKE 224 227

GG′ loop 137 139 SLR 228 230

G′ strand 140 145 AELRVT 231 236

G’rest loop 146 149 ERRA 237 240

PD-L1 binding domain 70 77 MSPSNQTD 161 168

Pembrolizumab binding domain 74 99 NQTDKLAAFPEDRSQPGQDCRFRVTQ 165 190

NtermA′ loop 25 35 LDSPDRPWNPP 116 126
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termed “semi-rigid domains” (Kenn et al., 2016). The total

number of frames used from a trajectory, Nt, is partitioned

into Ns segments, with Nt = Ns * Nf. We used Ns = 500 and

Nf = 50, corresponding to 1 ns per segment and a frame length of

20 ps.

Note that time-wise clustering is a special mode of consensus

clustering (Monti et al., 2003), since the same clustering

algorithm is applied to different parts of a trajectory and a

consensus between these results is finally adopted.

2.3.1 Spatial clustering
One crucial aspect of collective motion of atoms is captured

by the variability (standard deviation) of mutual distances (Kenn

et al., 2014), usually termed STDDV. We use it as an

approximation for “motional distance” between two Cαs i and

j, and denote it for brevity by Dij defined as

Dij �
���������������������
Nf

Nf − 1
〈(dij − 〈dij〉)2〉√

(2)

where dij �
����xi − xj

���� is the Euclidean distance in a given (time-

wise) frame and 〈〉 denotes averaging over all Nf frames for

which clustering is intended, see Figure 3. Note that distances

are not affected by any fitting of the trajectory to a reference

frame.

For actual spatial clustering (over segments or over the whole

trajectory) we consider Cα atoms only and follow the concept of

Bernhard and Noé (Bernhard and Noé, 2010). Each Cα,i is

assigned a membership in cluster m, expressed as a real

number 0≤ ci,m ≤ 1, with zero meaning no membership and

1 standing for full membership. According to Bernhard and

TABLE 2 Residues and secondary structure of PD-L1. The assignment
of strands, loops and helices was chosen according to the
classification of the Protein Feature View applet available within the
4ZQK record of the PDB protein data bank. The domains were named
following canonical Ig-strand designations (Zak et al., 2015).
Res#S and Res#E indicate the starting and the ending residue
number of a domain (continuous numbering for the whole
complex in the respective PDB file).

Domain ResIDS ResIDE Amino acid
sequence

Res#S Res#E

NtermA loop 18 26 AFTVTVPKD 1 9

A strand 27 31 LYVVE 10 14

AB loop 32 35 YGSN 15 18

B strand 36 41 MTIECK 19 24

BH1 loop 42 48 FPVEKQL 25 31

Helix1 49 52 DLAA 32 35

H1C loop 53 53 L 36 36

C strand 54 59 IVYWEM 37 42

CC′ loop 60 61 ED 43 44

C′ strand 62 68 KNIIQFV 45 51

C’C″ loop 69 70 HG 52 53

C″ strand 71 72 EE 54 55

C″H2 loop 73 73 D 56 56

Helix2 74 82 LKVQHSSYR 57 65

H2D loop 83 84 QR 66 67

D strand 85 87 ARL 68 70

DH3 loop 88 88 L 71 71

Helix3 89 94 KDQLSL 72 77

H3E loop 95 95 G 78 78

E strand 96 101 NAALQI 79 84

EH4 loop 102 104 TDV 85 87

Helix 4 105 109 KLQDA 88 92

F strand 110 117 GVYRCMIS 93 100

FG loop 118 120 YGG 101 103

G strand 121 131 ADYKRITVKVN 104 114

Grest loop 132 132 A 115 115

FIGURE 2
Immune checkpoint molecule PD-1 and binding partners.
Cartoon representation of the extracellular domain of PD-1 bound
to the endogenous ligand PD-L1 (transparent blue). The figure was
prepared using VMD version 1.9.3 (Humphrey et al., 1996).
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Noé, theNα Cα atoms of the backbone are optimally decomposed

into k clusters by minimizing the following target function:

q(c) � ∑k
m�1

∑Nα

i�1
∑Nα

j�1
cimcjmDij � tr(cTDc) → min (3)

In the formulation of Bernhard and Noé, memberships

were assumed to be real numbers. This works successfully in

the end but affords tremendous computational expense. In our

previous work (Kenn et al., 2014) we were able to improve

Bernhard’s and Noé’s method by showing mathematically that

the membership coefficients, cim, have in fact to be crisp,

i.e., {0, 1}. Knowing this in advance drastically speeds up

the minimization specified in Eq. 3. Since a given atom can

only fully belong to one and only one cluster (no fragmentary

membership), optimization can draw on single atom moves

between clusters. We applied such a fast random search with

single atom moves, followed by exhaustive searches to obtain a

global optimum. Each lap of clustering was performed

100000 times and the result with the best target function

retained. For computational details, parameter studies and

thorough evaluations of accuracy and performance we refer to

our previous work (Kenn et al., 2016).

As a result, spatial clustering yielded crisp memberships,

c(s)i,m � {0, 1}, for Cα-atom i, in cluster m, within segment s, see

Figure 4. Note that 1≤ i≤Nα, 1≤m≤ k and 1≤ s≤Ns.

2.3.2 Time-wise consensus clustering
To arrive at a consensus we start with defining dissimilarity

Δij between two Cα -atoms i and j as:

Δij � 1
Ns

∑Ns

s�1
Δ(s)
ij � 1

Ns
∑Ns

s�1
⎛⎝1 − ∑k

m�1
c(s)im · c(s)jm

⎞⎠ (4)

with Δ(s)
ij � 0 if atoms i and j belong to the same cluster C(s)

m in

segment s and Δ(s)
ij � 1 otherwise. Summing up Δ(s)

ij over all

segments (s) yields the number of segments within which i and j

are not within the same cluster (Monti et al., 2003). Note that the

number of segments is an upper bound, e.g. atoms i and j may

reside “not in the same cluster” in 30 segments out of 500. The

precise choice of segment length has only minor impact on the

results. Shorter segment lengths (e.g., 25 frames per segment)

yield a similarity matrix of higher resolution, but entails only

minute changes in the final results. Naturally, a minimum length

of segments is required to obtain a reliable estimate of variances.

Division by the number of segments (Ns) finally renders a

FIGURE 3
Matrix of standard deviations of atom distances over whole trajectories, shown as scaled color image (SCI). (A): Trajectory t1 for complex 4ZQK,
consisting of receptor PD-1 and PD-L1 as ligand, showing enhanced similarity within two large areas (receptor and ligand, respectively). Note that
numbering starts with ligand PD-L1 with residue-ID = 18 (lower left corner), corresponding to residue number i= 1 in both axes of the SCI shown. PD-
L1 extends over 1 ≤ i ≤ 115. The N-terminal end of PD-1 starts with residue-ID = 25 and extends over residues 116 < i < 240 towards the right
upper corner. Elements of secondary structure are denoted right to the SCI (Zak et al., 2017), with their extensions indicated by horizontal grey
shaded bars. Standard deviations Dij [nm], computed according to Eq. 2, for values see color bar. (B): trajectory t2. (C): trajectory t3.
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FIGURE 4
Clustering standard deviations of distance variation (STDDV) with k = 7 over the whole trajectory t1. The best out of 100000 trials in the search
forminimum target function is shown. Each cluster (1–7) is shown in a separate color, see the color bar. The sizes of clusters 1 to 7were 44, 39, 39, 36,
34, 32 and 16. Elements of secondary structure are indicated by grey shaded bars and corresponding labels.

FIGURE 5
Similarity matrix after temporal consensus clustering trajectory t1, shown as scaled color image (SCI). Complex 4ZQK, consisting of receptor
PD-1 and PD-L1 as ligand, showing enhanced similarity within two large areas (receptor and ligand, respectively). Note that numbering starts with
ligand PD-L1 with residue-ID = 18 (lower left corner), corresponding to residue number i= 1 in both axes of the SCI shown. PD-L1 extends over 1 ≤ i ≤
115. The N-terminal end of PD-1 starts with residue-ID = 25 and extends over residues 116 < i < 240 towards the right upper corner. Elements of
secondary structure are denoted right to the SCI (Zak et al., 2017), with their extensions indicated by horizontal grey shaded bars. Spatial clusters: 7.
Note that the number of spatial clusters influences the similarity matrix and is given as input for computation. Consensus (0–500) indicates in how
many (out of 500) timewise segments two Cα atoms belonged to the same spatial cluster (no matter which cluster that was). Consensus shown
normalized to 0–1, see Eq. 5 and color bar.
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normalized measure of dissimilarity between i and j, relating to

the whole trajectory (e.g., 30/500 = 0.06). This dissimilarity lends

itself as a proxy for “distance” between atoms in this second lap of

clustering (consensus clustering). Since cluster memberships are

crisp, c(s)im ∈ {0, 1}, the concept above can also be expressed more

formally (but less intuitively) via a product of memberships, see

the second part of Eq. 4. Dual to dissimilarity, a similarity-matrix

can be obtained via

Cij � 1 − Δij (5)

see the example displayed in Figure 5. Note that similarity, as

defined above, will be used synonymously with “consensus” in

the framework of consensus clustering. Naturally, Cα atoms in

close succession along the backbone appear close to the diagonal

and show high consensus, see the color bar.

Another very illustrative way to display consensus between

atoms is a circular plot, see Figure 6. All Cα-atoms are arranged in

a circle and a threshold, Δth, has to be chosen. Whenever the

dissimilarity between two atoms is smaller than the threshold

(Δij ≤Δth), these are connected by a line. Thus, connected atoms

show small fluctuation in their distance over time.

2.3.3 Second lap of clustering based on
consensus

The dissimilarity matrix Δij was then subjected to

agglomerative clustering (Ward, 1963; Jain et al., 1999),

evaluating two methods for comparison, “average” and

“complete” (Mathworks, 2021). They differ in their mode of

linkage, i.e., the way, how the distance between two given

(intermediate) clusters is computed: Method “average” takes

the mean distance between individuals in different clusters to

represent the distance between both clusters. Conversely, method

“complete” adopts the largest of those between-cluster distances

as the distance between the two clusters.

FIGURE 6
Circular plot of small variations of inter-atom distances for PD-1 complexed with PD-L1. Trajectory 2, spatial clusters k = 7. Residues numbered
within each chain according to PDB convention. Around the circular plot, elements of secondary structure are indicated. Left: threshold for link to be
drawn: Δth � 0.04 � 20/500. Right: Δth � 0.1 � 50/500.

FIGURE 7
Agglomerative clustering according to inter-atomic time-
wise consensus. Spatial clustering (k = 7 clusters) within each of
500 time-wise segments. Consensus among these 500 results of
clustering was converted into distances and subjected to
agglomerative clustering with distance model “average”. For
reasons of clarity we call the results of agglomerative clustering
“groups” in the following—to distinguish from the results of spatial
clustering (“clusters”). Agglomerative clustering was terminated at
NG = 24 groups. The dashed line indicates NG = 7 groups, as an
example.
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The methods “average” and “complete” are both appropriate

for Euclidean as well as for non-Euclidean distances, which we

worked with, after all. A third method (“single”) would also be

appropriate for non-Euclidean distances, however it tends to

yield a large number of small clusters, what seemed inappropriate

for the structure of our molecules. Other methods are restricted

to Euclidean distances.

Agglomerative clustering yields a tree-like-structure

(dendrogram), an example is shown in Figure 7. At the left

vertical axis Cα atoms are arranged and colored according to

cluster membership, the residue-index being irrelevant here. The

horizontal axis shows dissimilarity, in our case values between 0

(each Cα-atom against itself) and a maximum equal to the

number of segments, Ns, into which the trajectory was split

(e.g., 500). Note that this maximum applies to the methods

chosen in this work but need not apply to other clustering

methods, such as “Ward” for example.

Clustering starts at bottom, with each atom representing a

cluster of its own (leaves of the tree). Then clustering proceeds

upwards (from left to right in Figure 7), in each step joining two

clusters, selected among all pairs according to minimum

distance. Note that there is no universal definition of

“distance” between two clusters but one has to choose among

several variants, i.e., “average” or “complete” in this work. Note

that “distance” appears on the horizontal axes in Figure 7. As a

result, any emerging cluster contains the sum of atoms contained

in both of its predecessors. Finally, the algorithm terminates with

a cluster containing all atoms, at the root of the tree.

The tree is then retraced from the root towards the leaves

(from right towards left in Figure 7), along decreasing

dissimilarity. Whenever a bifurcation is crossed, the number

of clusters increases, one by one. One may proceed until a

preselected number of clusters, NC, is encountered (e.g. NC =

7 in Figure 7) and thus obtain a corresponding ”cut-point” in

terms of dissimilarity, see the dashed line. Quantitatively, the cut-

point is computed as the median of those two levels of

dissimilarity that have been passed though latest during

recovery. In Figure 7, the final cut-point for display was

selected at NC = 24 groups (left, bottom border of tree). This

number of clusters was chosen to accommodate several large,

compact domains within the molecule (such as beta-sheets) as

well as several smaller parts, such as freely moving loops. This

intention has been fulfilled as clearly reflected in Figures 4, 8.

These clusters represent a partition of all atoms into a given

number (NG) of groups {G1,G2...GNG}, as shown in Figure 9.

These groups are shown in different colors.

2.3.4 Estimating the stability of clusters across
trajectories

Above we have explained spatial clustering within

consecutive segments of a single trajectory and then how to

perform agglomerative clustering into domains, based on time-

wise stability of these spatial clusters. Resulting clusters were

called “semi-rigid”. Finally, we evaluate how much clusters differ

between independent trajectories of the same molecular system.

This comparison yields an estimate of cluster-stability on an

upmost level, and was performed as follows.

For a trajectory t, NG time-wise consensus clusters

{G(t)
1 ,G(t)

2 ...G(t)
NG

} were obtained, with t � 1, 2, 3, since three

trajectories were generated. Let cluster-memberships of atom i

in cluster m within trajectory t be denoted by G(t)
im � {0, 1}, with

1≤ i≤Nα, 1≤m≤NG and 1≤ t≤ 3. When comparing results of

agglomerative clustering between trajectories, the following

problem arises: During agglomeration, emerging labels

(identity numbers) of clusters may depend on minute, even

somewhat random differences between trajectories. For

example, if an existing cluster is to be joined with its “nearest”

neighbor cluster, there might be two (or even more) neighbors

FIGURE 8
Number of atoms and variability of distance variation within groups from agglomerative clustering. 4ZQK, trajectory t1, parameters k = 7 and
NG = 24, similar to Figure 7. (A) Size of group (number of atoms). (B) Homogeneity within groups shown by a boxplot of distance variations between
pairs of atoms within each group (mean, quantiles, extremes).
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almost equally “near”. As a consequence, even minute differences

between trajectories in such a case induce different decision paths

“which cluster wins”, and branch into different joining-

operations for each trajectory. Since any new cluster generated

(by joining) receives the next available cluster-label in sequence, a

certain cluster-label may refer to two physically different groups

of atoms in each trajectory. All in all, even though agglomerative

clustering may produce nicely compatible physical groups of

atoms, the labels of those groups might (and usually will) result

totally permuted.

Therefore, after agglomerative clustering two trajectories, a

so called “assignment problem” arises (Ramshaw and Tarjan,

2012): How should pairs of corresponding clusters be identified

on an algorithmic basis?

In short, we proceeded as follows: We used the “Hungarian

Algorithm”, drawing on the special target function given in Eq. 7.

The value given by this target function represents the metric

between trajectories. A vivid display is given in Figure 10,

including a description how estimates come about for specific

groups of Cα atoms.

In mathematical detail, the following procedure was

performed: For each trajectory, NG (e.g., NG = 24) groups are

obtained, and out of NG! possible pairings the best matching has

to be determined, labels permuted accordingly, and re-assigned.

Only on this basis, a comparison—cluster by cluster—is

meaningful.

The assignment problem has been mathematically solved

(Kuhn, 1955), based on the “Hungarian algorithm”, was put in

a more general frame by Edmunds and Karp (Edmonds and

Karp, 1972), and is now available in the MATLAB routine

“matchpairs” (Duff and Koster, 2001): The user has to specify

a so called “loss function” which quantifies the “loss”

compared to a perfect match between two sets of clusters

{G(t1)
1 ,G(t1)

2 ...G(t1)
NG

} and {G(t2)
1 ,G(t2)

2 ...G(t2)
NG

}. Note that a

comparison is feasible only if both sets contain the same

number of clusters, NG. For example, when evaluating the

disparity between a pair of clusters {G(t1)
i ,G(t2)

j }, one may use

the symmetric difference

L(t1 ,t2)
ij �

∣∣∣∣∣(G(t1)
i ∪ G(t2)

j )∖(G(t1)
i ∩ G(t2)

j )∣∣∣∣∣ (6)

as a proxy for a so called loss function, with | | meaning the

number of elements in a group (cardinality). If both sets contain

the very same atoms, the loss L = 0, if they do not share a single

atom, the loss L(t1 ,t2)ij � |G(t1)
i ∪ G(t2)

j |, i.e., it equals the total

number of atoms in both groups. For intermediate cases, L

FIGURE 9
Atom groups resulting from agglomerative clustering consensus. 4ZQK, trajectory t1, parameters k = 7, cutoff NG = 24 groups. Note that the
groups were internally numbered in order of descending size and each cluster is indicated by the color along the color bar to the right. To visually
represent as many as 24 groups, 4 panels were generated for groups 1–6 (A), 7–12 (B), 13–18 (C) and 19–24 (D). Note also that each cluster does not
need to appear as coherent field in thematrix, since remote atoms in the peptide chainmay belong to one and the same cluster, as shown in the
circular graph, Figure 6. To identify a single cluster, all fields of the same color within one given panel have to be considered together. All in all, the
picture reflects the intricate connections of intra-molecular motions. Elements of secondary structure are indicated by grey shaded bars and
corresponding labels.
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represents the number of atoms contained in just one of both sets

but not in the other (exclusive or-condition).

Solving the assignment problem allows to re-label clusters in

a way that clusters with the same index go in pairs (common

index m replaces i, j) and this pairing entails minimum overall

loss. For this optimum assignment, losses are added over all

clusters to obtain the total clustering disparity between both

trajectories:

D(t1 ,t2) � ∑Ng

m�1

∣∣∣∣(G(t1)
m ∪ G(t2)

m )∖(G(t1)
m ∩ G(t2)

m )∣∣∣∣ (7)

Note that the solution of the assignment problem is not

commutative, i.e. D(t1 ,t2) ≠ D(t2 ,t1), i.e. it makes a difference in

results which trajectory comes first.We shall call it “reference” in the

following, e.g. trajectories t2 and t3 may be mapped on reference t1.
Optimized re-assignment and joint labelling of clusters

allows to boil down each cluster to its “stable kernel”, Km,

made up by those atoms belonging to the “same” cluster in all

three trajectories considered:

K(t1 ,t2 ,t3)
m � G(t1)

m ∩ G(t2)
m ∩ G(t3)

m , m � 1, ..., NG (8)

Such kernels may be displayed within 3D representations of

the molecular complexes.

2.3.5 Relating groups to molecular structures
For each atom i, its kernel-membership ki is known, with

1≤ ki ≤NG. This allows for visualization of such groups within

3D representations of the molecular complex. From the

memberships we generated Tcl-commands (Welch et al.,

2003) to color these groups in VMD (Humphrey et al., 1996),

see also the figures shown in the results section.

3 Results

3.1 Results for whole trajectories

Applying the methods explained above we obtained results

for the complex 4ZQK (PD-1 + PD-L1). First, standard

deviations Dij of pair-distances were computed over each

whole trajectory, with Nf = Nt in Eq. 2. Figure 3 shows the

result for trajectories t1, t2 and t3. Considerable differences

between trajectories t1, t2 and t3 can be seen.

Second, spatial clustering was performed over whole

trajectories, see an example in Figure 4 for t1 and k = 7. Note

that clustering in any case assigns each atom to one of the

clusters, even if its STDDV to quite many other atoms are

large, see the conspicuous stripes in shiny yellow in Figure 3.

As a consequence, clusters obtained this way inevitably also

house atoms not intended to be parts of semi-rigid domains.

3.2 Results for segmental clustering

Next, time-wise clustering was performed. Figure 5 shows the

similarity matrix with values between 0 and Ns, indicating how

often time-wise consensus clustering found two Cα atoms within

the same cluster. Note that clusters are neither numbered nor

labelled in this step, i.e., they do not have unique identifiers

related to their “inhabitants” in terms of physical atoms. For

example, the pair of Cα,128 and Cα,237 may be together in cluster

4 in time-wise segment 129 and together in cluster 5 in time-wise

segment 237. This would yield a consistency count of 2 (out of

500). Naturally, the number of segments,Ns, poses an upper limit

of consistency, expressing that these two atoms were in the same

cluster in all segments.

As consensus relates to linked mobility, most strong linkages

were seen within each molecule (chain) of the complex,

i.e., within PD-1 and within PD-L1. This resembles the fact

that beta-strands cooperatively fold into beta-sheets, and

corresponding atoms move in a more concerted way.

However, some weaker linkage is also present between both

molecules, see the parts in orange for residues of PD-1 towards

multiple parts of PD-L1: these regions show consensus. A few Cα

FIGURE 10
Visual representation of group-matching. Comparison of two
sets of 7 Cα groups resulting for trajectory t2 (horizontal axis) and
trajectory t1 (vertical axis). Group numbers are assigned with
decreasing group size (7–1). Values given in matrix elements
were evaluated via Eq. 6 and represent the loss function L(t1 ,t2)ij ,
i.e., the number of Cα atoms not contained in both groups. Low
losses indicate good matching between groups and are colored
blue, see the color bar. Diagonal elements represent a matching
according to group size only, e.g., L11 = 6 indicates that only 7 Cα

atoms are not members of these both groups (1–1). Elements off
the diagonal represent putative losses if group labels were
permuted, e.g., L12 = 87 indicates that 87 Cα atoms would
mismatch in a putative comparison between group 1 from t1 and
group 2 from t2. One can see that for groups 1 to 5, the original
labelling (according to group size) is already optimum. Conversely,
groups 6 and 7 have to be interchanged for optimum match.
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atoms at the start (i.e., the N-terminal loop) of the ligand even

show close relation to this region of PD-1, with consensus around

0.8 (appearing yellow).

Posing a threshold on dissimilarity, e.g., Δij ≤Δth, a circular

plot can be obtained, see Figure 6. Pairs of atoms are connected

by lines to indicate consensus if they appear in different clusters

in a fraction of segments smaller than Δth. For example, selecting

Δth � 0.06 � 30/500, connects atoms only if they end up in

different clusters in no more than 30 (time-wise) segments,

out of 500. Naturally, the larger the dissimilarity threshold,

Δth, is chosen, the more connection lines populate the circular

plot. Moreover, weak similarities, such as those between PD-1

and PD-L1, become visible only if large dissimilarities are

tolerated (right panel of Figure 6). They faint away in quite a

large percentage of frames.

The above results display concordance (i.e., similarity in

movements) between atoms, as it results directly from time-

wise consensus clustering, based on pairs of Cα atoms. These

pairwise results (consensus matrix) were subjected to a further

step of analysis, agglomerative clustering, see Figure 7. Note that

choosing a certain number of clusters, e.g. NG = 24, does not

change anything of the algorithm, it just defines the level of cutoff

through the tree where splitting into groups is considered as

result. Note that dissimilarities between clusters may well exceed

the upper limit of dissimilarities Δij between single atoms.

Clusters resulting from agglomerative clustering are

different in size (number of atoms), see Figure 8. The box

plot indicates variability within groups, based in the standard

deviations of inter-atom distances used as the key target for

spatial clustering. Groups from agglomerative clustering may

also be displayed in matrix form, see Figure 9. Like in

Figure 5, atoms are numbered consecutively, as they occur

in the 4ZQK complex in PDB. Elements of secondary

structure have been annotated to hint at possible relations

to atomic mobility. In addition, these groups were visualized

in circular graphs, see Figure 11.

Agglomerative clustering starts with each atom

representing its own cluster and then joins existing

clusters. By proceedings upwards level by level, it creates a

tree of larger and larger clusters, ending up in one maximum

cluster above all others. This tree may be pruned at any level

to yield different numbers of clusters. For comparison with

clustering STDDVmatrices according to Bernhard (Bernhard

and Noé, 2010), see Figure 4, we display the agglomerative

result pruned at NG = 7, see Figure 12. Note that colors have

been selected to match those of Figure 4, in order to be

directly comparable.

3.3 Stability of clusters across trajectories

Note that all visualizations shown so far pertained to one

single trajectory and a given set of clustering-parameters (k, NG).

It is interesting, however, to evaluate differences in results

between trajectories. To these ends we utilized the disparity

D(t1 ,t2) between pairs of trajectories, defined in Eq. 7.

Discrepancies in agglomerative clustering between pairs of

trajectories were 22, 40 and 28 for (t1, t2), (t1, t3) and (t2, t3),

FIGURE 11
Circular graph of semi-rigid domains from agglomerative
clustering time-wise consensus. 4ZQK, trajectory t1, parameters
k = 7, cutoff NG = 24 groups. Connective lines colored according
to Cα indices.

FIGURE 12
Atom groups for agglomerative clustering with cutoff NG =
7 groups. Complex 4ZQK, trajectory t1, parameters k = 7, cutoff
NG = 7 groups. For easy comparison with Figure 4, each cluster is
shown in a separate color, see color bar. Colors were
selected to match those of Figure 4, for direct comparison.
Elements of secondary structure are indicated by grey shaded bars
and corresponding labels.
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respectively (see Table 3). Comparing three trajectories naturally

leads larger discrepancies. For comparison, we also added the

results for agglomerative clustering in 7 groups, concordant with

the preceding Bernhard-clustering. Note that considering more

groups increases the chance for residues to switch between

groups, and concomitantly discrepancy increases, however, for

generating the final consensus, the more discrepant smaller

clusters were disregarded, see below.

Finally, however, we also created a consensus between

trajectories by estimating “kernels” of atoms belonging to the

same cluster in all three trajectories, see Eq. 8. Note that the

labelling of agglomerative groups originally varies randomly

between trajectories and has to be consolidated as described

in the methods section. Such a consolidated numbering—and a

corresponding coloring—was used to outline the kernels within a

3D model of the molecular complex, see Figure 13. These kernels

are considered as the “semi-rigid domains” aimed at.

4 Discussion

We applied the method of spatio-temporal clustering to the

PD-1/PD-L1 complex, aiming at identifying semi-rigid domains

within these molecules. Such domains are considered a highly

important basis for coming computational research since any

detection of minute movement patterns requires to fit molecular

configurations to stable kernels. Minute and interesting

movement patterns, e.g., of active loops, may then be

characterized with reference to such kernels.

During the course of an MD-simulation, larger portions

(“domains”) of a molecule might collectively move slowly but

move broadly back and forth in amplitude. Inside such a domain,

however, single amino acids and even more single atoms oscillate

at much higher frequencies. The goal is to separate these two

types of movement occurring on different spatial and time scales:

semi-rigid domains as a whole should go along with the larger but

slower movements, while housing those many tiny oscillations of

their “inhabitant“ atoms. As a result, a single atom performs both

motions in superposition—small oscillations at high frequency,

superimposed on larger andmuch slower collective motions of its

corresponding domain. Both types of motion in combination

influence the distances to its neighbor atoms.

In a non-supervised approach, one can only draw on the variation

of distances as such, without knowing their origin (tiny oscillations of

single atoms or large-scale movement of whole domains). Clustering

atoms with respect to variations of pair-distances will therefore yield

different results (clusters), when performed on different (time-wise)

parts of a trajectory. Finally, however, a smart clustering algorithm

should yield larger clusters “moving” in accordance with those larger

domains, each of these holding much the same groups of atoms as

inhabitants (members) over time.

For a start, we computed the standard deviations of distance

variations (STDDV) matrices of whole trajectories (Figure 3).

Since these matrices did not reveal prominent structures which

TABLE 3 Disparity in groups between trajectories. All results refer to k = 7 clusters for Bernhard clustering. Agglomerative clustering was performed
for 7 and 24 groups, respectively. For each comparison between trajectories, discrepancies in agglomerative clustering are given as numbers of
residues within different groups together with corresponding percentages of all residues (240). Note that, for a comparison between three
trajectories (right part of table), disparities evaluated according to Eq. 7 depend on the choice of the reference trajectory, listed in position 1—as a
coincidence, these results are all equal (44 and 68). Comparing 3 trajectories, means to include differences between 3 pairs of trajectories: For
example, an atom counts as disparity if it resides in different clusters for (t1, t2) even if it resides in corresponding clusters in (t1, t3) and (t2, t3). As a
consequence, disparities between triples of trajectories appear larger than those between pairs.

Groups Trajectory comparison

(t1, t2) (t1, t3) (t2, t3) (t1, t2, t3) (t2, t1, t3) (t3, t1, t2)

7 40 (16.7%) 28 (11.7%) 22 (9.2%) 44 (18.3%) 44 (18.3%) 44 (18.3%)

24 52 (21.7%) 44 (18.3%) 41 (17.1%) 68 (28.3%) 68 (28.3%) 68 (28.3%)

FIGURE 13
3D-Visualization of semi-rigid domains resulting from spatio-
temporal consensus clustering and consensus over trajectories.
Groups obtained from agglomerative clustering were
consolidated over 3 trajectories to obtain “kernels”,
representing semi-rigid domains. The 5 largest kernels are colored
and shown as surface representations. Note that kernels in red,
grey and yellow belong to PD-1 while kernels in blue and ochre
belong to PD-L1.
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could be clustered right away, we adopted a refined, three-step

procedure. Moreover, distinct differences between trajectories

became apparent in these matrices. We have to conclude that the

system obviously inhabited different configurational sub-spaces

in each trajectory, and simulation time has to be extended in

coming studies to closer approach ergodicity and visit all

portions of configuration space appropriately.

In the present work, matrices with different properties

were studied. The STDDV-matrix does not reflect distances as

such but rather variations in distance and therefore in general

will not fulfil the triangle inequality. Incidentally, the

Bernhard algorithm does not require fulfillment of the

triangle inequality. In the second step of our algorithm we

computed the dissimilarity matrix, Eq. 4, which fulfills the

triangle inequality. This was a main reason for us to adopt this

multi-step procedure.

To refine clustering we adopted a three-step procedure: First,

clustering according to distance variation, but separately over short

segments of the trajectory. Second, these results were consolidated

over all segments of the trajectory by characterizing consensus for

each pair of atoms: the percentage of time-wise segments in which

these two atoms shared (resided in) the same cluster. Note that this

second step yielded but pairwise information (consensus matrix),

visualized in various forms (Figures 5, 6). Third, we performed

agglomerative clustering to derive domain-like regions of coherence,

the final result, shown in Figure 13. Note that cluster memberships

after agglomerative clustering are in general different from those

obtained by spatial clustering in the first lap.

The most intuitive approach would have been

agglomerative hierarchical clustering, (Kaufman and

Rousseeuw, 1990; Teukolsky et al., 2007). In a preliminary

examination of the STDDV matrices (Figure 3) we found

that an important precondition of agglomerative clustering

is only poorly satisfied by MD data: Atoms may switch

between clusters quite freely, without severely changing

the target-function (minimum distance variability within

clusters). This may easily deteriorate agglomerative

clustering, and therefore we refrained from it as a first

step. However, in future studies it would be interesting to

mend this drawback, possibly by selecting more

sophisticated models for linkage between clusters (others

than “average” or “complete”). Also, agglomerative

clustering allows to optimize the cut-off (i.e. the number

of groups, NG) according to formal criterions such as

consistency (Mathworks, 2021). Linkage and cut-off could

be systematically evaluated and optimized.

The achievement of the present work is the unsupervised

consolidation of quite large domains within the molecular

complex, despite considerable movements of its member

atoms. Results were additionally consolidated by repeating the

entire analysis for three independent trajectories and considering

the overlap between these three replicates of a cluster as the final,

reliable rigid domain. Based on these semi-rigid domains, subtle

movements of active regions may be evaluated in future studies,

scrutinizing the molecular basis of receptor activation and action

of drugs, including checkpoint blockers in oncology.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://www.rcsb.org/structure/4ZQK,

https://www.rcsb.org/structure/5GGS.

Author contributions

Conceptualization, WS, MK, HK, and GP; methodology, MK

and RK; MD simulations, LT and RK; software, MK and MC;

formal analysis and investigation, MK and WS; resources, HK;

writing—original draft preparation, WS; writing—review and

editing, WS, RK, and MK; visualization, LT, MC, and MK;

supervision, WS. All authors have read and agreed to the

published version of the manuscript.

Acknowledgments

A major part of the molecular dynamics computations for

this work was performed at the Vienna Scientific Cluster (VSC).

Conflict of interest

GP received grants and honoraria from Pfizer, Roche, Novartis,

MSD, Seagen, Daiichi, UCB, Amgen, AstraZeneca, and Gilead.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fbioe.2022.

838129/full#supplementary-material

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Kenn et al. 10.3389/fbioe.2022.838129

https://www.rcsb.org/structure/4ZQK
https://www.rcsb.org/structure/5GGS
https://www.frontiersin.org/articles/10.3389/fbioe.2022.838129/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2022.838129/full#supplementary-material
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.838129


References

Berendsen, H. J., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak,
J. R. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys.
81 (8), 3684–3690. doi:10.1063/1.448118

Bernhard, S., and Noé, F. (2010). Optimal identification of semi-rigid domains in
macromolecules from molecular dynamics simulation. PLoS One 5 (5), e10491.
doi:10.1371/journal.pone.0010491

Brahmer, J. R., Lacchetti, C., Schneider, B. J., Atkins, M. B., Brassil, K. J., Caterino,
J. M., et al. (2018). Management of immune-related adverse events in patients
treated with immune checkpoint inhibitor therapy: American society of clinical
oncology clinical practice guideline. Jco 36 (17), 1714–1768. doi:10.1200/jco.2017.
77.6385

Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P.,
et al. (2012). Safety and activity of anti-PD-L1 antibody in patients with advanced
cancer. N. Engl. J. Med. 366 (26), 2455–2465. doi:10.1056/NEJMoa1200694

Burley, S. K. (2013). PDB40: The protein data bank celebrates its 40th birthday.
Biopolymers 99 (3), 165–169. doi:10.1002/bip.22182

Bussi, G., Donadio, D., and Parrinello, M. (2007). Canonical sampling through
velocity rescaling. J. Chem. Phys. 126 (1), 014101. doi:10.1063/1.2408420

Chen, D. S., and Mellman, I. (2013). Oncology meets immunology: The cancer-
immunity cycle. Immunity 39 (1), 1–10. doi:10.1016/j.immuni.2013.07.012

Cortés, J., Lipatov, O., Im, S. A., Gonçalves, A., Lee, K. S., Schmid, P., et al. (2019).
KEYNOTE-119: Phase III study of pembrolizumab (pembro) versus single-agent
chemotherapy (chemo) for metastatic triple negative breast cancer (mTNBC). Ann.
Oncol. 30, v859–v860. doi:10.1093/annonc/mdz394.010

Cross, S., Kuttel, M. M., Stone, J. E., and Gain, J. E. (2009). Visualisation of cyclic
and multi-branched molecules with VMD. J. Mol. Graph. Model. 28, 131–139.
doi:10.1016/j.jmgm.2009.04.010

Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: An N·log(N)
method for Ewald sums in large systems. J. Chem. Phys. 98 (12), 10089–10092.
doi:10.1063/1.464397

Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al.
(2002). Tumor-associated B7-H1 promotes T-cell apoptosis: A potential
mechanism of immune evasion. Nat. Med. 8 (8), 793–800. doi:10.1038/nm730

Duff, I. S., and Koster, J. (2001). On algorithms for permuting large entries to the
diagonal of a sparse matrix. SIAM J. Matrix Anal. Appl. 22 (4), 973–996. doi:10.
1137/s0895479899358443

Edmonds, J., and Karp, R. M. (1972). Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM 19 (2), 248–264. doi:10.1145/321694.
321699

Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., and Onufriev, A.
(2005). H++: A server for estimating pKas and adding missing hydrogens to
macromolecules. Nucleic Acids Res. 33 (2), W368–W371. doi:10.1093/nar/gki464

Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. (2008). Gromacs 4:
Algorithms for highly efficient, load-balanced, and scalable molecular simulation.
J. Chem. Theory Comput. 4 (3), 435–447. doi:10.1021/ct700301q

Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular
simulation. J. Chem. Theory Comput. 4 (1), 116–122. doi:10.1021/ct700200b

Hsin, J., Arkhipov, A., Yin, Y., Stone, J. E., and Schulten, K. (2008). Using VMD:
An introductory tutorial. Curr. Protoc. Bioinforma. 24, 51–55. doi:10.1002/
0471250953.bi0507s24

Humphrey, W., Dalke, A., and Schulten, K. (1996). Vmd: Visual molecular
dynamics. J. Mol. Graph. 14 (1), 3327–3838. doi:10.1016/0263-7855(96)00018-5

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering. ACM Comput.
Surv. 31 (3), 264–323. doi:10.1145/331499.331504

Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L.
(1983). Comparison of simple potential functions for simulating liquid water.
J. Chem. Phys. 79 (2), 926–935. doi:10.1063/1.445869

Kaufman, L., and Rousseeuw, P. J. (1990). Finding groups in data: An introduction
to cluster Analysis. New York: John Wiley.

Kenn, M., Ribarics, R., Ilieva, N., Cibena, M., Karch, R., and Schreiner, W. (2016).
Spatiotemporal multistage consensus clustering in molecular dynamics studies of
large proteins. Mol. Biosyst. 12 (5), 1600–1614. doi:10.1039/c5mb00879d

Kenn, M., Ribarics, R., Ilieva, N., and Schreiner, W. (2014). Finding semirigid
domains in biomolecules by clustering pair-distance variations. BioMed Res. Int.
2014, 1–13. doi:10.1155/2014/731325

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Nav.
Res. Logist. 2 (1-2), 83–97. doi:10.1002/nav.3800020109

Kundapura, S. V., and Ramagopal, U. A. (2019). The CC′ loop of IgV domains of
the immune checkpoint receptors, plays a key role in receptor:ligand affinity
modulation. Sci. Rep. 9 (1), 19191. doi:10.1038/s41598-019-54623-y

Kwa, M. J., and Adams, S. (2018). Checkpoint inhibitors in triple-negative breast
cancer (TNBC): Where to go from here. Cancer 124 (10), 2086–2103. doi:10.1002/
cncr.31272

Lee, J. Y., Lee, H. T., Shin, W., Chae, J., Choi, J., Kim, S. H., et al. (2016). Structural
basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy.
Nat. Commun. 7, 13354–13364. doi:10.1038/ncomms13354

Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O.,
et al. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein
force field. Proteins 78 (8), 1950–1958. doi:10.1002/prot.22711

Liu, W., Huang, B., Kuang, Y., and Liu, G. (2017). Molecular dynamics
simulations elucidate conformational selection and induced fit mechanisms in
the binding of PD-1 and PD-L1. Mol. Biosyst. 13 (1742-2051), 892–900.
(Electronic)). doi:10.1039/c7mb00036g

Mathworks (2021). MATLAB function: Linkage.

Monti, S., Tamayo, P., Mesirov, J., and Golub, T. (2003). Consensus clustering: A
resampling-based method for class discovery and visualization of gene expression
microarray data. Mach. Learn. 52 (1-2), 91–118. doi:10.1023/A:1023949509487

Parrinello, M., and Rahman, A. (1981). Polymorphic transitions in single crystals:
A new molecular dynamics method. J. Appl. Phys. 52 (12), 7182–7190. doi:10.1063/
1.328693

Ramshaw, L., and Tarjan, R. E. (2012). On minimum-cost assignments in
unbalanced bipartite graphs. HP Laboratories.

Roither, B., Oostenbrink, C., Pfeiler, G., Koelbl, H., and Schreiner, W. (2021).
Pembrolizumab induces an unexpected conformational change in the CC′-loop of
PD-1. Cancers 13 (1), 5. doi:10.3390/cancers13010005

Roither, B., Oostenbrink, C., and Schreiner, W. (2020). Molecular dynamics
of the immune checkpoint Programmed Cell Death Protein I, PD-1:
Conformational changes of the BC-loop upon binding of the ligand PD-L1
and the monoclonal antibody nivolumab. BMC Bioinformatics 21 (17). doi:10.
1186/s12859-020-03904-9

Schmid, P., Cortes, J., Bergh, J. C. S., Pusztai, L., Denkert, C., Verma, S., et al.
(2018). KEYNOTE-522: Phase III study of pembrolizumab (pembro) +
chemotherapy (chemo) vs placebo + chemo as neoadjuvant therapy followed by
pembro vs placebo as adjuvant therapy for triple-negative breast cancer (TNBC). Jco
36 (15), TPS602. doi:10.1200/JCO.2018.36.15_suppl.TPS602

Smith-Garvin, J. E., Koretzky, G. A., and Jordan, M. S. (2009). T cell activation.
Annu. Rev. Immunol. 27, 591–619. doi:10.1146/annurev.immunol.021908.132706

Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). “Section 16.4.
Hierarchical clustering by phylogenetic trees,” in Numerical recipes: The art of
scientific computing. 3 ed (New York: Cambrige University Press), 701–744.

Tomasiak, L., Karch, R., and Schreiner, W. (2020). “Long-term molecular
dynamics simulations reveal flexibility properties of a free and TCR-bound
pMHC-I system,” in 2020 IEEE international conference on bioinformatics and
biomedicine (BIBM), 1295–1302. doi:10.1109/bibm49941.2020.9313545

Tomasiak, L., Karch, R., and Schreiner, W. (2021). “The monoclonal antibody
pembrolizumab alters dynamics of the human programmed cell death receptor 1
(PD-1),” in 2021 IEEE international conference on bioinformatics and biomedicine
(BIBM), 3315–3321. doi:10.1109/bibm52615.2021.9669720

Verlet, L. (1967). Computer "experiments" on classical fluids. I.
Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159 (1),
98–103. doi:10.1103/PhysRev.159.98

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function.
J. Am. Stat. Assoc. 58 (301), 236–244. doi:10.1080/01621459.1963.10500845

Welch, B. B., Jones, K., and Hobbs, J. (2003). Practical programming in tcl/tk.
Upper Saddle River, NJ: Prentice Hall Professional.

Zak, K. M., Grudnik, P., Magiera, K., Dömling, A., Dubin, G., and Holak, T. A.
(2017). Structural biology of the immune checkpoint receptor PD-1 and its ligands
PD-L1/PD-L2. Structure 25 (8), 1163–1174. doi:10.1016/j.str.2017.06.011

Zak, K. M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak, B., et al. (2015).
Structure of the complex of human programmed death 1, PD-1, and its ligand PD-
L1. Structure 23 (12), 2341–2348. doi:10.1016/j.str.2015.09.010

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Kenn et al. 10.3389/fbioe.2022.838129

https://doi.org/10.1063/1.448118
https://doi.org/10.1371/journal.pone.0010491
https://doi.org/10.1200/jco.2017.77.6385
https://doi.org/10.1200/jco.2017.77.6385
https://doi.org/10.1056/NEJMoa1200694
https://doi.org/10.1002/bip.22182
https://doi.org/10.1063/1.2408420
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1093/annonc/mdz394.010
https://doi.org/10.1016/j.jmgm.2009.04.010
https://doi.org/10.1063/1.464397
https://doi.org/10.1038/nm730
https://doi.org/10.1137/s0895479899358443
https://doi.org/10.1137/s0895479899358443
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1093/nar/gki464
https://doi.org/10.1021/ct700301q
https://doi.org/10.1021/ct700200b
https://doi.org/10.1002/0471250953.bi0507s24
https://doi.org/10.1002/0471250953.bi0507s24
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1145/331499.331504
https://doi.org/10.1063/1.445869
https://doi.org/10.1039/c5mb00879d
https://doi.org/10.1155/2014/731325
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1038/s41598-019-54623-y
https://doi.org/10.1002/cncr.31272
https://doi.org/10.1002/cncr.31272
https://doi.org/10.1038/ncomms13354
https://doi.org/10.1002/prot.22711
https://doi.org/10.1039/c7mb00036g
https://doi.org/10.1023/A:1023949509487
https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.328693
https://doi.org/10.3390/cancers13010005
https://doi.org/10.1186/s12859-020-03904-9
https://doi.org/10.1186/s12859-020-03904-9
https://doi.org/10.1200/JCO.2018.36.15_suppl.TPS602
https://doi.org/10.1146/annurev.immunol.021908.132706
https://doi.org/10.1109/bibm49941.2020.9313545
https://doi.org/10.1109/bibm52615.2021.9669720
https://doi.org/10.1103/PhysRev.159.98
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1016/j.str.2017.06.011
https://doi.org/10.1016/j.str.2015.09.010
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.838129

	Molecular dynamics identifies semi-rigid domains in the PD-1 checkpoint receptor bound to its natural ligand PD-L1
	1 Introduction
	1.1 Medical background and clinical significance
	1.2 Rationale for multi-level clustering
	1.3 Molecular structures

	2 Materials and methods
	2.1 Preparation of molecular complexes
	2.2 All-atom molecular dynamics
	2.3 Obtaining semi-rigid domains
	2.3.1 Spatial clustering
	2.3.2 Time-wise consensus clustering
	2.3.3 Second lap of clustering based on consensus
	2.3.4 Estimating the stability of clusters across trajectories
	2.3.5 Relating groups to molecular structures


	3 Results
	3.1 Results for whole trajectories
	3.2 Results for segmental clustering
	3.3 Stability of clusters across trajectories

	4 Discussion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


