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Background: The outbreak of Coronavirus disease 2019 (COVID-19) has become an
international public health crisis, and the number of cases with dengue co-infection has
raised concerns. Unfortunately, treatment options are currently limited or even unavailable.
Thus, the aim of our study was to explore the underlying mechanisms and identify
potential therapeutic targets for co-infection.

Methods: To further understand the mechanisms underlying co-infection, we used a
series of bioinformatics analyses to build host factor interaction networks and elucidate
biological process and molecular function categories, pathway activity, tissue-specific
enrichment, and potential therapeutic agents.

Results:We explored the pathologic mechanisms of COVID-19 and dengue co-infection,
including predisposing genes, significant pathways, biological functions, and possible
drugs for intervention. In total, 460 shared host factors were collected; among them,
CCL4 and AhR targets were important. To further analyze biological functions, we created
a protein-protein interaction (PPI) network and performed Molecular Complex Detection
(MCODE) analysis. In addition, common signaling pathways were acquired, and the toll-
like receptor and NOD-like receptor signaling pathways exerted a significant effect on the
interaction. Upregulated genes were identified based on the activity score of dysregulated
genes, such as IL-1, Hippo, and TNF-a. We also conducted tissue-specific enrichment
analysis and found ICAM-1 and CCL2 to be highly expressed in the lung. Finally,
candidate drugs were screened, including resveratrol, genistein, and dexamethasone.

Conclusions: This study probes host factor interaction networks for COVID-19 and
dengue and provides potential drugs for clinical practice. Although the findings need to be
verified, they contribute to the treatment of co-infection and the management of
respiratory disease.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), which is due to novel
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has led to a sudden and sharp increase in hospitalizations for
pneumonia globally (1). In March 2020, the World Health
Organization (WHO) publicly announced that COVID-19 had
become a pandemic. As of June 22, 2021, there have been
178,503,429 confirmed cases of COVID-19 worldwide,
including 3,872,457 deaths reported to the WHO, and the
numbers continue to increase (https://covid19.who.int/).

Dengue, a mosquito-borne viral infection caused by four
dengue virus serotypes (DENV 1-4), is found in tropical and
subtropical climate areas, mainly in urban and semiurban
regions (2). According to the WHO’s report, the global
incidence of dengue has grown dramatically in the past few
decades (https://www.who.int/news-room/fact-sheets/detail/
dengue-and-severe-dengue). There are an estimated 100–400
million infections each year, and approximately half of the
world’s population is now at risk of contracting the disease.

There is some cross-reactivity and common pathological
processes, such as capillary leakage, thrombocytopenia, and
coagulopathy, between SARS-CoV-2 and DENV (3, 4), making
it difficult to distinguish their common clinical and laboratory
characteristics. Overall, patients with dengue fever, including
positive NS1 and/or IgM serology results, need to be
differentiated from those with SARS-CoV-2 infection, and
dengue IgM/IgG testing should be repeated if necessary to
identify co-infection or serological overlap (5). Two patients in
Singapore with false-positive results from rapid serological
testing for dengue were later confirmed to have SARS-CoV-2
infection because of persistent fever, and the repeat dengue test
(SD Bioline) was negative (6). This suggests that misdiagnosis
between COVID‐19 and dengue is objective.

Serological overlap makes it difficult to identify symptoms,
and co-infection complicates each disease. The COVID-19
pandemic and dengue fever recurrence epidemic in tropical
countries have become global health issues. One case of co-
infection has been reported in Mayotte, a French island in the
Indian Ocean (7). Due to the delay in the diagnosis of COVID-19
and the transmission of dengue fever by the insect vector,
measures need to be taken in endemic areas to avoid co-
infection (8), and the diagnosis of patients with febrile disease
should be organized to allow for diagnosis of both COVID-19
and dengue. In a research from Argentina, prolonged fever time
was a clinical indication for suspected co-infection in most
patients with mild COVID-19. Furthermore, in another study,
headache was the most typical symptom in patients with co-
infection (9). Colombia (10), Brazil (11), Pakistan (12), and other
countries have reported that COVID-19 and dengue may cause
overlapping epidemics and increase the number of critically ill
patients, thereby compounding the burden on the healthcare
system. There are overlapping outbreaks of COVID-19 and
dengue in dengue-endemic countries. Therefore, identifying
potential vector breeding sites to protect people from mosquito
bites and maintaining social distancing to avoid the risk of
COVID-19 transmission are very important (13).
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It is necessary to prepare for dengue outbreaks immediately
under the premise of controlling the COVID-19 pandemic. The
commissioners of Lancet Commission on Dengue and Arboviral
Diseases announced that an approach should be adopted for the
prevention and detection of dengue and other arboviral diseases
during the COVID-19 pandemic in tropical and subtropical
regions (14). Co-infection of SARS-CoV-2 and dengue has
become a hot research topic, and the common pathogenesis
and biological pathways of the two can be used as resection
points for project research.

In our study, we compared SARS-CoV-2 and DENV by
bioinformatics analysis and obtained 460 common core
targets and 30 common critical pathways through Gene
Ontology and KEGG enrichment to identify host factor
interaction networks between the two viruses. More in-depth
and more comprehensive analyses of enormous amounts of data
on RNA viruses such as SARS-CoV-2 and DENV can reveal the
molecular mechanisms by which viruses infect hosts and can also
help in designing therapies.
MATERIALS AND METHODS

Collection of COVID-19-Associated Genes
COVID-19-related targets were gathered from GSE147507,
GSE155249, and GSE157103 by searching the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo).
GEO is an international public repository that archives and freely
distributes microarrays, next-generation sequencing, and other
forms of high-throughput functional genomics data submitted
by the research community. The GSE147507 dataset involves the
transcriptional response to SARS-CoV-2 infection by expression
profiling with high-throughput sequencing and detailed
transcriptomic analysis of blood, lung, and bronchus samples
from COVID-19 cases (15). The GSE155249 dataset recorded
circuits between infected macrophages and T-cells in SARS-
CoV-2 pneumonia through high-throughput sequencing of
alveolar lavage fluid (16). The GSE157103 dataset entails a
large-scale and multiomics analysis of the severity of COVID-
19 (17). We obtained information by analyzing a set of
differentially expressed genes (DEGs) from the above three
datasets and screened the host gene set at FDR (false discovery
rate) <0.000001 and | LogFC |≥1.

In addition, we screened COVID-19-related host factors
through PubChem (https://pubchem.ncbi.nlm.nih.gov/
#query=covid-19), Comparative Toxicogenomics Database
(CTD) (http://ctdbase.org/), and DisGeNET (https://www.
disgenet.org/covid/diseases/summary/). PubChem is a public
repository for archiving biological data of small molecules
obtained through high-throughput RNA interference
screening, aimed at identifying critical genes responsible
for a biological process or disease condition (18). CTD is a
public resource for literature-based methods to store disparate
information for toxicogenomics, gene expression profiles,
diseases, environmental exposures, and pharmaceuticals (19).
DisGeNET is a wide-ranging platform that integrates data on the
genetic basis of human diseases and collects data on genotype-
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phenotype relationships from several resources, including
Mendelian, complex, environmental and rare diseases, and
disease-related traits (20). The top 500 hits in each database
were included. The date of access to the above six databases was
December 10, 2020.

Collection of Dengue-Associated Genes
We obtained dengue-related genes from the results of expression
profiling by high-throughput sequencing, including GSE38246,
GSE51808, and GSE84331, from GEO. The criteria for screening
host genes for each data set included FDR <0.000001 and | LogFC |
≥ 1. We searched CTD (http://ctdbase.org/), DisGeNET (https://
www.disgenet.org/), and GeneCards (https://www.genecards.org/)
at the same time and screened the top 500 hits in the three
databases. Among them, the GSE38246 (21), GSE51808 (22), and
GSE84331 (23) datasets provide host factors required for DENV
replication. GeneCards is an authoritative compilation of
annotative information that provides concise genome, proteome,
transcriptome, disease, and function data on all known and
predicted human genes (24). The date of access to the above six
databases was December 10, 2020.

Protein-Protein Interaction Analysis and
Network Construction
Common host factors between COVID-19- and dengue-related
targets were identified using the web tools provided by the Van de
Peer Lab (http://bioinformatics.psb.ugent.be/webtools/Venn/) and
input into the STRING website (version 11.0, https://string-db.org/)
(25) to generate a protein-protein interaction (PPI) network; the top
50 genes were selected. The PPI results were analyzed and visualized
using Cytoscape-3.8.1 (https://cytoscape.org/) (26, 27). CytoHubba
(http://apps.cytoscape.org/apps/cytohubba) (28) was applied to
perform network topology analysis. Then, module analysis of the
PPI network was performed by Molecular Complex Detection
(MCODE) in Metascape (https://metascape.org/) (29) and
exported to Cytoscape-3.8.1 for further visualization processing,
making the module concise and clear.

Gene Ontology and Pathway Enrichment
Analysis
We used R software to perform Gene Ontology and KEGG
pathway enrichment analyses of genes in common host factor
interaction networks. We chose a two-sided hypergeometric test
and Bonferroni step down for P-value correction (P < 0.05). The
ShinyGO v0.61 platform (http://bioinformatics.sdstate.edu/go/)
was used for WIKI pathway enrichment analysis.

Inference of Upstream Pathway Activity
SPEED2 (https://speed2.sys-bio.net/) (30) is a signaling pathway
enrichment analysis tool that is used to presume upstream
pathway activity of the host factor interaction networks between
SARS-CoV-2 and DENV. We first applied a list of gene IDs and
then chose the Bates test for test enrichment statistics. When
clarifying transcriptome data, it is important to infer which
signaling pathway triggers a particular gene expression program
rather than to score signaling pathway activity.
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Tissue-Specific Enrichment Analysis of
Top Genes
Genotype-Tissue Expression (GTEx) was performed by using the
GTEx Project (https://www.gtexportal.org/home/), which will
help researchers understand inherited susceptibility to disease
by identifying regions of the genome that influence whether and
how much a gene is expressed (31, 32). Tissue-specific
enrichment calculates tissue-specific gene enrichment in an
input gene set to assign tissue identities to single-cell clusters
and differentiated embryonic stem cells. We used R software to
perform tissue-specific enrichment analysis.

Predicting Drugs Through Interaction
Networks of Chemicals and Proteins
STITCH (search tool for interactions of chemicals) integrates
information about drug-target relationship information for over
68,000 different chemicals, including 2,200 drugs, and connects
them to 1.5 million genes (http://stitch.embl.de/). We used
STITCH to predict related drugs that might provide
intervention or treatment for these diseases.
RESULTS

Identification of Common Host Factors
Between COVID-19 and Dengue
After searching for COVID-19 based on CTD, we retrieved 7,726
related host genes. By searching COVID-19 in DisGeNET, 1,843
related genes were identified. Similarly, we obtained 651 genes by
searching COVID-19 in PubChem. The above data were selected
from the top 500 genes in accordance with relevance scores. From
three transcriptomics analyses, 154 factors were obtained from
GSE147507. In addition, 168 host factors were obtained
from GSE155249, which was the result of the study about
bronchoalveolar lavage fluid samples. In total, 202 constituents
were acquired from GSE157103, which was the result of the study
about plasma and leukocyte samples. The selection criteria were
FDR<0.000001 and |LogFC|≥1. Positive logFC indicates the
logarithmic degree of upregulation, and negative logFC indicates
the logarithmic degree of downregulation. Eventually, we included
1,721 host-related genes by collecting the union of the genes collected
in the database and the host factors analyzed by transcriptomics.

On the basis of searches in CTD, DisGeNET, and GeneCards, we
identified 2,679, 496, and 110 targets relevant to DENV, respectively.
Among them, the top 500 from CTD were included, and the data
form the other two were all included. Based on transcriptome data
analysis of GSE38246, GSE51808, and GSE84331, 1, 845, and 276
related host factors, respectively, were identified.

We identified 1,721 COVID-19-associated targets and
obtained the gene names of 1,901 dengue-related genes, with
no repetition. After collating COVID-19- and dengue-associated
targets, these two target categories were compared and filtered to
identify common elements using the web tools provided by the
Van de Peer Lab. Ultimately, 460 common host factors were
obtained, including MMP2, PDF, PFKP, SLC25A3, IGF1, CCL4,
July 2021 | Volume 12 | Article 707287
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TLR4, and AhR. The screening process of shared targets between
COVID-19 and dengue is shown in Figure 1.

PPI Network and Module Analysis
A PPI network was produced by STRING based on common host
factors and reimported into Cytoscape-3.8.1 for visual analysis and
network topology. The order of degree value from high to low was
IL-6, AKT1, TNF, ALB, TLR4, and STAT3, among others as shown
as Figure 2. Through MCODE of Metascape, we identified highly
interconnected portions and screened 11 vital modules on the basis
of interaction among the 460 targets. The degree of the node can be
seen intuitively in Figure 3. The greater is the number of points, the
higher is the degree. In module 1, the hub nodes were GSK3B,
Frontiers in Immunology | www.frontiersin.org 4
TLR4, TBK1, IKBKE, and HSP90AA1. In module 2, the hub nodes
were BUB1, BUB1B, CENPA, and BIRC5. In module 3, the hub
nodes were STAT3, IL-4, TGFB1, HGF, and PIK3CA. In module 4,
the hub nodes were NFKB1, EGFR, and JUN. In module 5, the hub
nodes were AGT, APP, CCL4, CCL5, and CXCL12. In module 6,
RAD51 was the most important target.

Gene Ontology and KEGG Pathway
Enrichment Analyses
Analysis of the Gene Ontology biology process in the Figure 4
showed that genes of the host networks are related to the process of
occurrence and development, including Response to stress,
Response to organic substance, Response to cytokine, Cellular
iden�fied the relevant host factors

screened the
host genes for
each data set
(FDR<0.000001
and |LogFC|≥1)

screened the top
500 for each

database

CTD (2679)

DisGeNET (496)

GeneCards
(110)

GSE38246
(1)

GSE51808
(845)

GSE84331
(276)

dengue related
databases

Screened the
host genes for
each data set
(FDR<0.000001
and |LogFC|≥1)

CTD (7226)

DisGeNET
(1843)

PubChem
(651)

GSE147507
(154)

GSE155249
(168)

GSE157103
(202)

COVID-19 related
databases

screened the top
500 for each

database

gained 1721 host factors of COVID-19 gained 1901 host factors of dengue

extracted the common host factors
between COVID-19 and dengue

gained 460 poten�al host factors

performed the further study

FIGURE 1 | The screening process of shared targets between COVID-19 and dengue. In total, 460 factors were shared. False discovery rate (FDR) using a
Benjamini-Hochberg approach (FDR<1×10-6) and |logFC| ≥ 1. Venn diagram tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). CTD: Comparative
Toxicogenomics Database (http://ctdbase.org/). DisGeNET: a platform containing genes associated with human diseases (https://www.disgenet.org/). PubChem: a
collection of accessible chemical information (https://pubchem.ncbi.nlm.nih.gov/). GeneCards: a database of human genes (https://www.genecards.org/). GEO:
Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/).
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response to organic substance, and Cellular response to chemical
stimulus, as well as other cell regulation of response to external
pathogen stimulation. In addition, molecular function analysis in
Figure 5 revealed signaling receptor binding, identical protein
binding, enzyme binding, cytokine receptor binding, drug
binding, and others. According to KEGG pathway enrichment
analysis, influenza A, measles, hepatitis B, hepatitis C, pathways
in cancer, Epstein-Barr virus infection, and the Toll-like receptor
(TLR) signaling pathway play important roles in interaction
between COVID-19 and dengue, that shows in Figure 6. The
TLR Signaling Pathway, Regulation of toll-like receptor signaling
pathway, Spinal Cord Injury, AGE/RAGE pathway, Oncostatin M
Signaling Pathway, PI3K-Akt Signaling Pathway, and
Photodynamic therapy-induced NF-kB survival signaling in WIKI
were important biological function pathways in the host factor
interaction networks, as shown in Table 1.

Upstream Pathway Activity
SPEED2 is a signaling pathway annotation enrichment analysis tool
with gene sets derived from pathway perturbation biological
Frontiers in Immunology | www.frontiersin.org 5
experiments in human cell lines. The understanding of
incorporated regulatory mechanisms can be simplified by
identifying modulated pathways upstream of differentially
expressed genes. Z-values, which we refer to as Zrank, were
rescaled for each experiment to the interval, providing the average
signed-rank for this gene across those experiments. If the Z-value
was higher than zero, the corresponding gene was upregulated; if it
was lower than zero, it was downregulated. Then, its significance
was assessed by a P-value, and ranked lists covering all of the
measured genes were used to assess enrichment or depletion of a
user-provided gene list. IL-1, Hippo, p53, TNF-a, and TLR
occupied a pivotal position as shown in as shown in Figure 7.

Tissue-Specific Enrichment Analysis of
Host Factor Interaction Networks
In tissue-specific enrichment analysis, each column represents a
different tissue, and each line represents a different factor; the
higher is the value of TPM, the darker is the color, and the
density of specific distribution of host factors in corresponding
tissue is higher. The heat map in Figure 8 shows the correlation
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FIGURE 2 | PPI network of common targets between COVID-19 and dengue. In the figure, the circle nodes indicate genes, and edges specify interactions between nodes.
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between different samples and factors. For example, the specific
distributions of host factors in the lung included HSP90AA1,
ICAM1, and JUN.

Predicted Drugs Through Host Target
Interactions With Chemicals
STITCH aims to construct a database that integrates data in the
literature and various databases of biological pathways, drug-
target relationships, and binding affinities. We used it to predict
pharmaceutical preparations according to chemical protein
interactions and drug-target relationships. The drugs related to
most genes mainly involve retinoic acid, estradiol ,
dexamethasone, and estrogen. The list of suggested agents for
COVID-19 and dengue co-infection can be seen intuitively in
Table 2. Among them, retinoic acid had the most enriched
targets, with 471 genes and 84 genes on the list. Resveratrol, an
anti-inflammatory and antioxidant, showed 180 genes in its
enrichment target, of which 64 were on the list.
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

Both COVID-19 and dengue are international public health
issues with adverse effects, and co-infection exacerbates the
worldwide burden on healthcare systems. Moreover, the
similar clinical manifestations and serological overlap between
COVID-19 and dengue raise the risk of incorrect diagnosis.
There is also a possibility that overlapping immunological
cascades may affect not only disease severity but also vaccine
development (3). In view of this condition, we analyzed host
factor interaction networks of COVID-19 and dengue co-
infection from the perspective of biological pathways and
attempted to screen potential agents. To elucidate mechanisms,
we identified common host factors and performed further
analysis. A PPI network was created, and vital modules were
analyzed. Subsequently, biological functional analysis with Gene
Ontology terms, KEGG, and WIKI was completed. In addition,
signaling pathway activity was assessed, and tissue-specific
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enrichment analysis was carried out. Finally, candidate drugs
were detected, providing a basis for in-depth research on
therapeutic strategies.

This study involved multiple steps. On the one hand, the
approach illustrated the role of pathogens in disease
development processes with a progressive logical relationship,
echoing the biological effects of viruses. The collection source
combined the database with transcriptome data, and the method
combined union and intersection, making the dataset more
comprehensive and accurate. On the other hand, the multiple
steps helped in overcoming the limitations of cross-sectional,
single-scale, and one-dimensional studies. Dynamic evolution in
the host during processes of infection and immune response
were analyzed at multiple scales, such as factors, pathways, and
tissue, reflecting a dynamic, multiscale, and multidimensional
research perspective. This study involved seven separate sections
each with its own distinct method and outcome, yet the whole
was integrated and complete.

Identification of Common Host Factors
Between COVID-19 and Dengue
After comparing the collected genes, 460 host factors common to
COVID-19 and dengue were found, including MMP2, PDF,
PFKP, SLC25A3, IGF1, CCL4, TLR4, and AhR, and further
analysis of interaction networks was performed.

COVID-19 pathogenesis is associated with excessive cytokine
release, such as CCL4 (33). This factor can dominate the
chemokine signature and shows persistently high concentrations
in patients with severe COVID-19 (34). Moreover, massive
Frontiers in Immunology | www.frontiersin.org 8
cytokine secretion is regarded as a part of the underlying
mechanism in dengue. As shown by a study from Mathieu
Nacher, dendritic cells infected by DENV express CCL4, which
is associated with vasodilation, endothelial dysfunction, and
disease severity (35). In SARS-CoV-2-infected cells,
overproduced plasminogen activator inhibitor-1 (PAI-1) binds
to TLR4 on macrophages, inducing secretion of proinflammatory
cytokines and chemokines (36). For patients with dengue, TLR4
on platelets binding with DENV NS1 is triggered, causing
thrombocytopenia and hemorrhage (37).

The shared factors are thought to be involved in other
activities as well. In COVID-19 patients, AhR stimulation
upregulates expression of mucins in alveolar epithelial cells,
causing accumulation of alveolar mucus and leading to silent
hypoxia formation, a unique feature of the disease (38). The role
of factors in DENV replication was also investigated. It has been
reported that an increase in DENV titer is related to activated
AhR; conversely, replication is inhibited by an AhR antagonist.
In summary, AhR appears to promote DENV replication (39).

PPI Network and MCODE Analyses
Revealed Key Factors of Host Factor
Interaction Networks
Targets with high interaction rates in host factor interaction
networks were obtained from PPI network analysis and might be
treatment targets, including IL-6, AKT1, TNF, ALB, TLR4,
STAT3, and JUN, among others.

IL-6 is elevated in COVID-19 and dengue and is related to the
severity of both (40). It can induce the production of other
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inflammatory cytokines by interacting with many different cells
and can cause E-cadherin expression; this leads to increased
endothelial permeability, which may result in Acute Respiratory
Distress Syndrome (ARDS), a fatal comorbidity of COVID-19
(41, 42). As reported by M Juffrie (43), this process is associated
with plasma leakage and shock caused by increased permeability
in dengue patients. Previous research has proposed that IL-6
contributes more to the disease pathogenesis of COVID-19 than
does DHF, and serum IL-6 levels are higher in severe pneumonia
patients with COVID-19 (44).

Virus-induced apoptosis is a significant event that determines
pathogenicity and virulence, though studies on the function of JUN
in SARS-CoV-2-induced apoptosis are limited. According to a study
on IBV (avian coronavirus infectious bronchitis virus), c-JUN seems
to protect coronavirus-infected cells from apoptosis (45).
Interestingly, in contrast to c-JUN, the findings from several
studies suggest that the c-Jun N-terminal kinase (JNK) pathway
exerts a crucial effect on regulating apoptosis evoked by coronavirus
infection (45–47). In a study of colony transcriptomes (48), c-JUN
Frontiers in Immunology | www.frontiersin.org 9
was highly expressed in DENV2-refractory colonies. In addition, the
findings from a study about JNK by Avisha Chowdhury suggest that
the pathways have a broad antiviral function against DENV,
depending on apoptosis induction and the complement system.
Moreover, activated c-JUN participates in controlling the
rearrangement of membrane structures, which is induced by
DENV and required for replication (49).

In total, 11 different plates were obtained with the MCODE
module in analysis of 460 common host factors. The main
function reflected by plate B was interferon (IFN) signaling.

Both SARS-CoV-2 and DENV can promote activation of
immune cells, leading to the release of proinflammatory
cytokines, such as IFN, and causing capillary leakage,
thrombocytopenia, and coagulopathy, pathophysiological
similarities between COVID-19 and dengue (3). In a study of
SARS-CoV-treated mice, interleukins, IFN, and chemokines
were notably increased within 24 h (50). Among them, IFNs
have antiviral, antiproliferative, and immunomodulatory
functions and are regarded as the first line of the body’s
antiviral defenses (51). Nevertheless, pDCs and monocytes
produce more IFN than other cells after viral infection, and
innate immune response plays a significant role in the formation
of the cytokine storm (50). In addition, IFN‐g in combination
with other inflammatory mediators can facilitate plasma leakage,
disseminated intravascular coagulation (DIC), and other
vascular disorders (3), which is the main pathological
characteristic of dengue.

Enrichment Analysis Showed the
Biological Functions of Host Factor
Interaction Networks
To investigate interaction networks at the molecular level,
functional enrichment analysis, including functional
annotations of significant factors and pathway enrichment
analysis, was carried out. GO was utilized to classify common
factors. In this study, the classification was executed according to
biological process and molecular function categories. Some
targets were identified as being associated with the response to
stress, response to an organic substance, response to cytokine in
biological processes, and response to signaling receptor binding,
identical protein binding, enzyme binding, and cytokine receptor
binding in molecular functions. The cytokine response
was significant.

SARS-CoV-2 infection gradually induces an excessive
inflammatory response and dysregulated immune defense,
which results in tissue damage and causes acute lung injury
(ALI) and even ARDS. The mechanism may be due to the
massive release of cytokines and chemokines, which might be a
characteristic of COVID-19 (33). The cytokine storm triggers
plasma leakage and disseminated vascular coagulation, which are
life-threatening respiratory symptoms in COVID-19 (52).

The pathogenesis of dengue includes cytokine storms,
vascular leakage, complement activation, autoimmunity, and
antibody-dependent enhancement. Through research on
patients with dengue hemorrhagic fever or dengue shock
syndrome, it was observed that cytokines are produced and
TABLE 1 | Results of pathway enrichment analysis through WIKI.

Enrichment
FDR

Genes
in list

Total
genes

Functional Category

5.57E-42 42 102 Wiki : Toll-like Receptor Signaling Pathway
2.10E-38 44 139 Wiki : Regulation of Toll-like receptor

signaling pathway
1.22E-29 35 116 Wiki : Spinal Cord Injury
1.51E-28 28 66 Wiki : AGE/RAGE pathway
2.72E-27 27 65 Wiki : Oncostatin M Signaling Pathway
4.91E-26 49 339 Wiki : PI3K-Akt Signaling Pathway
1.03E-25 21 35 Wiki : Photodynamic therapy-induced NF-kB

survival signaling
4.16E-25 41 234 Wiki : VEGFA-VEGFR2 Signaling Pathway
6.67E-25 28 87 Wiki : Retinoblastoma (RB) in Cancer
9.60E-25 23 50 Wiki : Photodynamic therapy-induced AP-1

survival signaling
5.57E-24 26 76 Wiki : Leptin signaling pathway
1.72E-23 27 88 Wiki : Allograft Rejection
1.05E-21 21 50 Wiki : Vitamin B12 Metabolism
1.05E-21 21 50 Wiki : Hepatitis C and Hepatocellular

Carcinoma
1.05E-21 19 37 Wiki : Fibrin Complement Receptor 3

Signaling Pathway
1.44E-21 23 66 Wiki : Folate Metabolism
1.61E-21 25 84 Wiki : Apoptosis
2.12E-21 24 76 Wiki : Prolactin Signaling Pathway
2.12E-21 27 105 Wiki : Senescence and Autophagy in Cancer
4.83E-21 16 24 Wiki : IL1 and megakaryocytes in obesity
8.82E-21 25 90 Wiki:T-Cell antigen Receptor (TCR) Signaling

Pathway
1.54E-20 25 92 Wiki : Corticotropin-releasing hormone

signaling pathway
1.67E-20 28 125 Wiki : Ebola Virus Pathway on Host
2.80E-20 16 26 Wiki : Cytokines and Inflammatory Response
3.23E-20 24 85 Wiki : Selenium Micronutrient Network
1.02E-19 19 46 Wiki : Aryl Hydrocarbon Receptor
1.02E-19 24 89 Wiki : Pancreatic adenocarcinoma pathway
1.28E-19 20 54 Wiki : IL-4 Signaling Pathway
4.30E-19 18 42 Wiki : TNF related weak inducer of apoptosis

(TWEAK) Signaling Pathway
4.30E-19 18 42 Wiki : IL-2 Signaling Pathway
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change rapidly during the course of the illness. T cells,
macrophages, monocytes, and mast cells can produce several
soluble factors, such as TNFa, IL-6, IL-8, and IL-10, to increase
the vascular permeability of primary endothelial cells (2).

Through KEGG and WIKI, we analyzed the biological
function of pathways in host factor interaction networks, such
as influenza A, measles, and hepatitis B in KEGG and the TLR
signaling pathway, regulation of Toll-like receptor signaling
pathway, and spinal cord injury in WIKI.

According to the findings of this study, the TLR pathway has
an important position, as revealed by KEGG andWIKI. After the
viral spike protein binds to host cells via ACE2, SARS-CoV-2
RNA is detected by TLRs (52). Similarly, TLRs recognize DENV;
TLR3 is able to establish an antiviral state (53), and TLR 4 can be
utilized by DENV to activate platelets in vitro (54).

Based on WIKI, another pathway shared by COVID-19 and
dengue is the NOD-like receptor signaling pathway. NLRP3 is a
member of the pathway, and its activation by Viroporin 3a seems to
have an important effect on the pathogenesis of SARS-COV
infection (55). According to relevant studies, SARS-CoV-2
infection causes a range of disease manifestations, with the most
serious being a massive inflammatory response that appears to
occur via activation of the NLRP3 inflammasome (56). Dengue is
related to the processing and release of proinflammatory cytokines.
After infection, the NLRP3-specific inflammasome is stimulated by
DENV through inflammasome activation. According to the present
study, the assembly process of the NLRP3 inflammasome complex
is promoted by the DENV-2 NS2A and NS2B proteins. NLRP3
further exerts its effect on IL-1b by regulating its maturation and
Frontiers in Immunology | www.frontiersin.org 10
secretion (57), increasing endothelial permeability and causing
vascular leakage (58).

Pathway Activity and Tissue Specificity of
Host Factor Interaction Networks
In this study, we also assessed the signaling activity of
dysregulated host factors, which is important to infer disease
mechanisms. According to the results, upregulated genes include
IL-1, Hippo, and TNF a, among others.

IL-1B, a proinflammatory cytokine, plays a vital role in the
inflammatory response caused by infectious pathogens (59). IL-
1B is activated in severe COVID-19, inducing vasodilation and
permeability and providing the conditions for immune cells to
arrive at the sites of damage. In addition, it can induce
complement activation and opsonization (60). The production
of IL-1B is promoted by platelets after infection with DENV, and
the synthesis of IL-1B-containing microvesicles is induced by
DENV, which ultimately increases vascular permeability (61).
Moreover, IL-1B-31C carriers run the risk of dengue shock
syndrome (DSS), implying that IL-1B is associated with the
pathogenesis of DSS (62).

TNF-a is a vital driver of inflammation (63). According to
relevant mouse studies in vitro and in vivo, synergistic activity of
IFN-g and TNF-a mimics the symptoms of COVID-19 and
triggers robust cell death (64). Moreover, TNF receptor levels
have been reported to show a positive correlation with dengue
hemorrhagic fever (DHF) severity (65). A study of a mouse
model of dengue hemorrhage implied that TNF-a induces
hemorrhage, resulting in endothelial cell death (66, 67).
FIGURE 7 | The rank of signaling pathway activity (adjusted P-value <0.05). The color represents the adjusted P-value; the brighter the color, the higher the rank.
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To explore the novel association of tissue with genes in interaction
networks, tissue-specific enrichment analysis was performed. For
example, expression of ICAM-1 was highly enriched in the lung.

Overall, the investigation of endothelial cell adhesion
molecules is meaningful for understanding the pathophysiology
of COVID-19. As reported by previous research, expression of
adhesion molecules, such as ICAM-1 and VCAM-1, is related to
systemic inflammation and might contribute to coagulation
dysfunction (68). In dengue, increased expression of ICAM-1
can result in the consequent influx of cells promoting
inflammation of the endothelium. Relevant studies are in favor
of the development of newmarkers for the evaluation, therapeutic
response, and clinical follow-up of patients with severe dengue
(69). Thus, ICAM-1 might be important for co-infection.

Identification of Candidate Drugs Against
Co-Infection
Finally, we studied chemical-protein interaction networks with
STITCH to identify several candidate agents with the potential to
treat COVID-19 and dengue co-infection, such as resveratrol,
curcumin, and quercetin. The findings require appropriate
validation. For example, quercetin has good antiviral, immune
modulation, and anti-inflammatory properties and is a potential
agent for treating co-infection. However, quercetin is genetically
toxic, mutagenic, and has other insuperable side effects (70), but
Frontiers in Immunology | www.frontiersin.org 12
it provides some guidance for drug development for the
treatment of co-infection.

Resveratrol is a well-known anti-inflammatory and
antioxidant agent (71). It can act on several mechanisms of
COVID-19, as shown by the research of Anderson O. Ferreira.
The drug can reduce entry of the virus by blocking binding to
ACE2 (72). Furthermore, it reduces NF-kB, inhibits the TLR4
pathway, and decreases the production and expression of some
significant inflammatory factors (73). As an endothelial barrier
protector, it can protect cells from stressful conditions to weaken
endothelial inflammation (74). Moreover, it has a potential
antithrombotic effect (75). With regard to dengue, the drug
can inhibit HMGB1 translocation to increase activation of
ISGs and subsequently exert an effect by partially suppressing
DENV replication (71).
LIMITATIONS

However, there are some limitations in this study. First, the
measurement methods for genomic data differed among studies,
which made it difficult to achieve complete unity. Second, in view
of the limitation of disease-gene and drug-target bipartite
networks in network pharmacology, associated information
loss was inevitable (76). Furthermore, the analysis methods
were dependent on computational power and data acquisition
(77), which was based on current research; hence, it was difficult
to predict the complete mechanism. Third, the potential of
resveratrol, a well-known anti-inflammatory and antioxidant
agent, to treat co-infection with COVID-19 and dengue was
based on data mining–based bioinformatics tools, and
experimental validation is required.
CONCLUSION

In this study, mechanisms of co-infection were preliminarily
revealed in terms of host factor interaction networks. With a
series of methods, the core factors and pathways were screened,
the biological function was analyzed, and new ideas for treatment
were revealed. However, as this study was based on data mining
and analysis, there were limitations; thus, more validated and
rigorous experiments are required to verify our prediction.
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