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ABSTRACT

Motivation: Modern protein sequencing techniques have led to the

determination of450 million protein sequences. ProtoNet is a cluster-

ing system that provides a continuous hierarchical agglomerative clus-

tering tree for all proteins. While ProtoNet performs unsupervised

classification of all included proteins, finding an optimal level of granu-

larity for the purpose of focusing on protein functional groups remain

elusive. Here, we ask whether knowledge-based annotations on pro-

tein families can support the automatic unsupervised methods for

identifying high-quality protein families. We present a method that

yields within the ProtoNet hierarchy an optimal partition of clusters,

relative to manual annotation schemes. The method’s principle is to

minimize the entropy-derived distance between annotation-based

partitions and all available hierarchical partitions. We describe the

best front (BF) partition of 2 478 328 proteins from UniRef50. Of

4 929 553 ProtoNet tree clusters, BF based on Pfam annotations con-

tain 26 891 clusters. The high quality of the partition is validated by the

close correspondence with the set of clusters that best describe thou-

sands of keywords of Pfam. The BF is shown to be superior to na€ıve

cut in the ProtoNet tree that yields a similar number of clusters. Finally,

we used parameters intrinsic to the clustering process to enrich a

priori the BF’s clusters. We present the entropy-based method’s

benefit in overcoming the unavoidable limitations of nested clusters

in ProtoNet. We suggest that this automatic information-based cluster

selection can be useful for other large-scale annotation schemes, as

well as for systematically testing and comparing putative families

derived from alternative clustering methods.

Availability and implementation: A catalog of BF clusters for thou-

sands of Pfam keywords is provided at http://protonet.cs.huji.ac.il/

bestFront/

Contact: michall@cc.huji.ac.il

1 INTRODUCTION

The explosive growth in the number of sequenced proteins is

mostly a result of the breakthroughs in sequencing technologies

and the corresponding sequencing of hundreds of organisms.

Despite these advances, the structure and function of most of

these proteins remains unknown. The most successful method for

functional annotation of proteins is by sequence alignment, hom-

ology detection and inference techniques. Generalization of such

approaches calls for charting the protein space by clustering or

classification (Radivojac et al., 2013). If successful, each such

group of proteins would represent a ‘family’. Classification into

families is a critical component in structural and functional

genomics. No accepted consensus exists for how many of these

protein families might comprise the entire protein-space

(Coordinators, 2014). There are �30 000 main orthologous

groups (Fischer et al., 2011) in addition to rare and peculiar

single proteins. With the increased number of complete prote-

omes, a phyletic partition shows that thousands of families are

associated with each multicellular organism. Various expert-

based databases provide a good description of protein families

(Mi et al., 2013; Punta et al., 2012). For example, InterPro (IPR)

is composed of 25000 models for families and domains and from

a structural perspective, there are �2600 superfamilies according

to CATH classification (Sillitoe et al., 2013).

Classifying the entire protein space into families serves not

only as a method for large-scale protein annotations but also

to support functional and structural genomic initiatives

(Loewenstein et al., 2009). Some prominent examples for protein

classification are SYSTERS (Liu and Rost, 2003), CluSTr

(Petryszak et al., 2005) and ProtoNet (Rappoport et al., 2013).

The shared theme of all these resources is the hierarchical nature

of the protein families. Furthermore, while all use BLAST-based

statistical distance metrics for the clustering, the implementation,

sensitivity, the notion of the distance metrics and consequently

the depth of the hierarchical representations are different for

each of the underlying algorithm and resource (Liu and Rost,

2003).
An important differentiating factor between various classifica-

tion systems is the level of granularity. More often than not,

definitions regarding the granularity are made arbitrarily, not

based on natural or systematic considerations. The importance

of granularity stems from the inherent diversity of the protein

space. While some families are well defined by their sequence

(e.g. Rubisco, Ribosomal proteins), the boundaries of many

other protein families are blurred. To complicate things even

further, some families may be best defined by a composition of

several subfamilies, while others are part of large and multifunc-

tional superfamilies (e.g. AAA superfamily, G protein coupled

receptors, protein kinases). Gene Ontology database (GO) (Gene

Ontology Consortium et al., 2013) and to some extent IPR

(Radivojac et al., 2013) incorporate the notion of parent/child re-

lationships for gene/protein family in cases where such relation-

ships are accepted. For example, the ‘Neurotransmitter-gated

ion-channel (IPR006201)’ is a parent of ‘5-hydroxytryptamine

3 receptor (IPR008132)’, which is itself divided into two related

subfamilies of A and B subunits (IPR008133 and IPR008134,

respectively).
To tackle the issue of varying granularity, we suggest a method

that searches among a hierarchical tree for the ‘front’ of clusters

that have a minimal entropy-based ‘distance’ from the optimal

annotation-based partition. The method can be used for seeking

the best matching partition, relative to any existing classification

system. In our work, we assess the quality of clusters of a con-

struction of the ProtoNet system, which is a fully automatic tree

of protein sequences (Rappoport et al., 2013).*To whom correspondence should be addressed.
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We choose for this purpose Pfam, an extensive documentation

of domains and families that represents one of the most reliable

sources for protein families (Finn et al., 2014). Pfam is a

semiautomatic family database with a strict quality control. It

contains �14 000 models for protein families and covers almost

80% of known protein sequences with �50% coverage of amino

acids. As such, Pfam is an extremely valuable resource for ad-

dressing questions concerning the quality of structural and func-

tional protein families.
The classification provided by ProtoNet is based on a bottom-

up unsupervised agglomerative hierarchical clustering (Kaplan

et al., 2005; Sasson et al., 2003). Specifically, it provides a full

range of cluster granularity; from single proteins to huge clusters

that carry minimal biological coherence (the root clusters). It is

possible to match the majority of Pfam families to specific clus-

ters within the ProtoNet clustering. Moreover, we search for

‘natural’ clustering partitions, from which the optimal granular-

ity can be inferred. The intuition for such a natural partition is

for it to be ‘entropically close’ to a partition based on Pfam

annotations of the proteins.
In this article, we describe the theoretical basis for a novel

entropy-based procedure for best front (BF) searching. To

allow for a priori prediction of the BF, we introduce additional

intrinsic clustering parameters that partially separate the entire

set of clusters present and those that are included in the BF. We

show that a combination of two such parameters is enough to

strongly enrich the BF from all clusters. Our method to identify

optimal granularity allows for automatic and systematic defin-

ition of the set of proteins that correspond to an orthologous

family. Such automatic definition could supplement current tech-

niques in genome-wide annotation projects, which are mostly

based on expert annotation (Barker et al., 2001). Furthermore,

it will serve to define families using the matching of a large

number of classification systems such as MetaFam (Silverstein

et al., 2001), Superfamily (Wilson et al., 2009) and more.

We show that the automatic information-based cluster selec-

tion of the BF is extremely useful for a systematic comparing of

clustering methods. Furthermore, the supervised approach can

be applied to biochemical functions (such as enzyme classifica-

tion), as well as for structural superfamilies. We provide a com-

plete catalog of the BF clusters for410 000 IPR keywords.

2 METHODS

2.1 Databases and sources

2.1.1 ProtoNet tree The tools and methods described in this art-

icle were applied to the ProtoNet protein classification system.

ProtoNet implements agglomerative hierarchical clustering using several

merging strategies. For the sake of simplicity, we choose to discuss only

one of the merging strategies offered by ProtoNet, called the ‘Arithmetic’

merging strategy (Sasson et al., 2003). ProtoNet (version 6.1) provides a

classification hierarchy that covers �9000 000 proteins from the

UniProtKB database (release 15.4). We have not discussed the expanded

version of ProtoNet that covers �20 million proteins (Rappoport et al.,

2013). We clustered 2 478 328 representative proteins as defined by

UniRef50. In the clustering tree, there are 4 929 553 clusters and 27 103

roots (mostly singletons). ProtoNet is available at http://www.protonet.

cs.huji.ac.il.

2.1.2 ProtoNet clustering measurements The agglomerative hier-

archical clustering scheme defines a set of terms that are intrinsically asso-

ciated with the process. In such a scheme, each cluster is created from

smaller clusters, which are captured as its descendants in the clustering tree.

ProtoLevel (PL) ranges from 0 to 100 and is used as a standard quan-

titative measure of the relative height of a cluster in the merging tree.

Indirectly, the PL of a cluster reflects the global average of the sequence

similarity BLAST E-score between proteins in the cluster. The PL of the

leaves of the tree is defined as 0, whereas the PL of a root equals 100. The

larger the PL, the later the merging that created the cluster took place.

Therefore, the PL scale is considered as an ‘internal timer’ of merges

during the clustering process.

The lifetime (LT) of a cluster is the difference between PL at its cre-

ation and its termination. The LT of a cluster reflects its remoteness from

the clusters in its ‘vicinity’. Explanations for additional terms that de-

scribe the clustering process such as depth, connectivity and compactness

are available on the ProtoNet Web site (see above).

2.1.3 Protein family annotations A total of 10337 annotations from

Pfam and a total of 11 327 keywords from IPR Family were used as

external protein family annotation sources. Of the 2 478328 UniRef50

proteins, 50% have at least one Pfam annotation.

2.2 Keyword correspondence scores

To measure the correspondence between a given cluster and a specific

annotation, we define the notion of a correspondence score (CS). The CS

for a certain cluster C and a given keyword K measures the correlation

between the cluster and the keyword, using the well-known intersect-

union ratio:

CSðC;KÞ=jc \ kj=jc [ kj=TP= TP+FP+FNð Þ Where c is the set of

annotated proteins in cluster C, and k is the set of proteins annotated

with the keyword K.

TP, FP and FN stand for true positives, false positives and false nega-

tives, respectively.

� TP is the number of proteins in cluster C that have keyword anno-

tation K.

� FP is the number of annotated proteins in cluster C that do not have

keyword annotation K.

� FN is the number of proteins not in cluster C that have keyword

annotation K.

The cluster receiving the maximal score for keyword K is considered to be

the cluster that best representsK within the ProtoNet tree. The score for a

given cluster on keyword K ranges from 0 (no correspondence) to 1 (a

cluster containing exactly all of the proteins with keyword K maximally

corresponds to the keyword).

For annotation keywords from several external sources, we define the

cluster with the best CS for each keyword as the best cluster for this keyword.

The sources used for defining the best clusters as well as their CS are

IPR (families and domains), Pfam, SCOP (fold, superfamily, family and

domain levels), GO (in three categories—molecular function, cellular pro-

cess and cellular localization), CATH (architecture, class, homology and

topology) and ENZYME (four levels of the EC hierarchy). For a detailed

description on the database and structure of the annotation sources see

(Rappoport et al., 2012). For simplicity, we describe in details only the

results of the information-theoretical method for Pfam and IPR.

An interactive table is available at www.protonet.cs.huji.ac.il/best_

cluster/

2.3 Information-theoretic approach for searching optimal

protein partition

For a given keyword annotation type, we would like to find, within the

hierarchical ProtoNet tree, the set of clusters whose partition of the set of
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annotated proteins maximally corresponds to the partition of the proteins

induced by their annotations. We use an information-theoretic–based

approach to find the set of protein-disjoint clusters having the minimal

‘distance’ from the keyword-induced partition of the proteins. Each pro-

tein in the system has �0 keyword annotations, as defined by a given

external source.

Let P be the set of all proteins in the system, KW the set of all key-

words in the system and CL the set of all ProtoNet clusters.

For a protein p 2 P, define kðpÞ as the set of all k 2 KW s.t. k anno-

tates p.

We thus define the following:

�= k; pð Þjp 2 P; k 2 KW
� �

�=set of couples (keyword, protein) where the protein p has the

specific annotation k.

c=the set of the proteins in cluster C.

f=a given front in the ProtoNet tree

= a protein-disjoint set of ProtoNet clusters that together cover the

whole space

= a partition of the protein space.

We define the mapping function: Cf : �! CL as

Cfðk; pÞ= the unique cluster of p in f

And define K : �! KW as K k; pð Þ=k.

These are the projections on the first and second coordinate,

respectively.

Our underlying probability distribution is uniform:

8ðk; pÞ 2 � : Pr ðk; pÞ=1=j�j

Thus for any k 2 KW; c 2 CL:

PðK=k;Cf=cÞ=

X
ðk;pÞ2�;p2c

Prðk; pÞ=

X
ðk;pÞ2�;p2c

1

�
; c 2 f

0; otherwise

8>>><
>>>:

We then define, using the Rokhlin metric (Katok, 1995), the ‘distance’

between the keyword-induced partition (K) and the partition defined by f

(Cf) as

�ðK;CfÞ=HðKjCfÞ+HðCfjKÞ

HðYjXÞ is the conditional entropy of Y given X, defined as

�
X
x;y

pðX=x;Y=yÞlog pðY=yjX=xÞð Þ

Minimizing this distance captures the intuition of attempting to find a

generalized ‘equivalence’ between specific protein clusters in f and specific

keyword annotations.

We then attempt to find the optimal ProtoNet front f* such that

f�=arg min f�ðK;CfÞ

We used an algorithm to calculate f* (‘the best front’=BF) from the

leaves of the tree upward, using the fact that the score of a front f is

simply the summated score contributions of its member clusters. The

algorithm has linear (OðnÞ) time complexity in the number of clusters

in the tree.

Note that any cluster consisting solely of non-annotated proteins are

transparent to this method due to the fact that all such cluster’s proteins

have an effective probability of 0.

Once the BF has been calculated, we can analyze in several ways. We

can compare its clusters’ CS to individual keyword annotations to see

which of the clusters in the front are practically equivalent to a spe-

cific annotation. This is done for each keyword using the

above-defined keyword CS. We also compare its maximally obtained

scores to the maximum scores in the whole ProtoNet tree. In addition,

we look for intrinsic clustering parameters that separate the BF clusters

from non-BF clusters.

3 RESULTS

3.1 ProtoNet clusters assignment as Best Global, Best

Front and Best Cut

ProtoNet relies on unsupervised automatic agglomerative clus-

tering method. Figure 1 illustrates the scaffold of the ProtoNet

tree. The leaves (i.e. individual proteins) represent the UniRef50

representative proteins. The term ‘Best Clusters’ is assigned for

clusters according to a specific annotation resource (e.g. Pfam)

and its keywords. We label clusters as ‘best’ according to the

maximal CS. For each keyword the CS ranges from 0 to 1.0

(see Methods, Section 2.2). We used three partitions and defin-

itions throughout the analysis: (i) Best Global (BG) clusters,

covering the best CS cluster among all ProtoNet clusters; (ii)

Clusters that have a maximal CS at a predetermined PL [Best

Cut (BC) cluster] and (iii) the newly developed entropy-based

partitions, called the BF clusters.
Figure 1 shows that some clusters may be ‘best’ for more than

one keyword. Evidently, for a specific keyword the BG can be

assigned to both parent and child clusters but this is not legitim-

ate for the BF and BC clusters.

3.2 Automatic identification of a BF for

Pfam-annotations

Using the information-theoretic entropy-based algorithm

described above (see Methods), a BF was created for Pfam an-

notations. A total of 26 891 clusters (including 2122 singletons)

Fig. 1. ProtoNet clusters assignment. An illustration for ‘best’ clusters

according to BF, BG and BC clusters. The best clusters are defined ac-

cording to CS (see Methods). Note that the BG Clusters will have the

maximal CS values. However, the BF and BC clusters are restricted by

the partition of proteins into disjoint clusters. Some clusters maybe ‘best’

for more than one keyword. The illustration is according to a specific

annotation resource (e.g. Pfam). The same scheme applies for other an-

notation resources [e.g. the Homology level in CATH classification (Cuff

et al., 2009)]. The PL (ranges 0–100) and the Life Time (LT, range 0–100)

are internal measurements of the ProtoNet tree

i626

N.Rappoport et al.

``
''
or more 
ve
``
''
:
:
``
''
:
``
''
s
s
correspondence score
Clusters 
Assignment 
,
,
``
''
correspondence score (
)
-
section 
3 
 (BG)
-
ProtoLevel
(
, BC)
,
--
Best Front (
)
Identification 
Best 
best Front front
Annotations
best front (
)
,


were defined as the BF. This number reflects an average com-

pressing factor of 92 from the number of initial proteins included

in the analysis. Recall that using the UniRef50 protein marked a

5.7 compression level on average (not shown). Thus, the BF

partition of UniRef50 sequences yields an effective compression

of 300–500 folds. In addition, the number of clusters in the BF is

only 0.5% of the original number of clusters. These 26981 clus-

ters contained 2 119 556 of the 2 478328 proteins. Of these

2 119 556 BF proteins (86% of all proteins), 17 237 proteins

(0.8%) had no annotations.

The family size and features of homologous protein families

have been extensively investigated. In Figure 2, the size distribu-

tions of the clusters in the BF and the keyword groups in IPR

family. The two size distributions are similar, but the groups of

IPR keywords tend to be slightly smaller on average. Almost all

of the clusters in the BF contained �500 proteins (Fig. 2). The

paired t-test of sizes’ distribution does not reject the null hypoth-

esis (P-value=0.7). The intersection between the clusters of IPR

BG clusters and the BF clusters is surprisingly low (only 623

clusters, 12% of the IPR clusters). While the size of the cluster

is a good indicator for overall familial correspondence, it does

not provide any direct information on the purity and quality of

the BF clusters.

3.3 Quality assessment of BF clusters

In assessing the resulting BF on a larger scale, we compared the

maximal CS within the BF to the maximal CS for all ProtoNet

clusters, for each IPR family keyword annotation.
Such a comparison can indicate how well the hierarchical tree

was ‘compressed’ into the BF, vis-�a-vis its performance for each

IPR keyword. Such compression, if it is sufficiently informative

in terms of its CS on specific keywords, is obviously more useful

than a global search for each keyword’s maximum scoring clus-

ter (defined as BG clusters). The former yields a disjoint partition

of the protein space that does not act as an essential constrain for

the BG maximum scoring CS clusters (Fig. 1).

The BG maximal CS distributions for ProtoNet clusters and

the BF clusters are shown (Fig. 3). A leftward shift of the score

distribution is observed, due to the fact that the maximal scoring

cluster is not necessarily included in the BF. However, since the

shift is modest, it is also apparent that the success of the BF, as

measured by its individual CS values, is high. The high match of

the BF clusters with the IPR keywords applied for many of the

IPR keywords, indicating that the BF retained significant know-

ledge regarding the nature of the individual IPR keywords.

Weighting the CS by the size of the clusters suggests that the

average CS of the BF cluster is higher than the non-weighted

CS average value. The average maximal CS was �0.71 and the

statistical significance for achieving such correspondence is

P-value51E-300.

A close inspection of hundreds of examples of protein families

revealed that many of the BF clusters merges with the maximal

correspondence-scoring (BG) clusters for those families. For ex-

ample, cluster 4802079 corresponds to ‘BolA-like protein’ key-

word (CS=0.98). Cluster 4768763 corresponds to the ‘Cysteine

dioxygenase type I’ keyword (CS=0.99). Such examples were

relatively abundant, indicating that the BF contained clusters

that, in addition to being part of the optimal global solution

for the BF, were optimal for a specific keyword.

Figure 3 shows a quality assessment of the BF clusters for all

5150 IPR clusters (a minimal size of 20 proteins for each IPR

keyword). We compared the CS value relative to BG clusters that

are not restricted to any partition of the tree and in principle can

have a maximal CS occurs in a parent–child hierarchy.

Interestingly, for the BF clusters, the dominating bins cover

the CS40.9. In this bin there are 52 and 73% of the BF and

BG clusters, respectively.

3.4 A comparison of the BF to a PL-defined partition

As shown before, the BF is only a small subset of the ProtoNet

clusters (0.5%).
To compare an alternative protein partition offered by a

different partition in ProtoNet, we compared the partition

Fig. 2. Distribution of cluster sizes in the BF (dark gray) relative to the

distribution of IPR (light gray) family keyword sizes (columns’ heights

are normalized). Most clusters in the BF contain �10–100 proteins (the

mean and median cluster size is 78.8 and 21, respectively). The mean and

median sizes of the number of protein appearances in IPR keyword

groups are 63 and 16, respectively

Fig. 3. Distribution of the BG clusters (dark gray) with a maximal CSs

from the entire ProtoNet tree for each of the IPR family keywords

(having �20 appearances). The (unweight) average maximal CS was

�0.91. The distribution of the maximal CS of all BF clusters (light

gray) for each of the IPR family keywords (having �20 appearances) is

shown. The average maximal CS for the BF was �0.71
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(i.e. ‘cut’) that have the largest intersection with the best clusters

for IPR family. Figure 4 shows that the BC merges with PL 90

(i.e. the clusters were created before PL90 and were terminated

after PL90). The set of clusters in PL90 achieves the highest

median CS (0.89) for IPR Family keywords and the value is

substantially lower for the IPR keywords that cover domains

(32% of all keywords). Among all the BF clusters, 3071 (979

clusters with size �20) are also included in PL90. Hence, it

might be expected, due to its similar number of clusters and

�22% overlap rate, that the performance of the maximally cor-

respondence-scoring clusters in PL90 would be similar to the

performance of the maximally correspondence-scoring clusters

in the BF. However, for most individual keywords, the max-

imally scoring BF cluster has a score equal to or greater than

the maximally scoring PL90 cluster, with a median of 0.91 versus

0.89 for BF clusters and PL90 clusters accordingly (t-test P-value

of 3E-27), and median sensitivity of 0.99 versus 0.98 (t-test

P-value of 4E-193). We compared the performance (measured

by the CS or the sensitivity) of PL90 BC and the BF clusters

(Fig. 5, top). The density of points above and around the bound-

ing line indicates that for many keywords the BF corresponds

to the keyword outperforms the maximally scoring cluster of BC

of PL90.
Figure 5 (bottom) shows that a complex IPR keywords of

‘kinase’(141, total of 217000 annotated proteins) resulted in

average CS of 0.68 relative to 0.59 that is associated with the

BC of PL90. The other ‘cuts’ (PL80, 85, 95) performs lower than

that for the BC partition.
Table 1 shows a sample of IPR keywords where the CS of the

BF clusters is substantially higher than the best cluster in the

PL90 cut. There are4120 clusters (covers 44 000 proteins) for

which the improvement of the CS of BF relative to the BC is

substantial (additional of40.3 units of the CS). Note that the BF

clusters are substantially small when compared with the BC clus-

ters (Table 1). Capturing the keyword accurately by the BF is

Fig. 5. Comparison of scores of the BC and the BF clusters. We com-

pared the sensitivity scores (ranges 0–1) for ProtoLevel 90 (PL90) for the

BC in view of the BF clusters (top). For each of the IPR family keyword

(5131 mapped, above 20 appearances), the maximal sensitivity of PL90

clusters is plotted against the sensitivity of the cluster with maximal CS

among the BF clusters. Among all the mapped IPR keywords, 141 belong

to families of kinases (bottom). All the 141 kinases families are sorted

according to the maximal CS of the BC clusters (PL90). Note the im-

provement in CS values for the BF clusters. Maximal gain in CS corres-

ponds to high-quality clusters (CS40.5)

Fig. 4. The distribution of the BG clusters with at least 20 appearances

(dark gray) and BF (light gray) clusters that include at least 20 proteins

according to the PL (X-axis). The BF clusters show a similar distribution

along the entire scale of PL values. PL90 covers the highest number of

BG clusters. Evidently, the performance of the BF clusters on any key-

word would always be bounded by the performance of all ProtoNet

clusters

Table 1. Maximal score (CS) for a sample of IPR keywords for BF and

BC clusters (sample of 15 IPR keywords)

IPR keyword BF

score

BF

size

BC

score

BC

size

PcrB-like protein 1.00 50 0.26 294

Non-structural protein NS1, parvovirus 1.00 38 0.47 78

Type-IV secretion system protein TraC 1.00 47 0.39 330

Cyanophycin synthetase 1.00 35 0.16 299

Protein of unknown function DUF191 1.00 35 0.34 112

Ferredoxin-like, FixX 1.00 32 0.04 3245

Very-long-chain 3-ketoacyl-CoA synthase 1.00 51 0.13 543

AbgT putaLve transporter 1.00 57 0.30 188

Glycoside hydrolase, family 63 1.00 45 0.25 237

Herpesvirus capsid shell protein VP19C 1.00 60 0.39 10

Short chain fatty acid transporter 1.00 28 0.15 188

Nickel insertion ATPase/GTPase, CooC type 1.00 87 0.08 3136

Glutathione synthetase, prokaryotic 1.00 42 0.20 299

Deoxyribodipyrimidine photolyase-related 1.00 53 0.29 433

Imidazole glycerol phosphate synthase, H 1.00 170 0.34 545
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best explained by matching with the subfamily level of

the keywords.

3.5 Intrinsic features of the hierarchical clustering

Once we assessed the quality of the BF based on its CS perform-

ance for IPR keywords, we tested whether the clusters of the BF

could be characterized by intrinsic parameters of the clustering

process.
The underlying motivation is that ProtoNet is created by a

fully automatic procedure with no prior knowledge of the protein

features or annotations, besides their pairwise alignment scores.

But, as a high percentage of the clusters in ProtoNet contain at

least one of the 10337 Pfam family annotations (50% of proteins

have at least one such annotation), it would be desirable to char-

acterize a set of clusters, in terms of their ‘expected correlation’ to

an annotation source such as Pfam, by learning the intrinsic

features of the clustering procedure. Such learned features

could be used to predict, a priori the most likely front that

best describes Pfam (or any other selected knowledge-based an-

notations). Such a compressed representation of the hierarchical

clustering would simplify the protocol for restricted search of

informative clusters in the hierarchical protein space.
An intrinsic value of the clustering process is a cluster’s Life

Time (LT, see Methods). We tested the feature of the LT in view

of the set of BF clusters as well as the entire ProtoNet tree.

Figure 6 quantifies the observation that the BF clusters can be

partially inferred from their LT. For example, at a LT of 0.5:

only 29% of all clusters have LT40.5; however, 59% of BF

clusters have LT40.5. Clearly one such clustering parameter

cannot replace the knowledge-based information. We therefore

search an additional parameter that corresponds with the BF

clusters. A useful parameter in defining the BF is the cluster

size. The intrinsic ProtoNet parameters include the combination

of the threshold of LT40.5, with a minimal number of proteins

in a cluster be410.

Applying the two thresholds to all clusters yielded 269 233

clusters, while application to the BF clusters yielded only 6609

clusters. The original fraction of the 26 981 BF clusters among all

clusters is a mere 0.5%, while the fraction following the minimal

thresholds of cluster size410 and LT40.5 is 3.5%. Thus, using

these internal parameters we significantly enriched a set that in-

cludes many of the BF clusters. In fact, each cluster is associated

with a larger set of parameters, such as its size, depth, LT, com-

pactness and connectivity. The idea that a combination of such

features could characterize a valid robust cluster is appealing

and was extensively used to prune many of the less informative

clusters (Rappoport et al., 2013).

4 DISCUSSION

The novel method described here offers a systematic framework

to address the quality of protein classification systems. While we

use ProtoNet as our test bed, it is important to note that the tools

and methods presented here are by no means limited in their

scope to ProtoNet. These can be tailored to other hierarchical

classification systems.

The procedure is valid and expandable to other types of an-

notations. It can possibly serve to suggest the BF for structural

and functional annotations (such as SCOP, CATH). However, it

must be noted that the procedure is currently only suited to an-

notation types with approximately one level of granularity.

Application of the method to a notably hierarchical annotation

type, such as GO protein annotations, has determined (unpub-

lished results) that the BF is the root containing all the proteins.

This is due to the fact that many GO annotations are not sep-

arable; i.e. there is a large, inherent, minimal level of ‘entropy’

within the GO annotations [see discussion in (Radivojac et al.,

2013)].
Our work shows that application of the annotation-based op-

timal partitioning procedure to the ProtoNet tree yielded a

highly compressed number of protein clusters, which are often

highly correlated with individual IPR keywords. In addition, we

showed that an inherent property of clustering, the LT, could be

used to remove clusters that will probably not be part of the BF

partition. The combination of these two results suggests the pos-

sibility of an automatic classification method that would be cap-

able of reconstructing the vast majority of Pfam/IPR knowledge

(in terms of family boundaries). An example for such automatic

support could be submission of novel unannotated sequences to

the ProtoNet BF partition, and assigning (with a certain prob-

ability) the sequence to one of the BF clusters (each essentially

equivalent to a certain protein family).
An issue not yet addressed is the application of the method

to a general set of protein annotations. The distance measure

defined here has a theoretical minimum of 0; however, this

value will not be the true lower bound for most annotation sys-

tems, as even having 1 protein with 2 different annotations (per-

haps due to its being composed of multiple non-overlapping

domains) will not allow the HðKjCfÞ term to go to 0, for any

partition of the proteins. Allowing the splitting of a protein into

its domains could address this problem. Additionally, calculation

of the minimal theoretical value of the distance could be used to

put the BF score in the context of its feasible values, implicitly

part of the annotation system used. This theoretical lower bound

essentially defines the ‘entropy’ inherent in an annotation system.

Fig. 6. A cumulative frequency cluster LT histogram. LTs are shown for

clusters in the Pfam-based BF (solid line), and for all clusters within

ProtoNet (dashed line). Note that while 480% of all clusters are

below a LT of 0.3, only 51% of clusters of the BF are characterized

by such a LT
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The ProtoNet tree that is the basis for the information-
theoretic approach is based on UniRef50. This implies that
each cluster maybe weighted by hundreds of sequences. For ex-
ample, in mammals there are 1036 protein sequences named

‘hemoglobin’ and 3625 named ‘hydrolase’. These sets in
UniRef50 are compressed to 62 and 840 representatives, respect-
ively. Therefore, the current analysis for ProtoNet that is com-

posed of 2.5 million representatives is challenging with respect to
the task in this study. However, extending the analysis for the
expanded version of UniProtKB meets the limitation of compu-

tation feasibility (not shown). The current UniProtKB release
3_2014 already contains 54 million sequences and �10 million
in UniRef50. The statistical- and information-driven method

presented allowing a rational navigating in such large resource.
In future work we will further validate BF hierarchies using stat-
istical learning methods. Such tests are meant to reflect how well
the BF would perform in an unsupervised setting. Preliminary

results (not shown) indicate that the BF method is both robust
and valid.
The main drawback of the approach described above is its

need for externally defined protein annotations. Therefore, we
would like to be able to learn the intrinsic parameters of a given
system that predict, with minimal error, the clusters in a charac-

teristic BF. Fortunately, the amount (and quality) of protein
annotation is rapidly increasing, with Pfam already including
�14 200 annotations. The information-theoretic approach de-
veloped here can only benefit from such trends, without sacrifi-

cing computational efficiency or accuracy.
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