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The recent increase in bacterial resistance to antibiotics has motivated the resurgence of
the study of natural antimicrobial products. For centuries, plants have been recognized
for their bactericidal properties. However, in the last two decades, it has been reported
that several plant derived metabolites at growth subinhibitory concentrations also tend
to have anti-virulence properties, since they reduce the expression of factors that cause
damage and the establishment of pathogenic bacteria. In this area of study, plants have
been positioned as one of the main natural sources of anti-virulence molecules, but only
a small portion of the plant species that exist have been investigated. Also, anti-virulence
studies have been primarily focused on analyzing the ability of extracts and compounds
to inhibit quorum sensing and biofilms formation in vitro. This mini-review discusses the
current panorama, the trends in the study of anti-virulence phytochemicals, as well as
their potential for the development of antibacterial therapies.
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INTRODUCTION

Bacteria are social cells that use quorum sensing (QS) to communicate with organisms of the same
species, between species, as well as with other domains of life (Banerji et al., 2020). QS systems
(QSS) involve the release of chemical signals called autoinducers, to perceive the presence and
concentration of other cells (Castillo-Juárez et al., 2017). This allows them to exhibit multicellular
behaviors and regulate the gene expression of various phenotypes at the population level, as
among them, production of metabolites (pigments, antibiotics) and virulence factors, including
the formation of biofilms (Castillo-Juárez et al., 2015). It is estimated that 80% of chronic bacterial
infections form biofilms that promote adherence to host cells and allow them to withstand massive
doses of antibiotics and evade the immune response (Townsley and Shank, 2017).

Anti-virulence activity (anti-pathogenic or anti-infectious) is a broad concept that refers
to the ability to prevent production of the factors responsible for establishment, damage and
spread, but without affecting bacterial viability (LaSarre and Federle, 2013; Totsika, 2016).
It has been proposed that development of anti-virulence therapies is a viable strategy for
control of bacterial infections, with the possibility of avoiding or reducing the appearance
of resistance (Defoirdt, 2018; Scoffone et al., 2019). In the last two decades, many plant
species and phytochemicals have been identified as having anti-QS and anti-biofilm properties
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(Silva et al., 2016; Muñoz-Cazares et al., 2017). In this mini-
review, the current situation of anti-virulence phytochemicals,
the evidence, and the challenges faced by this field of research
were analyzed.

ANTI-VIRULENCE PROPERTIES OF
BACTERICIDAL PHYTOCHEMICALS

Natural products of microbial origin are the main source of
bactericidal compounds, which had a “golden age” in the middle
of the last century and prompted the development of commercial
antibiotics (Brown and Wright, 2016). However, despite being
one of humanity’s greatest scientific discoveries, the alarming
increase in bacterial resistance has put their efficacy and future
use at risk (López-Jácome et al., 2019). Nevertheless, it should be
noted that only a small proportion of the total bioactive molecules
in nature have been explored, so new antibiotics continue to be
sought (Li et al., 2019; Stokes et al., 2020). Different strategies are
being used to avoid the “nightfall” of this class of molecules and
favor the emergence of a second “golden age” (Figure 1).

Although the trend in development of antimicrobials has
focused on their growth inhibitory properties, it has also been
reported that antibiotics at sub-inhibitory concentrations can
modulate QSS, virulence (Davies et al., 2006; Khan et al., 2020b),
and biofilm formation (Khan et al., 2020a). For example, linezolid
has been reported to reduce production of virulence factors from
Staphylococcus aureus (Bernardo et al., 2004). Also, azithromycin
interferes with QS, reducing gene expression and the production
of autoinducers in Pseudomonas aeruginosa, while streptomycin
does so in Acinetobacter baumannii (Nalca et al., 2006; Saroj
and Rather, 2013). Interestingly, this phenomenon has also
been identified in drugs of mass consumption such as aspirin
(El-Mowafy et al., 2014) and ibuprofen (Dai et al., 2019), in
fermented products, and in various bactericidal phytochemicals
(Muñoz-Cazares et al., 2017). Thus, the effect of metabolites at
low concentrations on microbial social networks and virulence
regulation is a frontier issue that increases the number of
molecules to be explored at sub-inhibitory concentrations
(Figure 1).

CHALLENGES AND TRENDS IN THE
STUDY OF ANTI-VIRULENCE
PHYTOCHEMICALS

In recent decades, it has been reported that many natural
products, especially phytochemicals, exhibit anti-virulence
properties when evaluated at subinhibitory concentrations
(Brown and Wright, 2016; Silva et al., 2016; Muñoz-Cazares
et al., 2017; Mulat et al., 2019). Within natural products,
plants are an important source of anti-virulence molecules,
but most have been evaluated only in vitro. They are not new
chemical structures, and many have been reported as bactericidal
(Muñoz-Cazares et al., 2017).

The trend in studies related to identification of the anti-
virulence mechanism of phytochemicals has focused on showing

that they interrupt some element of the QSS. The in silico
approach has been widely used through computational methods,
such as molecular docking, to suggest the interaction of
phytochemicals with LuxR-type receptor proteins and/or LuxI-
type synthases (Deryabin et al., 2019). Multi-omics analysis
(proteomic, transcriptomic, and metabolomic) has shown that
some phytochemicals interfere with the expression of various
QS genes, but also with other non-QS genes. Such is the case
of coumarin, which reduces the expression of genes involved
in QS, type 3 secretion system (T3SS), and metabolism of
cyclic diguanylate in P. aeruginosa (Zhang et al., 2018). In the
same way, ajoene reduces the expression of virulence factors in
P. aeruginosa and S. aureus by inhibiting small regulatory RNAs
(Jakobsen et al., 2017; Table 1). However, some reports identify
natural products that can inhibit other anti-virulence targets
such as other secretion systems, adhesion molecules, toxins, two-
component systems, key enzymes, curli, flagellum as well as
metabolic processes involved in the formation and maturation of
biofilms (Muñoz-Cazares et al., 2018).

Several anti-virulence phytochemicals have been shown to
reduce establishment and damage caused by bacteria in vivo,
mainly in the nematode Caenorhabditis elegans in murine models
(Castillo-Juárez et al., 2015) and animals of importance in
aquaculture (Zhao et al., 2015). Also, they have preventive effects
on phytopathogenic bacterial infections in some models with
Arabidopsis thaliana, Brassica oleracea and Solanum tuberosum,
among others (Jhosi et al., 2015; Sivaranjani et al., 2016).
Although there is evidence that disruption of virulence by
phytochemicals is a potential strategy to prevent disease, there are
emerging issues and challenges that have been little studied and
are detailed below (Mulat et al., 2019).

Anti-virulence Phytochemicals and Their
Role in the Daily Diet
One of the trends is related to the role of anti-virulence
phytochemicals present in edible plant species and their ability
to prevent infectious processes (Givskov, 2012; McCarthy and
O’Gara, 2015). Although it is thought that plants are unlikely
to contain concentrations of phytochemicals high enough to
counteract established bacterial infections, it has been proposed
that their continuous consumption may prevent development
of chronic infections (Givskov, 2012). This is still difficult to
conclude, but, QS inhibitors have been identified in some edible
species such as garlic (Bjarnsholt et al., 2005), oilseeds (Pérez-
López et al., 2018), and hibiscus acid isolated from Hibiscus
sabdariffa (Cortes-López et al., 2021), which have been shown to
have anti-virulence properties and reduce bacterial pathogenicity
in mice (Table 1).

Phytochemicals as Inducers de QS
Bactericidal molecules commonly have a dose-response effect,
but at subinhibitory concentrations, they can exhibit multiple
effects on bacterial cells (Davies et al., 2006; Figure 1). Hormesis
is a phenomenon that commonly occurs at low concentrations
and is characterized by antagonistic activities (stimulate/inhibit)
exhibited by the same molecule, depending on the concentration
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FIGURE 1 | Schematic representation of the current status of antimicrobial strategies: “The world of the inhibitory”. The tip of the iceberg represents the bactericidal
compounds that have been discovered, while the light of the beacon searches for current strategies to prevent the “dusk” of this class of molecules. The resurgence
of research in natural products, repurposing drugs for use as antibiotics, nanoparticles, chemical synthesis of new bactericides, as well as advances in computer
science, omics, artificial intelligence, and synthetic biology are playing a relevant role in the development of new bactericidal compounds (Zakeri and Lu, 2013;
Pushpakom et al., 2018; Li et al., 2019; Stokes et al., 2020). However, in this analogy the strategy of “shooting to kill,” allows some pathogenic microorganisms to
live and generate resistance; in addition, in the “crossfire” beneficial microorganisms are eliminated. In the “world of the sub-inhibitor,” the number of bioactive
molecules to be explored is greater, and the strategy is based on “disarming without killing,” in theory, will not induce resistance. At values below the minimum
inhibitory concentration (MIC), the compounds exhibit different effects, among which are anti-virulence, and signal molecule activity, and they have hormetic and
adjuvant effects (Cox et al., 2017). The term “anti-virulence agent” also includes peptides, enzymes, and antibodies. QS, quorum sensing; TS33, type 3 secretion
system and TCS, two-component systems.

(Mattson, 2008; Martel et al., 2019; Figure 1). Although the
hormetic effect of phytochemicals has been reported in other
biological activities (Martel et al., 2019), their clinical use could
be complicated by a change in concentration that can stimulate
virulence. It has been reported that furanone and other inhibitors
can inhibit or activate QS depending on the concentration
(Martinelli et al., 2004; Welsh et al., 2015; Yao et al., 2019).
Similarly, some natural products with no bactericidal activity
can stimulate the formation of biofilms (Ranieri et al., 2018). In
the case of phytochemicals, the hormetic effects have been little
studied, but linalool and eugenol have been reported to have
this type of effect on biofilm formation and the rhamnolipids
production of P. aeruginosa PAO1 (Kim Y. G. et al., 2015).
Also, coumarin was reported to affect swarming of Ralstonia
solanacearum (Chen et al., 2016) and capsaicin to affect biofilm
formation in P. aeruginosa PAO1 and Serratia marcescens
(Rivera et al., 2019).

Effects of Anti-virulence Phytochemicals
on the Microbiome
So far, inhibition of virulence regulation systems appears to
be advantageous in combating pathogenic bacteria. However,
there are still few studies on its effect on the QS systems of
beneficial bacteria, the microbiome in general, or on the host
(McCarthy and O’Gara, 2015; Lakes et al., 2020). Unlike in vitro
monoculture trials, pathogenic bacteria develop in polymicrobial
communities where they interact with environmental factors
and different specific signaling molecules (many of them still

unknown) that can determine the virulence of the pathogen
(Banerji et al., 2020). We now know that the intestinal
microbiome participates in many aspects of health; microbe-
host interactions influence obesity, inflammatory and digestive
processes, and certain psychiatric conditions, among others
(Burdet et al., 2019). In this context, it has been seen that
alteration of the microbiome by exposure to penicillin at sublethal
doses in the early stages of development induces metabolic
alterations and affects expression of genes involved in host
immunity, favoring obesity induced by a high-fat diet (Cox et al.,
2014). Similarly, some phytochemicals commonly ingested in
the diet (phenolic compounds, terpenes, and alkaloids) affect
intestinal bacterial groups and it is suggested that they may
affect host microbial ecology and physiology when administered
at bactericidal concentrations (Lakes et al., 2020). Morever,
recent studies suggest that in complex microbial communities,
interference with QS severely affects microbiome composition.
However, up to the moment of this review, we did not find
reports related to the effect of anti-virulence phytochemicals on
the microbiome at sub-inhibitory concentrations (Nguyen et al.,
2019; Waheed et al., 2020).

Development of Combination
Anti-virulence Therapies
Some of the strategies to potentiate the efficacy of anti-virulence
molecules are the development of combination therapies of
inhibitors with different targets (Fong et al., 2018; Ranieri et al.,
2018). However, although the mechanism of action of most
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TABLE 1 | Main antibacterial effects of phytochemicals at sub-inhibitory concentrations.

Phytochemical Plant species Effect Anti-virulence activity/target Preclinical trials References

Ajoene Allium sativum Quorum quenching,
anti-biofilm

Reduces biofilm formation and production
of QS-regulated virulence factors/ Inhibits
small regulatory RNAs, such as RsmY and
RsmZ in P. aeruginosa and RNAIII in
S. aureus.

Reduced the bacterial load of P. aeruginosa
in a mouse model of lung infection.

Jakobsen et al.,
2012, 2017

Baicalin Scutellaria baicalensis Anti-biofilm, quorum
quenching, and adjuvant

Reduces biofilm formation and production
of QS-regulated virulence factors in
P. aeruginosa. Improves the bactericidal
effects of some conventional antibiotics.

Reduced the number of bacteria in a
mouse peritoneal implant infection model.

Luo et al., 2017

Berberine Coptis japonica var.major
Satake, Phellodendron
chinense Schne der

Adjuvant Inhibitor of the MexXY dependent
aminoglycoside efflux

NA Morita et al., 2016

Curcumin Curcuma longa L. Quorum quenching,
anti-biofilm

In the form of ZnO/curcumin
nanocomposites, reduces expression and
production of QS-regulated virulence
factors in P. aeruginosa/CI-QS

Increased survival of specific pathogen-free
albino mice injected with P. aeruginosa.

Prateeksha et al.,
2019

b-sitosterol Various plant species Anti-toxin Prevents cell lysis caused by pneumolysin
and other cholesterol-dependent toxins/ It
interferes with binding sites of the toxin
(Thr459 and Leu460) with cholesterol

Reduced bacterial load in lungs and
mortality of mice intranasally infected with
Streptococcus pneumoniae

Li et al., 2015

Cinnamaldehyde Commercially obtained Adjuvant NA Increased bactericidal activity of tobramycin
and baicalin hydrate, favoring elimination of
B. cenocepacia in lungs of mice

Brackman et al.,
2011

(Continued)
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TABLE 1 | Continued

Phytochemical Plant species Effect Anti-virulence activity/target Preclinical trials References

6-gingerol Zingiber officinale Anti-biofilm and quorum
quenching

In P. aeruginosa, reduces biofilm formation,
swarming, rhamnolipid production,
pyocyanin, and exoprotease activity/CI-QS

Increased survival of specific pathogen-free
mice injected with P. aeruginosa

Kim H. S. et al.,
2015

Glycyrrhizin Glycyrrhiza uralensis Anti-toxin Inhibits the interaction of the heat-labile
enterotoxin of enterotoxigenic E. coli with
GM1 of intestinal epithelial cells

Prevented enterotoxin-induced fluid
accumulation (antidiarrheal effect) in the
patented mouse gut assay

Chen et al., 2009

Hibiscus acid Hibiscus sabdariffa L. Anti-biofilm and quorum
quenching

In P. aeruginosa, reduces biofilm formation,
swarming, alkaline protease, and elastase
activity/ CI-QS

In a mouse model of dermonecrosis, it
reduced establishment, damage, and
systemic spread

Cortes-López et al.,
2021

(-)-hopeaphenol
(resveratrol tetramer)

Anisoptera thurifera and
A. polyandra

T3SS inhibitor Block expression and secretion of the
effector proteins ExoS from P. aeruginosa
and Yop in Yersinia pseudotuberculosis

NA Zetterström et al.,
2013

Saturated fatty acids Helianthus annuus L.,
Salvia hispanica L. and
Amaranthus
hypochondriacus L.

Quorum quenching Reduce violacein production and the
activity of alkaline exoprotease/CI-QS

Increased survival of mice infected with
Chromobacterium violaceum

Pérez-López et al.,
2018

Tirucallane-type
triterpenoids

Schinus terebinthifolia
Raddi

Quorum quenching S. aureus: accessory gene regulator (agr)
(leucocidin A (lukA), glycerol ester hydrolase
or lipase (gehB), nuclease (nuc)) and d-toxin
production

Reduce dermonecrosis in a murine model
caused by S. aureus

Tang et al., 2020

Vitexin Anti-biofilm, quorum
quenching, and adjuvant

The combination azithromycin and
gentamicin increase antibiofilm activity and
reduces the production of QS-regulated
virulence factors in P. aeruginosa/ CI-QS

Reduced the number of bacteria in a
mouse peritoneal implant infection model

Das et al., 2016

T3SS, type 3 secretion system; NA, not available; CI-QS, possible competitive inhibition with QS receptor proteins.
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phytochemicals is unknown, it is highly feasible that they act
at various sites to reduce virulence, as some transcriptomic
and proteomic studies have revealed (Jakobsen et al., 2017;
Zhang et al., 2018).

Adjuvant activity is a property that has been recently identified
in several natural anti-virulence products and that helps to
restore the activity of antibiotics against sensitive and resistant
strains (Cox et al., 2017). Such are the cases of baicalin (Luo
et al., 2017), berberine (Morita et al., 2016), cinnamaldehyde
(Brackman et al., 2011), and vitexin (Das et al., 2016; Table 1).
Although the mechanisms involved in this phenomenon are
not known, in the case of berberine it has been reported
that it restores the bactericidal activity of aminoglycosides
because it blocks the efflux pumps that expel these antibiotics
(Morita et al., 2016).

Induction of Resistance
The premise of the anti-virulence strategy is based on removing
the pathogenicity of microorganisms without directly affecting
their viability, so that, arguably, strong selection pressures are
not generated to induce resistance (McCarthy and O’Gara,
2015). However, some reports indicate that furanone C-
30 at subinhibitory concentrations generates resistance by a
mechanism that involves the expression of expulsion pumps for
this compound (Maeda et al., 2012; García-Contreras et al., 2016).
Also, it is suggested that the presence of “cheaters” (bacteria
that do not participate in collective communication but do
benefit from the products that are produced) in populations
may favor resistance because they would be naturally resistant
to QS inhibitors (Kalia et al., 2014). Moreover, a recent finding
in Escherichia coli suggest that QS inhibition may promote
conjugation of plasmids and increase the mutation rate, hence
favoring the generation of resistance (Li et al., 2021). This is one
of the most debated issues in this area; however, to date no reports
have shown that anti-virulence phytochemicals induce resistance.

Patents, Preclinical, and Clinical Studies
Although several patents for anti-virulence agents have been
published, most focus on their ability to block QS or prevent
biofilm formation, and there are few studies that corroborate the
effect at the preclinical (Table 1) or clinical level (Kalia et al.,
2019). In the specific case of phytochemicals, studies on their
ability to act on biofilms abound, but clinical trials remain scarce
(Reuter et al., 2016). In this regard, the study of garlic as an
anti-QS agent in the treatment of cystic fibrosis stands out; the
study reports a reduction in symptoms and an improvement in
lung function (Smyth et al., 2010). Another is the anti-biofilm
formulation based on Hymus vulgaris, Eugenia caryophyllus, and
lactobacilli for the treatment of bacterial vaginosis, in which
administration by slow-release capsules was able to reduce signs
and symptoms in 80% of patients (Murina et al., 2018).

CONCLUSION AND PERSPECTIVES

Among natural products, plants have played a discrete role
in the discovery of bactericidal compounds, but they have

thus far been positioned themselves as the main source of
anti-virulence molecules. However, studies of anti-virulence
phytochemicals have focused mainly on analyzing their quorum
quenching and antibiofilm properties in vitro. The few preclinical
trials conducted have identified only preventive effects and
they have not yet been shown to counteract established
infections. In this regard, it is suggested that the anti-
virulence activity registered in bacterial monocultures and ideal
growth conditions (rich media) cannot always be extrapolated
to the complex conditions that occur in the host (Davies
et al., 2006; Turovskiy et al., 2007; Juárez-Rodríguez et al.,
2021). Reports exist that indicate that host environmental
factors and the presence of other microbial species may
interfere with virulence expression (Sabag-Daigle et al., 2012;
Ismail et al., 2016). Recently, it was reported that myristic
acid, which reduces virulence in vitro, behaves as a signal
molecule stimulating the pathogenicity of P. aeruginosa in a
dermonecrotic mouse model (Juárez-Rodríguez et al., 2021).
Furthermore, it has been discovered that in some murine
models the T3SS are the main virulence determinants, while
the QSS seems to have a more discrete role (Miki et al.,
2010; Soto-Aceves et al., 2019; Juárez-Rodríguez et al., 2021).
Thus, deciphering the ecological context in which virulence
is regulated in vivo will be decisive for the development of
effective therapies.

On the other hand, some required characteristics of an
ideal anti-virulence molecule have been proposed. Most of
them are the same as those expected for other bioactive
compounds: high specificity, stability and absence of side
effects (Kalia et al., 2019). However, other desirable properties
such as not generating resistance or not negatively altering
the host microbiome, have been little studied. Another
important characteristic is that they should have no bactericidal
activity against the pathogen or the microbiome (Davies
et al., 2006). Also, hormetic effects that can stimulate
virulence should be absent, and they should have the ability
to inhibit several anti-virulence targets simultaneously. The
latter can help reduce possible side effects derived from
the administration of multi-drug therapies and decrease
resistance selection.

Furthermore, it is important to expand research into other
anti-virulence targets on which the phytochemicals may be
acting. One of them is the T3SS, which even though various
synthetic molecules have been described that inhibit it, the
number of phytochemicals reported with this activity is scarce. In
this regard, the preclinical results obtained with (-)-hopeaphenol
are very important (Zetterström et al., 2013; Table 1). Also,
anti-toxin properties are important, as in the case of β-
sitosterol and glycyrrhizin, which protect from damage caused
by bacterial toxins (Chen et al., 2009; Li et al., 2015; Table 1).
Finally, the use of nanoparticles to potentiate the effect of
phytochemicals is a strategy with which good results have been
obtained at the preclinical level, as has been demonstrated
with curcumin (Prateeksha et al., 2019; Table 1). All these
trends contribute to the resurgence of the study of natural
antibacterial products, with great potential to help solve the
current crisis of antibiotics.
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