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Background: Reflexive pitch perturbation experiments are commonly used

to investigate the neural mechanisms underlying vocal motor control. In

these experiments, the fundamental frequency–the acoustic correlate of

pitch–of a speech signal is shifted unexpectedly and played back to the

speaker via headphones in near real-time. In response to the shift, speakers

increase or decrease their fundamental frequency in the direction opposing

the shift so that their perceived pitch is closer to what they intended. The

goal of the current work is to develop a quantitative model of responses to

reflexive perturbations that can be interpreted in terms of the physiological

mechanisms underlying the response and that captures both group-mean

data and individual subject responses.

Methods: A model framework was established that allowed the specification

of several models based on Proportional-Integral-Derivative and State-

Space/Directions Into Velocities of Articulators (DIVA) model classes. The

performance of 19 models was compared in fitting experimental data from

two published studies. The models were evaluated in terms of their ability

to capture both population-level responses and individual differences in

sensorimotor control processes.

Results: A three-parameter DIVA model performed best when fitting group-

mean data from both studies; this model is equivalent to a single-rate

state-space model and a first-order low pass filter model. The same model

also provided stable estimates of parameters across samples from individual

subject data and performed among the best models to differentiate between

subjects. The three parameters correspond to gains in the auditory feedback

controller’s response to a perceived error, the delay of this response,

and the gain of the somatosensory feedback controller’s “resistance” to

this correction. Excellent fits were also obtained from a four-parameter

model with an additional auditory velocity error term; this model was
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better able to capture multi-component reflexive responses seen in some

individual subjects.

Conclusion: Our results demonstrate the stereotyped nature of an individual’s

responses to pitch perturbations. Further, we identified a model that captures

population responses to pitch perturbations and characterizes individual

differences in a stable manner with parameters that relate to underlying motor

control capabilities. Future work will evaluate the model in characterizing

responses from individuals with communication disorders.

KEYWORDS

computational modeling, motor control, speech production, pitch, auditory
feedback

Introduction

Auditory perturbation paradigms have become an
important experimental approach in uncovering the neural
mechanisms underlying vocal motor control. First described
by Elman (1981), these paradigms involve manipulating the
frequency spectrum of someone’s speech and playing it back to
them via headphones in near real-time, such that they–often
subconsciously–detect an error in their production. In pitch
perturbation experiments specifically, the frequency spectrum
is perturbed so that the fundamental frequency (fo; the acoustic
correlate of pitch) is higher or lower than produced. In response
to this manipulation, speakers will change their fo in the
direction opposite the perturbation, which makes what they
hear in the headphones closer to what they intended to produce.
When the perturbations are unexpected (for example, when
applied randomly on a small percentage of trials or when applied
at a random time during each trial), the compensatory response
is referred to as reflexive; that is, the response is evident within
a given perturbed trial but has a limited effect on subsequent
trials. This contrasts with perturbations sustained over many
trials that elicit both reflexive within-trial responses as well as
adaptive across-trial responses (Daliri, 2021). The current work
focuses on reflexive responses to pitch perturbations; we will
use the term pitch shift reflex (PSR) to refer to such responses
(Kiran and Larson, 2001).

There is a long history of utilizing reflexive responses as
a diagnostic tool for probing neural function. For example,
the pupillary light reflex was used by Claudius Galenus in the
2nd century to evaluate the visual capabilities of candidates for
cataract surgery (see Thompson, 2003 for a historical review).
Since that time, scientists have characterized the pupillary
light reflex in ever-increasing detail, and modern investigations
often utilize pupillography to accurately measure the time
course of the pupil’s reaction to changes in light input. These
studies have led to the parameterization of the temporal

profile of the pupillary light reflex (e.g., Hall and Chilcott,
2018) as well as parameterized mathematical models of the
dynamics of the pupillary light reflex that capture individual
differences (Pamplona, 2008). The different parameters in these
characterizations correspond to different neural processes; thus,
an individual’s pupillary light reflex can be used to differentiate
damage to one part of the nervous system from damage
to another, in turn allowing clinicians to make informed
decisions regarding treatment options. The dynamics of the
pupillary light reflex are now used to gauge neural function
in a wide range of disorders extending beyond impairment of
the visual system, including concussion (Master et al., 2020),
schizophrenia (Bär et al., 2008), Alzheimer’s disease (Tales
et al., 2001), Parkinson’s disease (Stergiou et al., 2009), autism
spectrum disorders (Fan et al., 2009), and alcoholism (Rubin,
1980). Against this background, a primary goal of the current
study is to mathematically characterize the pitch reflex response
using mathematical models with parameters that reflect the
function of different neural subsystems involved in the control
of voice.

Since the early application of the pitch perturbation
paradigm, over 140 studies have used this paradigm to
investigate various aspects of vocal motor control and across
different populations. These studies have revealed several
properties of the PSR. First, responses are typically in the
direction opposite the perturbation, while a small percentage
of responses occur in the same direction as the perturbation
(e.g., Burnett et al., 1998; Franken et al., 2018). Second,
the compensation is usually incomplete, likely reflecting an
interaction between the auditory and somatosensory control
systems (Smith et al., 2020). Third, the responses occur
in a variety of speech stimuli (Natke and Kalveram, 2001;
e.g., sustained vowels, syllables, running speech; Chen et al.,
2007; Smith et al., 2020). In addition, investigations of the
PSR in speakers of tonal languages, such as Mandarin, show
an interaction between the linguistic intent of an utterance
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and perturbations, with larger responses evident when the
perturbation changes the meaning of a word (Xu et al.,
2004). Musicians and singers, who have higher-than-average
experience controlling pitch, are also able to ignore large
pitch perturbations (∼200 cents) while they compensate
more completely for smaller and shorter perturbations (∼25
cents) (Zarate et al., 2010; Behroozmand et al., 2014;
Parkinson et al., 2014).

While the majority of pitch-perturbation studies to date
have focused on neurotypical adult speakers, a growing
number of studies have examined responses in children
and individuals with communication disorders. Reflexive
perturbation responses in children are evident as young as age
3 years (Russo et al., 2008; Scheerer et al., 2013, 2016; Heller
Murray and Stepp, 2020) but are associated with longer response
latencies and greater variability compared to adult responses.
Studies have also investigated responses in individuals with
Parkinson’s disease (Kiran and Larson, 2001; Liu et al., 2012;
Abur et al., 2021a), Alzheimer’s disease (Ranasinghe et al., 2017),
cerebellar degeneration (Houde et al., 2019; Li et al., 2019),
apraxia of speech (Ballard et al., 2018), aphasia (Behroozmand
et al., 2018, 2022), hyperfunctional voice disorders (Abur et al.,
2021b), 16p11.2 deletions (Demopoulos et al., 2018), autism
(Russo et al., 2008), and in those who stutter (Loucks et al., 2012;
Sares et al., 2018, 2020). Collectively, these studies shed light on
the development of vocal motor control and the mechanisms
underlying speech and voice disorders. In the future, these
findings may inform novel treatments that directly target these
mechanisms.

Compensatory responses to pitch perturbations rely on
neural processes that compare the target pitch for a given
utterance to the pitch as sensed through audition and apply
corrections if and when an error is detected. We can use
computational models to explicate these internal processes
by specifying the processes with mathematical equations
and evaluating how well the equations (i.e., the models)
explain existing experimental data. There are several candidate
model classes that may be used to model reflexive pitch
perturbation data, including Proportional-Integral-Derivative
(PID), State-Space (SS), and Directions Into Velocities of
Articulators (DIVA) models.

The PID model class was originally designed to mimic the
steering strategy used by expert ship helmsmen (Minorsky,
1922) and is now commonly used in a wide range of engineering
applications. This model class includes proportional (P)
models, where the corrective command is proportional to
the error signal; proportional-derivative (PD) models, where
the proportional command is supplemented with a command
that is formed by multiplying the derivative of the error
signal by a gain; proportional-integral (PI) models, where
the proportional command is supplemented with a command
formed by multiplying the integral of the error signal by a
gain; and finally, PID models that combine all three error

terms. SS models also originated in control engineering and
have been widely applied in studies of limb motor control
(Thoroughman and Shadmehr, 2000; Smith et al., 2006; Galea
et al., 2015; Huberdeau et al., 2015). SS models model physical
systems as a set of input, output, and state variables using first-
order differential equations. The DIVA model is a prominent
neural network model of speech motor control (Guenther, 2016;
Kearney and Guenther, 2019). It is organized around three
control subsystems, namely feedforward, auditory feedback, and
somatosensory feedback control, and has been used to explain
a wide number of speech phenomena. Although the SS and
DIVA models have different theoretical motivations, they are
closely related mathematically (as we will demonstrate) and will
be treated together throughout this paper.

To the best of our knowledge, only one study to date
has utilized a computational model to simulate responses to
a reflexive pitch perturbation paradigm (Larson et al., 2000).
Larson et al. (2000) implemented a model in which the fo
error was computed as the difference between the target fo
and actual fo (following a 130 ms processing delay), partially
integrated via a low-pass filter, and applied to the output. The
model simulations were compared graphically to experimental
data and approximated the overall timing and shape of the
observed responses. The authors acknowledged that the model
was likely an over-simplification of the underlying processes but
nonetheless showed promise and feasibility for computational
modeling of reflexive perturbation data. The current study
extends this work by investigating a variety of models that utilize
different numbers of free parameters to quantitatively fit pitch
shift responses measured experimentally.

Both SS and DIVA models have been successfully used to
simulate responses to adaptive perturbation paradigms (Daliri
and Dittman, 2019; Kearney et al., 2020). Daliri and Dittman
(2019) implemented an SS model with two parameters (an
internal estimate forgetting factor and a sensory error weighting
factor) that showed good fits to experimental data. Kearney
et al. (2020) developed SimpleDIVA–a simplified version of
the DIVA model–with three parameters that correspond to
gains in the key subsystems involved in speech motor control
(auditory feedback, somatosensory feedback, and feedforward
control). SimpleDIVA also provides good fits to experimental
data and is able to account for a number of variations in
the sensorimotor adaptation paradigm (e.g., perturbing more
than one dimension or using masking noise). An additional
benefit of SimpleDIVA is that the model’s parameters provide
a mechanistic explanation of behavioral responses in terms
of the neural control systems believed to be involved in
controlling speech production. These adaptive models, however,
are not immediately applicable to reflexive response data as
the mechanisms underlying the responses are not the same.
Specifically, because we do not expect trial-to-trial learning in
a reflexive experiment (Daliri et al., 2020; cf. Hantzsch et al.,
2022), we examine the within-trial responses averaged over
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FIGURE 1

Schematic of sample perturbed trials from Study 1 and Study 2. The top panel shows the recorded microphone signal; the middle panel
illustrates the time-course of the perturbation magnitude in green along with the corresponding measurement window in gray; the bottom
panel shows the spectrogram for the microphone signal with the measured fo traces overlaid in black (microphone) and gray (headphone).

all perturbed trials in an experiment. Examining within-trial
responses also means that we need to account for latencies
associated with processing delays.

Several earlier PSR studies have observed that the
compensatory response could occur on more than one
time scale, resulting in a complex or multi-peaked response
(Burnett et al., 1997, 1998; Larson, 1998; Hain et al., 2000).
The first peak was described as a short-latency, rapid response
occurring around 100-225 ms, and the second as a long-latency,
slow response occurring around 250–600 ms. The simplest form
of the DIVA/SS model produces only a single response peak.
For this reason, we also investigate generalized versions of the

DIVA/SS model that are better able to capture multi-component
responses.

To address our primary goal of developing a quantitative
model of the PSR, we established a model framework that
allows the specification of several model variations based on PID
and SS/DIVA model classes. The performance of the different
models was then compared by fitting them to datasets from
two prior PSR studies (Heller Murray and Stepp, 2020; Smith
et al., 2020). We operationally defined model validity in terms
of the ability to capture population-level responses to pitch
perturbation experiments as well as individual differences in
sensorimotor control processes. That is, a valid model should be
able to (1) explain group mean responses to pitch perturbations,
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(2) have parameters that are stable across samples from an
individual subject, and (3) have parameters that differentiate
between individual subjects.

Materials and methods

Our overall approach is to mathematically define a number
of control models that each involve optimizable parameters.
Each model generates a time series of fo values, denoted by
the variable f (t), where t ranges from 0 to the trial length of
the experiment being modeled. A particle swarm optimization
procedure is used to find the optimal parameter values [in
terms of minimizing root-mean-square error (RMSE)] for each
model when fitting a particular data set, and the resulting fit is
characterized in terms of RMSE, Akaike information criterion
(AIC), and cross-validated classification scores. Model fits were
performed separately for two datasets from different studies
involving unpredictable perturbations of fo (Heller Murray and
Stepp, 2020; Smith et al., 2020) applied during extended vowel
productions of young healthy adult speakers.

Datasets

In Study 1 (Smith et al., 2020), a group of English speakers
(N = 18; aged 18–34) completed 80 trials, during which they
sustained the vowel /a/ for four seconds. On a quarter (20) of
all trials, an auditory perturbation of –100 cents was applied
at a jittered point in time, 1,000–1,500 ms after the beginning
of the trial. The perturbation was implemented as a time-
domain/formant-adjusted shift using Audapter software (Cai
et al., 2008); this process shifts only fo while preserving the
produced formants. The perturbation onset was characterized
by a linear ramp that took 110 ms to reach the full perturbation
magnitude. The perturbation remained on for a further 1,000–
1,500 ms. The order of perturbed and control trials was
pseudorandomized, with no consecutively perturbed trials. fo
trajectories (Hz) were extracted for the duration of the vowel
using Praat (Boersma and Weenink, 2018), and then time-
aligned to the beginning of the perturbation and parsed from –
500 to +1500 ms in MATLAB. A schematic of a sample
perturbed trial and corresponding data is shown in Figure 1.
The data were normalized to the average of each subject’s
baseline. On average, subjects compensated for 48.8% (SD: 20.8)
of the perturbation, calculated as change from baseline to the last
250 ms of a trial and expressed as a percentage of the maximum
perturbation magnitude.

In Study 2, a group of English speakers (N = 20; aged 18–
28) completed 60 trials, during which they sustained the vowel
/i/ for 3 s (Heller Murray and Stepp, 2020). On each trial, an
auditory perturbation of +100 cents or –100 cents was applied
at a jittered point in time, 500–1,000 ms after voice onset.

The perturbation was implemented as a full-spectrum shift by
shifting the values and spacing of the vocal harmonics using
Eventide Eclipse hardware (Eventide Inc., Little Ferry, NJ, USA;
Heller Murray et al., 2019), thus shifting fo. The perturbation
onset was characterized by a step function (or sudden onset)
and, once applied, the perturbation remained on for the rest
of the trial. All trials in the experiment were perturbed, and
the direction of the perturbation was pseudorandomized to
ensure that no more than five consecutive trials were perturbed
in the same direction. The intertrial interval was also jittered
between 500 and 1000 ms to reduce anticipation of the next
trial. fo trajectories (Hz) were extracted for the duration of the
vowel using Praat (Boersma and Weenink, 2018), and then
time-aligned to the beginning of the perturbation and parsed
from –400 to +1400 ms in MATLAB. A schematic of a sample
perturbed trial and corresponding data is shown in Figure 1.
To fit the models to data from both perturbation directions
together, all data were normalized by dividing by each subject’s
baseline average, and then flipping the upshift data around the
x-axis. On average, subjects compensated for 17.1% (SD: 14.4) of
the perturbation, calculated as change from baseline to the last
250 ms of a trial and expressed as a percentage of the maximum
perturbation magnitude.

Assumptions and definitions for all
control models

We use the variable fT to represent the value of fo that
the controller is attempting to achieve; we assume this target
is constant for a given speaker rather than a function of time
since the experimental task being modeled involves attempting
to maintain a constant pitch, and we equate fT to the average fo
of the speaker prior to the onset of the perturbation (i.e., during
the baseline period between 0 and 500 ms for Study 1 and 0 to
400 ms for Study 2). Next, we assume that the output of the
controlled plant (corresponding to the vocal tract articulators
and musculature) is updated based on the signal provided by
the controller at each time point1 as follows:

f (t) = fT+
∫ t

δ = 0
ḟC(δ)dδ (1)

where f (t) is the plant output (i.e., the actual fo produced by the
subject) at time t, ḟC(t) is the controller output at time t, and
δ is a dummy variable for integration. This controller output
represents a corrective command in response to the perceived
error at time t. During the baseline period, ḟC(t) is set to 0 for all
models, and the baseline period is accordingly not included in
RMSE calculations.

1 We use continuous time notation here for clarity, although the
simulations utilize a discrete time representation with one time point
per data sample. The data modeled here were sampled at 200 Hz;
accordingly, the simulations utilize 5 ms time steps.
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The auditory feedback of the produced sound available to
the controller, corresponding approximately to the auditory
cortical representation of the pitch/fo of the produced sound, is
defined as follows:

fA(t) = f (t−τA) · (1+P (t−τA)) (2)

where τA is a delay parameter that is optimized (along with other
model parameters) to fit a particular dataset, and P(t) is the
size of the perturbation applied at time point t, expressed as a
percentage of f (t) in decimal form (e.g., P = 0.06 corresponds
to a 6% upward perturbation of fo). The delay τA represents
the combined delay of the perturbation processing software
and hardware and the total neural processing delay from the
auditory periphery to the corresponding motor output in the
auditory feedback control system.

The DIVA model also includes a somatosensory
representation of fo, assumed to derive from laryngeal
mechanoreceptors, which is related to the actually produced fo
as follows:

fS(t) = f (t−τS) (3)

where τS is a delay parameter (corresponding roughly to
the transmission delay from the somatosensory periphery to
somatosensory cortex) that can be optimized (along with
other model parameters) to fit a particular dataset. This
somatosensory representation can be shown to be closely related
to the parameter A in a typical state-space model, which weights
the degree to which the current state of the system contributes
to the next state (see Basic DIVA equation below).

Proportional-integral-derivative
equation

A PID controller is defined by the following equation:

ḟC(t) = αP · (fT−fA(t))+αI

·

∫ t

δ = 0

(
fT−fA(δ)

)
dδ+αD

·
d
dt

(fT−fA(t))

which simplifies to:

ḟC(t) = αP ·
(
fT−fA(t)

)
+αI ·

∫ t

δ = 0

(
fT−fA(δ)

)
dδ−αD · ḟA(t)

(4)
where αP, αI , and αD are optimizable gains for the position,
integral, and derivative terms. We will simulate four models
using this equation: a proportional model (P) in which αI and
αD are fixed at 0, a proportional-integral (PI) model in which αD

is fixed at 0, a proportional-derivative (PD) model where αI is
fixed at 0, and a proportional-integral-derivative (PID) model in
which all parameters are optimized.

Basic directions into velocities of
articulators/state-space equation

The DIVA model’s feedback controller consists of both
auditory and somatosensory feedback control components.
The standard formulation of the DIVA model’s feedback
controller is:

ḟC(t) = αA · (fT−fA(t))+αS · (f T−fS(t)) (5)

where αA and αS are parameters denoting the gains of
the auditory and somatosensory feedback control systems,
respectively, and τS is a delay parameter corresponding to the
delay between an action and the corresponding somatosensory
feedback signal in somatosensory cortex. When τS is set to 0
[and therefore fS(t) = f (t); see EQ3], EQ5 is mathematically
equivalent to the following SS model2:

ḟC(t) = A · fc(t)+B · (fT−fA(t))

where fc(t) = f (t)− fT (see Eq. 1), B is equal to αA in EQ5,
and A is equal to -αS in EQ5. Preliminary simulations of the
two models verified this mathematical equivalence and also
indicated nearly identical performance for generalized versions
of the DIVA/SS models described below. The model of EQ5 is
also equivalent to the low-pass filter or “leaky integrator” model
proposed by Larson et al. (2000), which is a special case of EQ5
with αA = αS and the time constant of the low-pass filter equal
to our time step size (0.005 s) times 1/αS. For simplicity, we
will use the DIVA-based formulations for simulations herein as
it provides a more direct physiological interpretation of model
parameters than the SS or Larson et al. (2000) formulations.

Generalized directions into velocities
of articulators/state-space equations

The model of EQ5 can be generalized to include an fo
velocity target in addition to the fo position target as follows:

ḟC(t) = αA · (fT−fA(t))+αAv · (ḟT−ḟA(t−τAv))+αS

· (f T−fS(t))+αSv · (ḟ T−ḟS(t−τSv))

2 This model is also equivalent to the SS model of sensorimotor
adaptation posed by Daliri and Dittman (2019) with the parameter a from
that model equal to 1 - αS, parameter b equal to αA, and removal of
τA from the current model since sensorimotor adaptation data were
modeled on a trial-by-trial basis rather than a timepoint-by-timepoint
basis by Daliri and Ditman. The model is also equivalent to a leaky
integrator of the error signal with the leak rate parameter equal to αS.
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where ḟT is the target velocity, αAv and αSv are the
auditory and somatosensory feedback control gains of the
velocity-based response component, respectively, and τAv and
τSv represent the differential delays between the position and
velocity components. Because subjects in the experiments being
modeled were instructed to maintain a constant pitch, ḟT is set
to 0 and this equation reduces to:

ḟC(t) = αA ·
(
fT−fA(t)

)
−αAv · ḟA(t−τAv)+αS

· (f T−fS(t))−αSv · ḟS(t−τSv) (6)

This characterization is approximately equivalent
(though not identical) to a two-state (position and velocity
error) SS model.

Alternatively, the model of EQ5 can be generalized to allow
two different position-error-based responses that operate at
different delays:

ḟC(t) = αA · (fT−fA(t))+αAs · (fT−fA(t−τAs))+αS

· (f T−f (t))+αSs · (fT−fS(t−τSs)) (7)

where αA and αS are the auditory and somatosensory feedback
control gains of the faster response component, αAs and αSs

are the auditory and somatosensory feedback control gains of
the slower response component, and τAs and τSs represent
the differential delay between the fast and slow components
(τAs, τSs = 0). In effect, this model is a quantification of
the idea that the response to a pitch perturbation includes a
relatively fast, automatic component (captured by the terms
involving αA and αS) and a slower component (captured by the
terms involving αAs and αSs) that may be under more conscious
control than the faster component (Burnett et al., 1997, 1998;
Larson, 1998; Hain et al., 2000). This characterization is also
approximately equivalent to a two-state (fast and slow position
error) SS model.

Model versions used in simulations

A total of 19 different models were tested: 4 based on
PID control (models P, PI, PD, and PID) and 15 based
on the DIVA model and equivalent or near-equivalent state-
space formulations (D1–D15). Table 1 lists the equations and
optimized parameters for all models. All unused parameters
from an equation were set to 0.

Model parameter optimization

To fit a model to a particular dataset, a particle swarm
optimization procedure was used to find optimized values of the
free parameters of the model to fit a given dataset. The particle
swarm optimization routine was chosen because it rapidly finds

solutions in high-dimensional workspaces such as those utilized
here and makes no assumptions regarding differentiability of
the optimization problem. In this procedure, the system is
initialized with a population of 10,000 random sets of parameter
values (“particles”) and iterated until convergence to obtain
an optimized parameter set. In each iteration, all parameter
sets are evaluated by computing the RMSE of their fits to the
data, and a fraction of all sets is replaced by random linear
combinations of those parameter sets currently producing the
best fits. The procedure stops when all 10,000 parameter sets
converge within a 1% range of the optimal solution or after
100 consecutive iterations without any improvement in the
optimal fit to the data. When the procedure stops, the optimal
parameter set among the 10,000 sets from the last iteration is
selected as the solution. For each model fit, the optimization
procedure was run 10 times in order to evaluate any potential
residual variability due to initial conditions or local optima. The
resulting parameter estimates were highly robust to the initial
conditions of the swarm procedure, indicative of reaching the
global minimum of the RMSE measure. The minimum-RMSE
solution across all 10 repetitions was chosen as the optimized
parameter set, and Pearson’s r was calculated for this solution to
characterize fit quality.

The particle swarm optimization procedure requires upper
and lower bounds for the optimized parameters in order to
efficiently search the parameter space. The parameter ranges for
the current simulations were chosen to be big enough that they

TABLE 1 List of models included in the simulations.

Name EQ # Parameters Optimized parameters

P EQ4 2 αP , τA

PI EQ4 3 αP , αI , τA

PD EQ4 3 αP , αD , τA

PID EQ4 4 αP , αI , αD , τA

D1 EQ5 3 αA , τA , αS

D2 EQ5 4 αA , τA , αS , τS

D3 EQ6 3 αA , τA , αAv

D4 EQ6 4 αA , τA , αAv , τAv

D5 EQ6 4 αA , τA , αS , αAv

D6 EQ6 5 αA , τA , αS , τS , αAv

D7 EQ6 6 αA , τA , αS , τS , αAv , τAv

D8 EQ6 6 αA , τA , αS , αAv , τAv , αSv

D9 EQ6 7 αA , τA , αS , τS , αAv , τAv , αSv

D10 EQ6 8 αA , τA , αS , τS , αAv , τAv , αSv , τSv

D11 EQ7 4 αA , τA , αAs , τAs

D12 EQ7 6 αA , τA , αS , τS , αAs , τAs

D13 EQ7 6 αA , τA , αS , αAs , τAs , αSs

D14 EQ7 7 αA , τA , αS , τS , αAs , τAs , αSs

D15 EQ7 8 αA , τA , αS , τS , αAs , τAs , αSs , τSs
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did not exclude any reasonable solutions3 but small enough to
allow for relatively rapid convergence to the optimal solution.
With this goal, the allowable range for all gain parameters
was –0.1 to 1.1 with the exception of αI in the PI and PID
models, which used a range of –0.001 to 0.001 (the αI parameter
corresponds to the gain of the auditory error integral, which
determines how much the corrective response increases as
the error accumulates over the duration of the perturbation;
preliminary simulations resulted in very tiny values for this
parameter that did not always stabilize when using the larger
range). A negative gain indicates a response that exacerbates,
rather than corrects, the corresponding error; the negative gains
allow us to model following responses. A gain of 1 corresponds
to immediate full compensation for the corresponding error;
gains significantly above 1 are therefore prone to instabilities
and highly unlikely to represent optimal solutions. Delay
parameters were limited to 0–500 ms except for the differential
delays τAv and τSv, which were limited to –100 to 500 ms to allow
for the possibility that the velocity error response is faster than
the position error response. Preliminary simulations indicated
that none of the optimized parameters were at one of the ends
of the allowable range for any model; in other words, solutions
were not artificially limited by the chosen bounds.

Akaike information criterion
calculations

Because adding more parameters will inevitably improve
RMSE (even to the point of overfitting the data), for
model comparisons we focus on AIC, which is designed
to meaningfully compare models with different numbers of
free parameters using the information theoretic criterion of
minimum information loss4. The AIC for each model is defined
by the equation AIC = 2k – 2ln(L), where k is the number of
free parameters in the model and L is the maximum likelihood
of the model. We estimated the optimal model parameters
for each model by minimizing the residual mean square error
between the model fit and the observed traces. Assuming that
the trace residuals were normally distributed but potentially
correlated across timepoints, the model log-likelihood could be
approximated as ln(L) = N/2

(
−ln(MSE) − 1− ln(2π)

)
,

where MSE is the mean square error of the model, and

3 For example, it does not make much sense within the DIVA model for
the auditory feedback gain to be less than 0 (which would exacerbate
rather than correct auditory errors) or greater than 1 (which would
overcompensate for auditory errors). The bounds used here are slightly
larger than these to allow for random variation that may occur in any
particular dataset.

4 We chose AIC here over the closely related Bayesian Information
Criterion (BIC) because we anticipate that the model training datasets
will generally be small; in such cases BIC tends to choose models that
are too simple due to its use of a stronger penalty term for the number
of model parameters (Burnham and Anderson, 2002).

N is the effective degrees of freedom of the trace residuals
(equal or smaller to the number of samples in the data).
The degrees of freedom were computed using Satterthwaite–
Welsh approximation (Satterthwaite, 1946) from the observed
autocorrelation of the data before the onset of the perturbation
(common to all models). Last, in order to facilitate comparisons
of the resulting AIC measures across different datasets or with
different studies, we reported corrected-AIC measures, dividing
AIC by the data’s effective degrees of freedom, leading to the
combined equation:

cAIC = AIC/N = 2k/N+ln(MSE)+1+ln(2π) (8)

When comparing two models, the relative likelihood of the
two models can be computed from the difference in AIC values
as exp((AICmin − AIC) /2). To identify statistically significant
differences in cAIC, we calculated the cAIC threshold necessary
to support a 20:1 relative likelihood between the two models
using the formula:

thrcAIC = 2ln(1/0.05)/N (9)

A model whose cAIC is less than another model’s
cAIC by more than this threshold is, with 95% likelihood,
the superior model.

Cross-validated classification
simulations

The last set of simulations further tested the models’ abilities
to characterize stable properties of each subject by optimizing
the models using a subset of data from each subject (training
trials) and then testing the models on the remaining trials (test
trials). Specifically, for each model and each subject, 10 cross-
validation iterations were performed, each involving a different
random subset of 10 test trials (from a total of 13–20 trials per
subject in Study 1 and 19–57 trials per subject in Study 2) used
for testing, with the remaining trials for that subject used as
the training set for optimizing model parameters (i.e., model
parameters were optimized to fit the average trace of the training
trials). The optimized model was then compared to the test
trials to compute a combined cAIC value, using the same cAIC
formula above as in the individual-trace analyses but setting
MSE to the average of the MSE values across all of the individual
test trials, and setting the data samples N to the average effective
degrees of freedom across all the test trials multiplied by the
total number of trials for that model/subject combination. This
led to a single cAIC value for each model and each subject,
characterizing the model’s ability to predict the behavior of out-
of-sample trials for an individual subject. The average of these
cAIC values was then calculated across subjects for each model.

In addition, we wanted to evaluate, for each model, whether
a subject’s model parameter values could be used to uniquely
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identify this subject’s traces from different trials compared to
the traces of other subjects. The models’ abilities to correctly
identify a subject were assessed from these same cross-validation
iterations by first computing RMSE values comparing the
average traces of one subject’s test trials to the model traces
obtained from fitting the training trials of the same (or a
different) subject. From these comparisons we then determined
overall and pairwise classification scores for each model, from
a classification procedure that chose the subject with minimal
RMSE as the most likely subject to have generated that
mean test trace. All classification scores represent the percent
correct identifications of a subject based on the mean of 10
test trials, averaged across the 10 cross-validation iterations
and all appropriate between-subject comparisons. The overall
classification scores represent the percentage of times the correct
subject (i.e., the one who generated the test trials) had the lowest
RMSE when compared to all other subjects for that same model,
and they were computed as:

poverall =
1

10N

N∑
m = 1

10∑
i = 1

N∏
n 6=m

1
10

10∑
j = 1

[
RMSEimim < RMSEimjn

]
where N is the number of subjects, and RMSEi,m,j,n represents
the RMSE value obtained when comparing the mean trace from
the test trials of the i-th cross-validation iteration of subject
m to the model traces obtained from fitting the training trials
of the j-th cross-validation iteration of subject n. The overall
classification scores for each model are reported in the “Overall”
columns of Table 2. Study 1 involved 18 subjects and Study 2
involved 20, so chance performance on the classification task
was 5.6% for Study 1 and 5% for Study 2.

Pairwise classification scores represent the percentage of
times the correct subject had lower RMSE than another
(randomly selected) incorrect subject for that same model, and
they were computed as:

ppairwise =
1

10N(N−1)

N∑
m = 1

10∑
i = 1

N∑
n6=m

1
10

10∑
j = 1[

RMSEimim < RMSEimjn
]

Classification accuracies for a given model were averaged
across all pairs of subjects to obtain the scores listed in the
“Pairwise” columns of Table 2; chance performance on this
classification task is 50%.

Additionally, intraclass correlation coefficients (ICC)
were calculated to quantify the reliability/stability of model
parameters across the 10 cross-validation iterations. ICC values
were calculated as:

ICC =
σbetween

2

σbetween2+σwithin2

where σbetween is the between-subject standard deviation for
a given parameter and σwithin is the within-subject standard

deviation for a given parameter. ICC values fall between 0
and 1, with values < .5 indicating poor reliability, values 0.5–
0.75, 0.75–9, and 0.9–1 indicating moderate, good, and excellent
reliability, respectively (Koo and Li, 2016).

Results

Table 2 summarizes the fit statistics for all models and
simulations. The following subsections describe these results
by simulation set: fits to study group means, fits to individual
subject means, and cross-validated classification simulations.

Fits to group means

The group mean trace for each study was formed by first
calculating the mean fo value at every time point for each
individual subject (averaged across all that subject’s trials), then
averaging these individual subject means to form the group
mean trace. The group mean traces are indicated by the solid
blue lines in Figure 2A (Study 1) and Figure 3A (Study 2), with
standard error of the mean (SEM) indicated by blue shading.
Full compensation, the inverse of the perturbation magnitude,
is shown in green. Full compensation illustrates what a 100%
compensation for the perturbation would look like, although
this is rarely achieved in auditory perturbation studies.

The columns labeled “Group” in Table 2 indicate the RMSE
for each model’s fit to the group mean trace as well as the cAIC
value resulting from comparing the model fit to the individual
subject mean traces. The lowest RMSE and cAIC values for each
study are indicated in boldface. Blue shading indicates cAIC
values that are within the cAIC threshold of the lowest cAIC
value; in other words, the models with no shading are inferior
to the best (boldfaced) model according to the cAIC criterion,
whereas the models with blue shading are not significantly
different (at the p < 0.05 false positive level) from the best model.
For both studies, the three-parameter model D1 provided the
best fit according to cAIC, with the three-parameter model PI
also falling within the cAIC threshold, along with several four-
parameter models (PID, D2, D5, and D11), a five-parameter
model (D6), and several six-parameter models (D7, D8, D11,
D12, and D13). For the remainder of this article, we will refer to
models within the cAIC threshold of the best model collectively
as the “best models.”

When multiple models fall within the AIC threshold of the
top model, there is not enough empirical evidence to support
the selection of an individual model among them. In these
cases, and until more evidence becomes available, it is reasonable
to give preference to the model with the fewest parameters
amongst these models. Thus, according to the cAIC criterion,
the models providing the best fits to the group mean data are the
three-parameter models D3 and PI, followed by the 4-parameter
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TABLE 2 Fit statistics for all simulated models.

Study 1 group Study 2 group Study 1 subject Study 2 subject Study 1 Xval classification Study 2 Xval classification

Model RMSE cAIC RMSE cAIC RMSE cAIC RMSE cAIC cAIC Overall Pair cAIC Overall Pair

P 0.00312 –6.33001 0.00198 –7.1133 0.00381 –6.1104 0.00237 –5.4655 –1.6882 23.39% 84.23% –1.3595 18.25% 72.11%

PI 0.00083 –6.41743 0.00073 –7.1847 0.00201 –6.1983 0.00130 –5.4930 –1.7201 35.94% 88.10% –1.3708 24.14% 74.59%

PD 0.00312 –6.32608 0.00197 –7.1110 0.00355 –6.1208 0.00234 –5.4644 –1.6870 26.82% 85.53% –1.3587 18.21% 72.11%

PID 0.00065 –6.41588 0.00071 –7.1820 0.00158 –6.2102 0.00120 –5.4926 –1.7206 38.76% 88.77% –1.3701 24.16% 74.58%

D1 0.00059 –6.42106 0.00039 –7.1932 0.00187 –6.2049 0.00112 –5.4950 –1.7228 35.70% 88.15% –1.3713 22.69% 73.66%

D2 0.00059 –6.41672 0.00039 –7.1901 0.00174 –6.2023 0.00100 –5.4960 –1.7187 35.72% 88.28% –1.3715 24.72% 74.68%

D3 0.00312 –6.32608 0.00197 –7.1110 0.00355 –6.1208 0.00234 –5.4644 –1.6870 26.82% 85.53% –1.3587 18.21% 72.11%

D4 0.00116 –6.40619 0.00083 –7.1780 0.00183 –6.1964 0.00145 –5.4848 –1.7157 37.75% 88.42% –1.3669 22.04% 73.25%

D5 0.00053 –6.41737 0.00026 –7.1921 0.00151 –6.2129 0.00105 –5.4941 –1.7233 38.55% 88.74% –1.3706 23.07% 73.78%

D6 0.00052 –6.41321 0.00021 –7.1895 0.00137 –6.2106 0.00092 –5.4951 –1.7195 38.73% 88.89% –1.3708 25.56% 74.83%

D7 0.00046 –6.40946 0.00017 –7.1867 0.00113 –6.2103 0.00081 –5.4942 –1.7147 39.49% 89.00% –1.3697 25.65% 74.93%

D8 0.00052 –6.40886 0.00017 –7.1866 0.00117 –6.2093 0.00092 –5.4918 –1.7142 38.53% 88.78% –1.3688 23.70% 73.94%

D9 0.00052 –6.40451 0.00017 –7.1835 0.00103 –6.2065 0.00076 –5.4930 –1.7110 40.20% 89.18% –1.3689 26.05% 75.06%

D10 0.00048 –6.40055 0.00013 –7.1806 0.00100 –6.2014 0.00071 –5.4922 –1.7070 40.37% 89.14% –1.3679 26.12% 75.13%

D11 0.00104 –6.40902 0.00040 –7.1900 0.00147 –6.2129 0.00097 –5.4964 –1.7227 38.57% 88.93% –1.3713 25.38% 75.08%

D12 0.00051 –6.40890 0.00027 –7.1857 0.00111 –6.2110 0.00078 –5.4948 –1.7129 39.06% 88.94% –1.3699 25.70% 75.24%

D13 0.00051 –6.40889 0.00027 –7.1857 0.00116 –6.2099 0.00082 –5.4944 –1.7160 39.92% 89.03% –1.3698 25.07% 75.15%

D14 0.00051 –6.40454 0.00013 –7.1838 0.00105 –6.2064 0.00076 –5.4933 –1.7110 40.71% 89.18% –1.3690 25.01% 75.16%

D15 0.00035 –6.40165 0.00012 –7.1807 0.00093 –6.2027 0.00066 –5.4924 –1.7058 40.57% 89.22% –1.3682 26.32% 75.27%

Xval, cross-validation; RMSE, root-mean-square error; cAIC, corrected Akaike information criterion; Overall, overall accuracy (%); Pair, pairwise accuracy (%).
Boldface type indicates the model with lowest RMSE and cAIC for each study.
Blue shading indicates cAIC values that are within the cAIC threshold of the lowest cAIC value.
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FIGURE 2

Group mean data and model fits for Study 1. Group mean data and standard error of the mean are shown with a blue line and shading.
(A) Group mean data shown relative to full compensation in green. Full compensation is the inverse of the perturbation magnitude and
illustrates what 100% compensation would look like. (B) Group mean data shown relative to model fit (red line) and standard error of the model
fit (red shading) for models providing best fits to the group mean data.
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FIGURE 3

Group mean data and model fits for Study 2. Group mean data and standard error of the mean are shown with a blue line and shading.
(A) Group mean data shown relative to full compensation in green. Full compensation is the inverse of the perturbation magnitude and
illustrates what 100% compensation would look like. (B) Group mean data shown relative to model fit (red line) and standard error of the model
fit (red shading) for models providing best fits to the group mean data.
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models PID, D2, D5, and D11. Figures 2B, 3B plot the model
fit (red line) and standard error of the model fit (red shading),
along with the group mean (blue line) and SEM (blue shading)
of the experimental data for these models. (Model fits for all
models are provided in the Supplementary materials). Despite
falling within the cAIC threshold of the best model D1, the PI
and PID models produce traces that poorly match the overall
shape of the data trace, casting doubt as to whether they are
effectively capturing the physiological mechanisms responsible
for the subjects’ productions. This is particularly clear from
the Study 2 fits in Figure 3. The four-parameter model D5
appears to best capture the overall shape of the data trace, which
shows an initial plateau followed by a second rise approximately
100 ms after the start of the plateau (again more clearly visible
in Figure 3). As noted in the Introduction, a two-component
response pattern has been noted in prior pitch perturbation
experiments (e.g., Larson, 1998; Hain et al., 2000). Models
D1, D2, and D11 capture the overall shape of the data trace
reasonably well, but they fail to properly capture the shape of
the plateau and second rise.

In sum, the three-parameter model D1 provides the best
fit of the group mean traces according to the cAIC criterion
while also capturing the overall shape of the experimentally
measured response reasonably well. The four-parameter model
D5 best captures the overall shape of the data traces amongst
the three- and four-parameter models and falls within the
cAIC threshold of model D1. The additional parameters of
models with more than four parameters appear to provide little
additional improvement.

The optimized values of all parameters for all models are
provided in the Supplementary materials. For the basic DIVA
best models (D1 and D2), the parameter values were very similar
between models for a given dataset. For Study 1, the mean
values (across the two models) were 0.011 for αA, 0.013 for
αS, 115 ms for τA, and 130 ms for τS. For Study 2, they were
0.006 for αA, 0.033 for αS, 93 ms for τA, and 54 ms for τS.
These parameters had similar values in the generalized DIVA
best models (D5–D8 and D11–D13), whereas the additional
parameters in the generalized DIVA models were considerably
more variable across models.

Fits to individual subjects

The second set of simulations compared the models on
their ability to fit individual subject data using parameters
optimized for the individual subject rather than the group
mean. These simulations gauge how well the models can
account for individual differences through subject-specific
parameterizations. For each subject, model parameters were
optimized to fit the subject’s mean trace (averaged across trials).
The RMSE values of these fits are provided in the columns
labeled “Subject” in Table 2, along with the cAIC values resulting

from comparing the models’ fits to the individual subject mean
traces. With the exception of models P, PD, D3, and D4, all
models fell within the cAIC threshold of the best model (D11
for both studies).

Cross-validated classification
simulations

The columns labeled “Xval Classification” in Table 2 provide
cAIC, overall classification accuracy, and pairwise classification
accuracy for each model in each study. The models within the
cAIC threshold of the best cAIC value for both studies were
models PI, PID, D1, D2, D5–D7, and D11–D13. The highest
overall classification accuracies were 40.71% for model D14 in
Study 1 (chance level of 5.6%) and 26.32% for model D15 in
Study 2 (chance level 5%). Even the worst-performing models
had overall accuracies that were well above chance: 23.39% for
model P in Study 1 and 18.21% for models PD and D3 in
Study 2. Pairwise classification accuracies were also well above
chance (50%) for all models, ranging from 84.23% (model D1)
to 89.22% (model D15) for Study 1, and from 72.11% (models P
and D1) to 75.27% (model D15) in study 2.

Overall, these results indicate that reflexive responses to
fo perturbations are largely individual-specific, and a number
of models perform nearly equivalently on the cross-validated
classification tasks. For comparison, we also calculated cross-
validated classification accuracy when we used the mean of the
training trials for classification rather than one of the models.
This resulted in overall and pairwise accuracies of 38.14 and
89.25%, respectively, for Study 1 and 25.89 and 75.38% for Study
2. These are similar to values obtained for the best-performing
models in Table 2.

The cross-validation training iterations also provide
information regarding the stability of model parameters
across the 10 iterations for a given subject. In other words,
do the 10 iterations yield approximately the same values for a
given parameter (as would be expected if the parameter has a
reliable physiological basis) or do they vary substantially across
iterations (indicative of a model whose parameters do not
have a reliable physiological interpretation)? To assess this, we
calculated ICC for each parameter in each model for each data
set. The mean parameter values and ICC values from the 10
cross-validation iterations are provide in Table 3 (Study 1) and
Table 4 (Study 2). Boldface type indicates the model with the
highest ICC value per parameter. Dark blue shading indicates
ICC values greater than 0.75 (corresponding to good reliability),
and light blue shading indicates ICC values between 0.5 and
0.75 (moderate reliability).

Generally speaking, parameter stability was higher for the
PID-based models and models D1–D10 compared to models
D11–D15. In particular, all PID models and models D1–D9
had highly reliable values for the auditory feedback control
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TABLE 3 Study 1 mean values and ICC of optimized parameters in cross-validation simulations.

αP/αA αS αD/αAv/αAs αI/αSv/αSs τA τS τAv/τAs τSv/τSs

Model Mean ICC Mean ICC Mean ICC Mean ICC Mean ICC Mean ICC Mean ICC Mean ICC

P 0.005 0.956 0.044 0.647

PI 0.009 0.939 –4.9E-05 0.826 0.109 0.660

PD 0.010 0.924 0.923 0.592 0.109 0.601

PID 0.013 0.918 0.551 0.414 –1.0E-04 0.842 0.135 0.594

D1 0.012 0.851 0.016 0.705 0.128 0.586

D2 0.010 0.870 0.013 0.657 0.111 0.556 0.159 0.470

D3 0.010 0.924 0.923 0.592 0.109 0.601

D4 0.008 0.941 0.788 0.688 0.101 0.690 0.274 0.582

D5 0.015 0.852 0.018 0.772 0.393 0.328 0.143 0.536

D6 0.012 0.903 0.014 0.747 0.568 0.335 0.128 0.568 0.226 0.337

D7 0.011 0.851 0.009 0.650 0.731 0.662 0.118 0.534 0.203 0.369 0.162 0.455

D8 0.014 0.827 0.011 0.699 0.789 0.468 0.170 0.317 0.123 0.502 0.218 0.469

D9 0.012 0.823 0.008 0.576 0.648 0.565 0.403 0.412 0.124 0.500 0.152 0.419 0.240 0.350

D10 0.012 0.836 0.008 0.619 0.734 0.644 0.444 0.296 0.123 0.488 0.143 0.318 0.201 0.257 0.122 0.268

D11 0.013 0.662 –0.010 0.584 0.120 0.613 0.296 0.510

D12 0.018 0.545 0.069 0.657 0.013 0.694 0.110 0.397 0.080 0.235 0.307 0.358

D13 0.033 0.592 0.123 0.762 0.020 0.686 0.573 0.206 0.120 0.354 0.300 0.396

D14 0.022 0.448 0.070 0.611 0.014 0.575 0.618 0.472 0.119 0.391 0.078 0.226 0.319 0.309

D15 0.015 0.666 0.035 0.555 0.011 0.607 0.697 0.440 0.114 0.380 0.052 0.277 0.287 0.301 0.185 0.264

Only one parameter listed per column is optimized in a given model. For example, the PID models have an αP parameter whereas the DIVA models have an αA parameter. See Table 1 for a complete list of parameters included in each model.
ICC, intraclass correlation coefficient.
Boldface type indicates the model with the highest ICC value per parameter.
Light blue shading indicates ICC values are between 0.5 and 0.75 (moderate reliability).
Dark blue shading indicates ICC values are > 0.75 (good-excellent reliability).
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TABLE 4 Study 2 mean values and ICC of optimized parameters in cross-validation simulations.

αP/αA αS αD/αAv/αAs αI/αSv/αSs τA τS τAv/τAs τSv/τSs

Model Mean ICC Mean ICC Mean ICC Mean ICC Mean ICC Mean ICC Mean ICC Mean ICC

P 0.001 0.969 0.031 0.761

PI 0.003 0.972 –2.6E-05 0.955 0.062 0.810

PD 0.003 0.969 1.019 0.597 0.055 0.793

PID 0.005 0.954 0.811 0.678 –3.4E-05 0.947 0.091 0.823

D1 0.009 0.881 0.098 0.725 0.110 0.746

D2 0.005 0.896 0.035 0.543 0.088 0.746 0.109 0.744

D3 0.003 0.969 1.019 0.597 0.055 0.793

D4 0.002 0.969 0.972 0.689 0.057 0.800 0.359 0.747

D5 0.010 0.912 0.078 0.780 0.439 0.633 0.122 0.726

D6 0.006 0.935 0.037 0.623 0.622 0.612 0.101 0.755 0.144 0.758

D7 0.006 0.927 0.034 0.792 0.663 0.762 0.098 0.746 0.133 0.552 0.175 0.601

D8 0.008 0.910 0.038 0.651 0.719 0.641 0.005 0.380 0.110 0.734 0.193 0.537

D9 0.006 0.942 0.027 0.785 0.524 0.704 0.403 0.480 0.099 0.751 0.136 0.456 0.259 0.374

D10 0.006 0.946 0.027 0.797 0.539 0.646 0.520 0.483 0.098 0.718 0.114 0.441 0.265 0.293 0.189 0.368

D11 0.004 0.702 –0.004 0.702 0.089 0.583 0.228 0.647

D12 0.005 0.666 0.053 0.700 0.002 0.430 0.097 0.741 0.072 0.353 0.322 0.562

D13 0.008 0.642 0.083 0.607 0.004 0.536 0.226 0.423 0.103 0.686 0.306 0.502

D14 0.006 0.646 0.052 0.536 0.002 0.504 0.510 0.303 0.097 0.663 0.075 0.317 0.333 0.489

D15 0.006 0.726 0.046 0.547 0.002 0.584 0.607 0.660 0.100 0.767 0.054 0.405 0.324 0.543 0.221 0.480

Only one parameter listed per column is optimized in a given model. For example, the PID models have an αP parameter whereas the DIVA models have an αA parameter. See Table 1 for a complete list of parameters included in each model.
ICC, intraclass correlation coefficient.
Boldface type indicates the model with the highest ICC value per parameter.
Light blue shading indicates ICC values are between 0.5 and 0.75 (moderate reliability).
Dark blue shading indicates ICC values are > 0.75 (good-excellent reliability).
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gain parameter (αP in PID models and αA in DIVA-based
models) and moderately to highly reliable values for the
auditory feedback control delay parameter in both studies.
The somatosensory feedback control gain parameter was also
moderately to highly reliable in all DIVA-based models (D1–
D15) in both studies, and the parameter αI was highly reliable
in the PI and PID models in both studies.

Discussion

The primary goal of this study is the identification of a model
that captures population responses in auditory perturbation
experiments, and perhaps more importantly characterizes
individual differences in a stable manner with parameters
that relate to underlying motor control capabilities. The
latter capability is particularly important if the model is
to be used to characterize individuals with communication
disorders for the purpose of providing individualized treatments
that capitalize on the individual’s strengths and weaknesses.
For this approach to bear fruit, it is important that the
behavioral responses exhibited by experimental subjects are
reasonably stable and differ between individuals; if not, then
no model will be capable of achieving our goal. A key
finding from the current study (independent of any modeling)
is that reflexive responses to fo perturbations are largely
individual-specific, providing optimism that such responses
may reveal key insights into the individual’s speech motor
control processes. Although all subjects were healthy adults
with no communication disorders (and therefore likely to
have somewhat similar speech motor systems, in contrast
to individuals with a speech disorder), the cross-validation
classification analyses indicate that the mean of 10 reflexive
responses from an individual is enough to distinguish
that individual from another neurotypical individual with
approximately 90% accuracy in Study 1 (see pair column
in Study 1 Xval Classification section of Table 2) and 75%
in Study 21 (see pair column in Study 2 Xval Classification
section of Table 2). This highlights a rather remarkable
property of the PSR independent of any modeling: an
individual’s pitch shift response is akin to a “fingerprint”
that largely distinguishes them from other individuals (though
not to the degree of an actual fingerprint). We expect that
individuals with speech motor disorders will show much greater
variability than our current healthy sample and therefore may
be easier to distinguish based on their reflexive responses;
verification of this expectation is an important topic for future
research.

The three-parameter model D1 provided fits to group mean
data with the lowest cAIC values of any model for both Study
1 and Study 2. Furthermore, this model was within the cAIC
threshold of the lowest cAIC for individual subject fits and
cross-validation simulations for both studies. Other models

that fell into the best model category (i.e., those within the
cAIC threshold of the lowest cAIC value) for all simulations
were PI, D2, D5, D6, D7, D11, D12, and D13. Model D1 also
had amongst the most stable parameters across cross-validation
iterations as measured by ICC (see Table 3), and its pairwise
classification scores were within 1–2% of the best-performing
model.

Concerning the three-parameter model PI, although this
model performed well according to the cAIC, parameter
stability, and cross-validated classification criteria, the overall
shape of the responses of the PI model differed considerably
from the shape of the subject responses (compare the fits
of models PI and D1 in Figures 2B, 3B). The anomalous
response shape for the PI model is the result of the fact that the
optimized values for the parameter αI , which determines how
much the corrective response increases as error accumulates,
were negative (see Tables 3, 4), indicating that the correction
actually decreased with accumulating error. This is contrary
to the theoretical motivation for this term (which is to
increase the correction if the error keeps accumulating)
and results in the “inverted U” shape of the PI model
responses in Figures 2, 3 that is not found in the data
traces nor in model D1. It is also worth noting that fixing
αI at 0 so it will not go negative reduces the PI and
PID models to the poorly performing P and PD models,
respectively.

For these reasons, we conclude that the best 3-parameter
model for characterizing reflexive responses to fo perturbations
is D1 (EQ5), which has free parameters αA, τA, and αS. These
parameters have straightforward interpretations: αA (which
corresponds to the parameter B in a state-space formulation—
see Basic DIVA/SS equation in the “Materials and Methods”
section) is the gain of the auditory feedback controller’s response
to a perceived error, τA is the delay of this response, and αS

is the gain of the “resistance” to this correction. Within the
DIVA model, this latter parameter corresponds to the gain
of the somatosensory feedback controller, which is attempting
to keep fo (as detected through somatic sensation, which is
not perturbed in the current experiment) at the target level.
αS is related to the parameter A in a state-space formulation
(specifically, A = – αS); this parameter similarly acts to resist
changes due to perceived auditory error, though it is not
typically specifically associated with somatosensory feedback
control. Model D1 is also equivalent to a low-pass filter/leaky
integrator model, as proposed by Larson et al. (2000).

A more general interpretation of αS, which is consistent with
both the DIVA and state-space formulations is that it reflects
the influence of non-auditory-based motor subsystems on the
overall motor output. This can include both feedforward control
mechanisms and somatosensory feedback control mechanisms.
Indeed, the estimate of the somatosensory state in DIVA is
envisioned as a combination of an efference copy of the
motor command (which provides a predictive estimate of
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FIGURE 4

Comparison of the fits for models D1 and D5 for three subjects (S3, S6, S12) from Study 1 who showed multi-component response profiles.
Subjects’ mean data traces and standard error of the mean are shown with blue line and shading, respectively. Model fits shown with red line.

somatosensory state) and incoming somatosensory information
(see for example Figure 1 in Guenther et al., 1998). The use of a
predictive estimate of the sensory state within a sensory feedback
control architecture (see also Houde and Nagarajan, 2011) is, in
essence, a form of feedforward control since it does not depend
on sensory feedback for generating control signals.

Amongst the four-parameter models (PID, D2, D4, D5,
and D11), models D5 and D11 were within the cAIC
threshold of the lowest cAIC for all simulations for both
studies (shaded cells in Table 2), and both of these models
exhibited relatively high parameter stability (Table 3). Of
these two models, D5 produced fits that better captured
the overall shapes of the response profiles (Figures 2, 3).
Although the cAIC values for models D5 and D11 were
in no cases significantly better than the 3-parameter model
D1, it is noteworthy that models D5 and D11 (as well
as most of the models with five or more parameters) are
better capable of accounting for multi-component response
profiles. This is illustrated in Figure 4, which compares
the fits of models D1 and D5 to individual subjects from
Study 1 who exhibited multi-component responses. Multi-
component responses have also been reported in several prior
PSR studies (Burnett et al., 1997, 1998; Larson, 1998; Larson

et al., 2000; Hain et al., 2000), and it appears that the second
response component is under more conscious control than
the earlier “automatic” component; for example, the second
component is much more influenced by instructions provided
to subjects regarding whether they should attempt to oppose
or follow the perturbation direction (Hain et al., 2000). The
4th parameter in model D5 is an auditory velocity error
gain, αAV . This term has the effect of resisting any perceived
changes in pitch (beyond the abrupt change at perturbation
onset, which is ignored by the model), in keeping with
the fact that subjects are attempting to maintain a constant
pitch, as they were instructed to do in the studies modeled
here.

Despite D5 better capturing multicomponent responses, D5
was not superior to D1 according to the cAIC criterion in
any of the simulations; in other words, the reduction in RMSE
afforded by the 4th parameter in D5 was offset by the AIC
penalty term for increasing the number of model parameters
by 1. This suggests that the secondary responses, which are
better characterized by D5, are quite variable compared to
the primary response, which is captured well by both D1 and
D5. While the later components could be more influenced by
cognitive variables such as attention level and conscious intent
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(Burnett et al., 1997, 1998; Hain et al., 2000), modeling the
contribution of those processes was beyond the scope of the
current study. Additional parameters beyond 4 provide little
additional improvement.

It is reasonable to wonder what is gained from characterizing
and individual’s reflexive responses to fo perturbations with
a parameterized model, given that the average of a set
of training traces provides classification results that are
on par with the best model characterizations. The key
difference is that a model whose parameters correspond to
physiological motor control processes provides a quantitative
assessment of an individual’s motor speech capabilities. For
example, a past pitch perturbation study involving individuals
with Parkinson’s disease indicated greater compensation than
age-matched controls (Liu et al., 2012). By itself, this
observation is of limited value for characterizing the motor
control processes of an individual with Parkinson’s disease
since a larger response might indicate enhanced auditory
feedback control or, alternatively, degraded somatosensory
feedback control. In contrast, the optimal fit of model
D1 to the subject’s response traces provides values of αA

and αS that best capture the subject’s response. These
values can be compared to normative values to separately
assess the integrity of the auditory and somatosensory
feedback control subsystems. If, for example, an individual
with Parkinson’s disease has an abnormally low αS with
normal αA, a clinician may favor approaches that leverage
intact auditory feedback control capabilities to overcome
deficient somatosensory feedback control capabilities. In
contrast, the parameters in the PID models are interpreted
relative to error correction (and whether that correction is
proportional to the error, or an integral or derivative of
the error). This interpretation does not convey information
about the mechanisms driving the correction and may
limit how that information could be used in a therapeutic
context. Although much work remains to be done to
verify the veracity of the D1 model’s characterization, such
an approach holds the promise of informing personalized
therapeutic interventions, much like other reflexes such as
the pupillary light reflex have proven useful for characterizing
the integrity of the nervous system in cases of neurological
impairment.
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