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Structure-based machine-guided mapping of
amyloid sequence space reveals uncharted
sequence clusters with higher solubilities
Nikolaos Louros1,2, Gabriele Orlando1,2, Matthias De Vleeschouwer1,2, Frederic Rousseau 1,2✉ &

Joost Schymkowitz 1,2✉

The amyloid conformation can be adopted by a variety of sequences, but the precise

boundaries of amyloid sequence space are still unclear. The currently charted amyloid

sequence space is strongly biased towards hydrophobic, beta-sheet prone sequences that

form the core of globular proteins and by Q/N/Y rich yeast prions. Here, we took advantage

of the increasing amount of high-resolution structural information on amyloid cores currently

available in the protein databank to implement a machine learning approach, named Cordax

(https://cordax.switchlab.org), that explores amyloid sequence beyond its current bound-

aries. Clustering by t-Distributed Stochastic Neighbour Embedding (t-SNE) shows how our

approach resulted in an expansion away from hydrophobic amyloid sequences towards

clusters of lower aliphatic content and higher charge, or regions of helical and disordered

propensities. These clusters uncouple amyloid propensity from solubility representing

sequence flavours compatible with surface-exposed patches in globular proteins, functional

amyloids or sequences associated to liquid-liquid phase transitions.
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The amyloid cross-β state is a polypeptide conformation that
is adopted by 36 proteins or peptides associated to human
protein deposition pathologies1. It also constitutes the

structural core of a growing number of functional amyloids in
both bacteria and eukaryotes2,3. Beyond these bona fide func-
tional and pathological amyloids it has been demonstrated that
many if not most proteins can adopt an amyloid-like con-
formation upon unfolding/misfolding4. This has led to the notion
that just like the α-helix or β-sheet, the amyloid state is a generic
polypeptide backbone conformation but also that amino acids
have different propensities to adopt the amyloid conformation5.
Initially, it was observed that amyloid-like aggregation correlates
with hydrophobicity, β-strand propensity, and (lack of) net
charge6. This triggered the development of aggregation prediction
algorithms that essentially evaluate the above biophysical
propensities7,8. Others extended to scaling residue propensities
between protein folding and aggregation9,10. These algorithms
confirmed the ubiquity of amyloid-like propensity in natural
protein sequences and particularly in globular proteins as it was
estimated that 15–20% of residues in a typical globular domain
are within aggregation-prone regions (APRs)11,12. These APRs
are sequence segments of six to seven amino acids in length on
average and are mostly buried within the protein structure where
they constitute the hydrophobic core stabilising tertiary protein
structure13–15. On the other hand, the increasing identification of
both yeast prions and functional amyloids clearly indicated that
amyloid sequence space is not monolithic and that more polar/
less aliphatic sequences represent important alternative popula-
tions of amyloid sequence space3. The limited sensitivity of the
above cited algorithms to specifically identify these other sub-
populations confirmed the underestimated sequence versatility of
the amyloid conformation. Indeed, more recently the role of
amyloid-like sequences in proteins mediating liquid–liquid phase
transitions again demonstrates the ubiquity of the amyloid in
biological function and further withers the image of the amyloid
state as a predominantly disease and/or toxicity-associated pro-
tein conformation16–18. Rather, this suggests that like globular
protein folding, amyloid assembly is a matter of kinetic and
thermodynamic control that can be evolutionary tuned by
sequence variation and selection.

Efforts to develop aggregation predictors that can identify a
broader spectrum of amyloid sequences have increased over the
years19. Such approaches focused on identifying position-specific
patterns by reference to accumulated experimental data of
APRs20–22, or by using energy functions of cross-beta pairings23.
Recently developed meta-predictors produce consensus outputs
by combining previous methods, in an attempt to boost
performance24,25. Indirect structure-based methods were initially
developed by considering secondary structure propensities26,27.
Complementary studies extended this notion by suggesting that
disease-related amyloids form β-strand-loop-β-strand motifs28.
However, the principle of using structural information to accu-
rately predict aggregation prone segments in protein sequences
stems from the detailed work of Eisenberg and co-workers. The
3D-profiling method utilised the crystal structure of the fibril-
forming segment NNQQNY (PDB ID: 1YJO) derived from the
Sup35 prion protein, to thread and evaluate sequence fitting using
the Rosetta energy function29. In this work, we build on this
principle to develop Cordax, an exhaustively trained regression
model that leverages a substantial library of curated template
structures combined with machine learning. Cordax not only
detects APRs in proteins, but also predicts the structural topology,
orientation and overall architecture of the resulting putative fibril
core. To validate the accuracy of our predictions, we designed a
screen of 96 newly predicted APRs and experimentally deter-
mined their aggregation properties. Using this approach, we

identified less hydrophobic polar and charged aggregation prone
sequences that increasingly uncouple solubility and amyloid
propensity, closely resembling characteristics of phase-separation
inducers. Clustering by t-distributed stochastic neighbour
embedding reveals the heterogeneous substructure of amyloid
sequence space consisting in varying clusters corresponding to
sequences compatible with globular structure, functional scaf-
folding amyloids, N/Q/Y-rich prions, helical peptides and
intrinsically disordered sequences. Together, the structural
exploration performed here demonstrates that the field now
gathered sufficient structural and sequence information to start
classifying amyloids according to different structural and func-
tional niches. Just like for globular proteins in the 1980s, this will
allow to fine-tune both general and context-dependent structural
rule learning allowing to manipulate and design amyloid struc-
ture and function.

Results
Overall approach of Cordax. We wanted to design a novel
structure-based amyloid core sequence prediction method that
(a) leverages all the available structure information that is cur-
rently available, and (b) employs a machine-learning element for
optimal prediction performance. To this end, we first built a
curated template library of amyloid core structures as described
in the paragraph below. In the vein of previous prediction
methods29, we fixed on the hexapeptide as a unit of prediction. In
order to determine the amyloid propensity of a query hexapeptide
we start by modelling its side chains on all the available amyloid
template structures using the FoldX force field30, which yields a
model and an associated free energy estimate (ΔG, kcal/mol) for
each template. These free energies are then fed into a logistic
regression model, which is a simple statistical method relating a
binary outcome to continuous variables. The prediction output of
Cordax is multiple: First, there is the prediction from the logistic
regression whether or not the segment is an amyloid core
sequence. Second, for the sequences deemed amyloid core, the
most likely amyloid core model is provided. For longer query
sequences, a sliding window approach is adopted. The technical
details of the pipeline can be found in the “Methods” section.

Refinement of fibril structures for machine learning. We iso-
lated 78 short segment fibril core high-resolution structures from
the Protein Data Bank (Supplementary Data 1). Templates were
grouped into seven distinct topological classes out of eight the-
oretically possible based on their overall structural properties, as
previously proposed by Sawaya et al.31. Briefly, topologies are
defined by whether β-sheets have parallel versus antiparallel
orientation, by the orientation of the strand faces that form the
steric zipper (face-to-face versus face-to-back), and finally the
orientation of both sheets towards each other and whether that
results in identical or different fibril edges. This complexity was
addressed by generating an ensemble of amyloid cores per
structure using crystal contact information derived from the
solved structures. Every template comprises two facing β-sheets,
each composed of five successive β-strands. Since parallel archi-
tectures can share more than one homotypic packing interface,
those structures were split into separate individual entries (Fig. 1).
To ensure uniformity, we expanded the number of structural
variants by breaking down longer segments into hexapeptide
constituents, thus yielding a library of 179 peptide fragment
structures (Fig. 1 and Supplementary Data 1).

The amyloid interaction interfaces were analysed in detail
following energy refinement by the FoldX force field30. During
this step we identified and rejected 33 imperfect β-packing
interfaces formed by β-strands that contribute less than three
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interacting residues, thus reducing the ensemble to 146 structures
(Supplementary Data 1). Detailed analysis of the contributions of
various energy components showed that these excluded β-
packing interfaces have inefficient shape complementarity and
low overall stability, stemming from a combination of weak
electrostatic contributions, diminished van der Waals interactions
and exposure of hydrophobic residues to the solvent (Fig. 2a).

Previous work has highlighted that distinct topological layouts
can potentially introduce a stronger tolerance for the integration
of protein sequence segments and as a result can generate several
potential type-I errors (false positives)29. To address this issue, we
implemented a two-step cross-threading exploration of putative
structural promiscuous traps. In more detail, we extracted a non-
redundant set of hexapeptide sequences from the structural
library (73 sequences), which was subsequently cross-modelled in
an all-against-all reiteration process. Using an empirical cut-off
threshold (=5), a sum of three structural fragments was initially
identified and removed. Eliminating these structures led to the
identification and subsequent elimination of three additional
promiscuous templates, resulting in the final Cordax library,
composed of 140 zipper structures (Fig. 2b and c).

Benchmarking aggregation propensity detection with Cordax.
As an initial test of the prediction accuracy of the regression
model, we performed leave-one-out cross-validation on the
training dataset32 and performance metrics were determined on a
peptide basis. Due to the extensive size of the dataset, comparison
to other software was performed only with methods supporting
multiple sequence input and a non-binary scoring function,
since performances were compared using receiver operating

characteristic (ROC) analysis33. The ROC curves generated
highlight that Cordax performance exceeds over seven state-of-
the-art methods, which we applied using optimised options
defined by the developers7,9,21–24,34. In detail, Cordax performs
well over random as depicted by the highest total area under the
curve (AUC) value of 0.87 (Fig. 3a). Distribution analysis of the
scoring values indicates that the method achieves optimal
separation, resulting in minimal scoring overlay between positive
and negative amyloid forming sequences (Fig. 3b). As previously
reported, TANGO showed high specificity due to the over-
representation of unscored values, which is also evident for
WALTZ as well as MetAmyl, which incorporates the latter
method in its meta-prediction. The cost of high specificity is also
reflected by the calculated F1 values, as PASTA and TANGO
report low recall values. On the other hand, AGGRESCAN and
GAP produce significant overpredictions as depicted by their
reported false-positive rates (FPR values of 0.54 and 0.76,
respectively) (Fig. 3c). The optimal score thresholding of our
method was determined from the ROC curve analysis as the score
where predictions show the highest sensitivity-to-specificity ratio.
According to this, Cordax achieves a well-balanced prediction by
reporting with high specificity (86%) more than 7 out of 10
aggregation prone segments (72%), which is reflected by the
highest calculated MCC, AUC and F1 values compared to other
available software (Fig. 3c).

To further benchmark the method, we tested it against full-
length protein sequences. For this we used a standardised set of
34 annotated amyloidogenic proteins that was previously
implemented for validation of several previous aggregation
predictors25, following a filtering step for potential overlaps to
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Fig. 1 Processing steps of the peptide fragment library. a Crystal contact information was used to generate fibril cores from isolated PDB structures.
Structures containing multiple packing interfaces were split into individual templates (1), which were in turn split into hexapeptide core fragments (2).
Source data are provided as a Source Data file.
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Fig. 2 Optimising the Cordax structural library. a Correlation plot of interface energies calculated using FoldX. Top half shows correlation values with
scatter plots indicated at the bottom half. Rejected fragments sharing low shape complementarity (shown in yellow) have correlating weak van der Waals
interfaces, as well as poor solvation energies for hydrophobic side chains compared to the remaining library (indicated in purple). Linear regression lines
are shown with 95% confidence interval (shown in grey shaded areas). b Promiscuity sorting of the structural library performed as a two-step cross-
threading process. Circular histograms highlight three major promiscuous structures (n > 5) which were removed during the primary (PDB ID: 1YJO, 3FR1
and 6CFH_3) and secondary step (PDB ID: 3FOD, 4XFN and 4W67_2). c Schematic representation of Cordax training and the derived pipeline.
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the training data set. Despite its wide use, this collection suffers
from insufficient experimental characterisation of certain large
entries (i.e. gelsolin, kerato-epithelin, lactoferrin, amphoterin and
others), which has been shown to introduce type-I errors (false
positives). This error propensity derives from non-amyloid
annotations which primarily correspond to regions of undeter-
mined aggregation propensity, a notion that is highlighted by
recent studies, such as in the case of calcitonin35, cystatin-C36 and
transthyretin37. In contrast, other proteins have been linked to
the formation of β-helical structures and as an after effect contain
elongated fragments characterised, yet unverified in their entirety,
as amyloidogenic, which can introduce type-II errors (false
negatives) when applying predictors of local aggregation
propensity38–41. The aforementioned shortcomings are reflected
by the low MCC values that are reported for all aggregation
predictors (Supplementary Table 1) and the fact that predicted
segments were originally considered neutral, but later shown to
be aggregation hotspots (Supplementary Fig. 1)35–41.

Designed APR nucleators validate the accuracy of Cordax
predictions. In the interest of improving the current description
of the familiar amyloidogenic protein dataset, we selected and
synthesised a subset of 96 peptides corresponding to strong
aggregation prone regions identified in these proteins by Cordax.
Apart of prediction strength, the peptide screen was also selec-
tively constructed to ensure broad sequence variability and a wide
distribution on the proteins of the dataset, with a preference for
longer entries defined by inadequate previous characterisation.
Peptide sequences were cross-checked and filtered to exclude
overlapping sequences with previously identified amyloid regions
and WALTZ-DB (Supplementary Data 2). The remaining selec-
tion of 96 peptides were synthesised using standard solid phase
synthesis and their amyloid-forming properties were initially
examined using Thioflavin-T (Th-T) or pFTAA binding, fol-
lowing rotating incubation for 5 days at room temperature. The
binding assays are complementary, as Th-T and pFTAA are
opposingly charged molecules, which increases the amyloid
identification rate by overcoming cases of dye-specific failure to
bind to amyloid surfaces based on charge repulsion. Under these
conditions, 66 peptides successfully bind to the specific dyes
(Fig. 4a and b) by forming fibrils with typical amyloid
morphologies and properties that were verified using transmis-
sion electron microscopy (Fig. 4c) and Congo red staining for
selected cases (Fig. 4d). As these dyes are known to yield false
negatives, in particular for short peptides, all dye-negative pep-
tides were further investigated using electron microscopy. During
this scan, we recovered 19 additional sequences that were capable
of forming sparse amyloid-like fibrils with shorter lengths (Sup-
plementary Fig. 2). Taking the latter into account, Cordax was
able to fish out a total number of 85 novel nucleation segments
with unparalleled accuracy (89%), thus providing a rigorously
improved description of the protein set to be used for the efficient
testing and development of future predictors (Supplementary
Fig. 1).

Cordax detects highly soluble surface-exposed conformational
switches. The expanded amyloidogenic annotation of the protein
dataset was supplemented with structural analysis of the newly
identified aggregation prone regions. Out of 96 peptides designed
and experimentally tested, 85 peptides were found to display
evident amyloid-forming features, with more than half (55.3%)
being predicted specifically by Cordax, contrary to shared pre-
dictions with sequence-based tools of high specificity (44.7%)
(Supplementary Data 2). Pinpointing the location of the identified
nucleators in parental protein folds (Fig. 5a) revealed that APRs

picked up both by Cordax and traditional sequence-based
methods are usually found buried within the core of soluble
proteins. Contrary to what has been previously reported14,15,
however, our regression model also discovered additional nucle-
ating sequences that primarily appear to reside on the surface of
protein molecules (Fig. 5b–h) and as a result, are characterised by
high solvent exposure (Fig. 5i and j). Partition coefficients clearly
indicate that these exposed peptide segments identified by Cordax
are primarily water-soluble sequences, whereas APRs that are
predicted by the majority of sequence-based predictors are largely
insoluble (Fig. 5k). Sequence distribution analysis signifies that
this increased exposure and solubility is complemented by an
expected decrease in sequence hydrophobicity (Fig. 5l). More
specifically, APRs identified solely by Cordax are relatively enri-
ched in charged or polar side chains (Fig. 5l) and are frequently
parts of α-helical or unstructured segments (Fig. 5m). This
implies that these regions are in fact conformational switches that
may, under fitting misfolding conditions, transiently move
towards the formation of β-aggregates. The fact that these
sequences are not dictated by typical sequence propensities, such
as hydrophobicity or β-structure tendency, explains why
sequence-based predictors overlook them.

Cordax infiltrates uncharted areas of amyloid sequence space.
To further explore the capabilities of our method, we composed a
map of the known amyloid-forming sequence space using t-
distributed stochastic neighbour embedding (t-SNE) for dimen-
sionality reduction (Fig. 6a). As input, we used a 20-dimensional
parameterisation vector describing all newly identified amyloi-
dogenic peptides merged to the known amyloid-forming hex-
apeptide sequences in WALTZ-DB, in terms of their basic
physicochemical properties and amino acid composition, as well
as prediction outputs derived from Cordax and other high spe-
cificity predictors. t-SNE mapping pinpointed clear areas of
sequence space where Cordax correctly identifies amyloid pro-
pensity (purple colour in Fig. 6a), which primarily extend towards
regions that remain unpredicted (shown in black) and seclude
from a large base of sequences identified by multiple methods,
including Cordax (cyan colour). Clustering analysis (Fig. 6b)
performed using physicochemical properties (Figs. 6c–e), sec-
ondary structure propensities (Fig. 6f) and side chain size dis-
tributions (Fig. 6g, h) identifies that this common base of by-now
easy to predict APRs are characterised by high hydrophobicity,
strong β-sheet propensity and a high relative content of aliphatic
side chains (cluster 1 in Fig. 6b), still echoing the initial discovery
of APRs by these features6. Cordax explores regions adjacent to
this with a higher content of shorter side chains (clusters 2 and 5).
Notably, amyloid nucleators of this composition are an invaluable
resource for amyloid nanomaterial designs with elastin-like
properties, are enriched in functional amyloids and have also
been linked to ancestral amyloid scaffolds in early life42–45. A
similar trend in amino acid composition has also been reported
for proteins that form condensates through phase transition, such
as TDP-43 and FUS16,18. Low complexity regions (LCRs) that are
enriched in short side chains, such as Gly or Ala, have been
shown to drive phase separation, often as an intermediate event
towards fibrillation, particularly in polar LCRs with lower ali-
phatic content and strong disorder or α-helical propensities, such
as the sequences discovered in cluster 517,46. Further to this,
Cordax provides significant advancement by traversing in areas
with a higher content of negatively or positively charged regions
(clusters 3, 4, 6 and 7, respectively). Charged residues often act as
gatekeepers that directly disrupt aggregation or modulate it by
flanking APRs within protein sequences47. Based on this premise,
most sequence-based predictors negatively correlate net charge to
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Fig. 4 Amyloid-forming properties of the peptide screen designed by employing Cordax. a and b Measured pFTAA and c and d Th-T fluorescence of
synthetic peptides following rotation at 200 μM for 5 days. Data represents mean ± SD (n= 6 independent experiments, statistics: one-way ANOVA with
multiple comparison against the vehicle control). e Electron micrographs of amyloid fibrils formed by Th-T or pFTAA-binding peptides. f Suspensions of
amyloid fibrils bind Congo red as displayed under bright field illumination (BF) and exhibit typical for amyloids apple-green birefringence under crossed-
polarised light (CP). Scale bars: 500 μm. Source data are provided as a Source Data file.
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protein aggregation and have increased failure rates when iden-
tifying such amyloid-forming stretches. On the other hand,
sequences with a high content of aromatic side chains are rela-
tively easy to identify (clusters 9a and 9b), following several lines
of evidence supporting their role in amyloid fibril formation48.
Cordax also pushes forward into less well-charted areas of amy-
loid sequence space, e.g. exploring clusters with high α-helical
content (cluster 10) and overall a low content of aliphatic amino
acids (clusters 5, 6, 7, 8 and 9b). These regions also reveal the

scope to improve the method, as in particular, the region with
high disorder propensity (cluster 11) still contains many false
negatives, in spite of the ability of Cordax to partially pick up a
minority of sequences. Interestingly, a closer look at the partition
coefficients of the known amyloid sequence space reveals that
although Cordax takes a significant step forward towards the
right direction, these APRs remain very hard to identify as they
are characterised by even higher solubility values (Fig. 6i). Similar
charting of the amyloid sequence space is achieved by using
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proteins, compared to segments of joint prediction (shown in blue) which are predominantly buried within the hydrophobic core of the native fold. Cordax-
specific predicted APRs produced lower volumetric burial values, calculated using FoldX, for i side chain and j main chain groups indicating that they are
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uniform manifold approximation and projection (UMAP) for
dimensionality reduction (Supplementary Fig. 3a and b), while
PCA analysis highlights that CORDAX slowly infiltrates the
sequence space of higher solubilities (Supplementary Fig. 3c and d).
Overall, dimensionality reduction transformation highlights that

structural compatibility can overcome typical sequence propen-
sities as a pivotal driver of aggregation nucleating sequences and
suggests that under the proper conditions, the boundaries currently
considered compatible to protein amyloid-like assembly are
potentially far wider than previously expected.
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Cordax predicts the structural layout and topology of fibril
cores. Due to restricted availability of experimentally determined
structures not included in the Cordax library, we first analysed
the information derived from cross-threading analysis in order to
test the performance of the tool in predicting the structural
architecture of aggregation prone stretches. Among 73 unique
sequences corresponding to the structural library, Cordax was
able to accurately assign the correct architecture to 63%, whereas
81% was identified with proper β-strand orientation (parallel/
antiparallel) (Fig. 7a, Supplementary Data 3 and 4). In compar-
ison, FibPredictor49 correct topology allocation was limited to
9.5% of the sequences and assigned β-strand directionality
amounted to 32.9%, while introducing an evident preference
towards antiparallel architectures (Fig. 7a). Similarly, the 3D-
profile method is restricted to linking all potential queries with a
class 1 topology, hence was incapable of predicting alternative
architectures (Fig. 7a). Structural alignment indicated that even in
cases of mismatching selected templates, modelled architectures
strongly superimpose to the solved structures (Fig. 7b), suggesting
that Cordax identifies the correct topology with high accuracy. A

closer look reveals that sequence specificity may be a modulating,
yet not determining factor for this selection process. Steric per-
turbations can be introduced due to restrictions deriving from
closely interdigitating side chains within the packed interfaces,
therefore, key residue positions can be bound to the overall sta-
bility of certain structural topologies and decrease the acceptable
sequence space that can accommodate energetically favourable
interactions. This is highlighted by the sequence similarity
observed between topological matches (Fig. 7c, Supplementary
Data 4). On the other hand, topologically different model selec-
tions could also be a consequential outcome of amyloid poly-
morphism. The observed sequence redundancy of the Cordax
library illustrates that APRs can form amyloid fibrils with distinct
morphological layouts50–52, a notion that is also supported by the
common morphological variability of aggregates formed at the
level of full-length amyloid-forming proteins53,54. The modulat-
ing role of sequence dependency was also evident for the 96-
peptide screen. A ranked analysis of the output models indicated
that templates with higher alignment scores were not crucial for
the topology selection process, although could often correspond
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e Structural alignment of Cordax outputs to experimentally determined 3D structures. Models were calculated for three aggregation prone sequences
derived from CsgA curli forming protein (PDB IDs: 6G8C, 6G8D and 6G8E, respectively) and a peptide mutant sequence derived from Aβ amyloid peptide
(PDB ID: 5TXH). Predicted topologies are overlapping representations of the experimentally determined amyloid fibril cores, f as displayed by a direct
comparison to other software. Violin plots represent the kernel probability densities of the data with the median, upper and bottom quartiles. Source data
are provided as a Source Data file.
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to the favourable architectures (Fig. 7d), thus highlighting that the
structural predictions of Cordax are relatively unbiased in terms
of the sequence space composing the structural templates.

The accuracy of the tool was also cross-referenced against
experimentally determined structures of fibril cores not included
in the structural library. We utilised the recently solved structures
of parallel fibril-forming segments derived from the major curli
protein CsgA55, as well as an anti-parallel polymorphic APR
variant segment derived from the amyloid-β peptide56. Compared
to other structural predictors, only Cordax could invariantly
predict the correct architecture for every steric zipper as the
closest representation of the experimentally determined reference
structures (Fig. 7e and f). This performance can only improve as
the fragment library expands, so we aim to update it at regular
intervals, providing there is a noticeable increase in solved
structures in the future.

Discussion
The number of amyloid structures in the protein databank has
been steadily increasing over the last two decades. It has now
achieved a number (>80) that was reached for globular proteins at
the beginning of the 1980s and that then triggered the first
developments of template-based modelling methods including
homology-based and threading (or fold recognition) in an
attempt to estimate the versatility of individual folds and discover
novel folds in a more directed manner. Similarly, we here
developed Cordax, an exhaustively trained regression model that
leverages a substantial library of curated amyloid template
structures combined with machine learning. Cordax uses a
logistic regression approach to translate structural compatibility
and interaction energies into sequence aggregation propensity
and is therefore unconstrained by defined sequence tendencies,
such as hydrophobicity or secondary structure preference that
direct most sequence-based predictors. As a result, we discovered
unconventional amyloid-like sequences, including sequences with
low aliphatic content, high net charge or sequences with low
intrinsic structural propensities. Clustering amyloid sequences by
t-SNE two-dimensional reduction revealed the substructure of
amyloid sequence space. Apart from a large cluster corresponding
to sequences found in the hydrophobic core of globular proteins,
we also found clusters corresponding to surface-exposed amyloid
sequences in globular proteins, small aliphatic functional amy-
loids, N/Q/Y prions, strongly helical and intrinsically disordered
sequences which could be compatible with liquid–liquid phase
responsive sequences. Our analysis highlights the discovery of
highly soluble, yet amyloid-forming, sequences and suggests that
the largest portion of the remaining uncharted amyloid sequence
space is hidden in this corner (Fig. 6a and i). Indeed, most
archetypal hydrophobic APR sequences have low intrinsic solu-
bility. As a result, low solubility and aggregation propensity are
properties that are often wrongly used interchangeably. It is
important to differentiate between the initial solubility and
aggregation propensity of a peptide, as soluble monomeric
sequences can often self-assemble, at later time points, into
insoluble amyloid fibrils. The APRs that are newly discovered by
Cordax are often highly soluble in their monomeric form, even
more than the already known polar APRs from the yeast prions,
as they contain many charged and polar residues, yet surprisingly
can still assemble into amyloids. Overall, our approach demon-
strates that the increasing structural information on amyloids
now allows for more fine-graded structural rule learning of the
amyloid state.

Recent developments in microcrystal electron diffraction have
enabled structural determination from nanocrystals that are not
typically suited for traditional X-ray diffraction and have

provided significant insights on the polymorphic architectures of
amyloid fibrils57. In this line, the emergence of cryo-EM has been
pivotal in determining features of amyloid fibril polymorphs58,
complementing earlier efforts developed using solid-state NMR
spectroscopy53,59. Notably, these structures represent snapshots
of the kinetic cores of aggregation or end-state morphologies of
amyloid fibrils and therefore provide limited information on the
underlying aggregation pathways and toxicity-related effects of
amyloids. On the other hand, the growing number of high-
resolution cryo-EM structures has highlighted the in vivo struc-
tural diversity of amyloid fibrils60, whereas steric zippers have
been recently used for the development of targeted ther-
apeutics61–63. However, determining the structural layout of
amyloid fibrils still remains challenging. Cordax attempts to
provide a cost-effective complementary powerful computational
alternative that can be operated without any required scientific
expertise necessary to apply the intricate technical approaches.
Apart from its function as an aggregation predictor, the tool is
uniquely poised to provide detailed complementary structural
information on the putative amyloid fibril architecture of iden-
tified APRs. Users can utilise the method to structurally char-
acterise identified APRs by classifying their overall specific
topological preferences, including β-strand directionality and key
residue positions that are integral parts of the amyloid core. The
latter information is imperative for efforts focused on under-
standing the underlying mechanisms that dictate amyloid-related
diseases or the formation of functional amyloids, but can also
have an immense impact on the design of applied nano-
biomaterials64, targeted amyloid inducers65 or counteragents,
following the increased interest in the development of structure-
based inhibitors of aggregation61–63.

Methods
Regression model training. In previous work we synthesised and explored the
aggregation potential of 940 peptide sequences derived from both functional and
pathological amyloid-forming proteins, which were supplemented with additional
data on 462 hexapeptides derived from other published sources to develop
WALTZ-DB 2.032, the largest public comprehensive repository of experimentally
defined amyloidogenic peptides. In total, 1402 hexapeptide sequences from
WALTZ-DB were modelled on the 140 backbone structures of the Cordax library,
leading to the generation of 196,280 models. The thermodynamic stability of each
model (ΔG, kcal mol−1) was calculated using FoldX and fed into a logistic
regression model (Fig. 2c). This model was used to distil the aggregation propensity
from the free energy values. Towards this end, from the calculated ΔGs, we isolated
50 representative energies using a recursive feature elimination algorithm (using
the RFE module of the SciKit-learn python package33 and selecting for the set of
templates that maximised the AUC). As a result, each sequence is described with a
50-dimensional vector. Next, the data were transformed in order to be constrained
in a scoring range between 0 and 1, using a Min/Max scaling algorithm. The
regression model was trained with L2 penality and regularisation strength (C) equal
to 1. Both scaling of the estimated ΔG and the machine-learning model were
developed using the SciKit-learn python package66.

Model pipeline. Cordax receives a protein sequence in FASTA format as input,
which is fragmented into hexapeptides using a sliding window process. Sequences
are then threaded against the fragment library utilising FoldX and the derived free
energies are translated into scoring values for every peptide window. An energe-
tically fitted model is selected as the closest representative of the overall topology of
the amyloid fibril core for each predicted window and is provided as output in
standard PDB format to the users (Fig. 2c). An amyloidogenic profile is generated
by scoring every single residue of the input sequence with the maximum calculated
score of the corresponding windows, followed by a binary prediction for every
segment. Finally, calculated energies are stored automatically in a growing local
database and can be retrieved, thus creating a ‘lazy’ interface that bypasses unne-
cessary computation for recurring sequence segments or future runs.

Datasets. Performance assessment of Cordax was carried out utilising two indi-
vidual data sets for peptide and protein aggregation propensity detection. Further
validation of the method was performed against an independent subset screen of 96
hexapeptides sequences.

For peptide aggregation propensity, we used a dataset of 1402 non-redundant
hexapeptides contained in the WALTZ-DB 2.0 repository32. This database is the
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largest currently available resource of experimentally characterised amyloidogenic
peptides. It contains annotated peptide entries that are distributed in shorter
subsets and extracted from literature22,23,67–69, in addition to peptides with
experimentally determined amyloid-forming properties. As a result, it has been
widely used as a validation set for several aggregation predicting tools21,23,67,70,71.

Collected in 2013, reg33 is a standard dataset for estimating the performance of
aggregation propensity prediction in protein sequences25. It contains regional
annotation of aggregating segments identified for 34 well-known amyloidogenic
proteins. The annotation is assigned on a residue basis, thus containing 1260
residues in defined APRs and 6472 residues located in non-aggregating segments.

Last, we compiled a set consisting of 96 hexapeptide segments derived from
potentially mis-annotated non-amyloidogenic regions of the reg33 dataset that
were predicted as aggregation-prone segments after applying Cordax. Peptide
segments were filtered for potential overlaps to the WALTZ-DB 2.0 set
(Supplementary Data 2).

Comparative analysis. Binary classification was utilised to determine perfor-
mances of calculated aggregation propensities per hexapeptide fragment or per
residue. As a result, predictions can be classified by comparison to experimental
validation into true positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN), respectively. Performance is evaluated using the following
metrics:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð1Þ

Precision ¼ TP
TPþ FP

ð2Þ

Sensitivity ðRecallÞ ¼ TP
TPþ FN

ð3Þ

Specificity ¼ TN
TNþ FP

ð4Þ

F1 ¼ 2 ´
ðPrecision ´ RecallÞ
ðPrecision þ RecallÞ ð5Þ

MCC ¼ ðTP ´ TN� FP ´ FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TNþ FNð Þ TNþ FPð Þ TPþ FNð ÞðTPþ FPÞp ð6Þ

Peptide synthesis. Peptides derived from the Cordax validation set were syn-
thesised using an Intavis Multipep RSi solid phase peptide synthesis robot. Peptide
purity (>90%) was evaluated using RP-HPLC purification protocols and peptides
were stored as ether precipitates (−20 °C). Peptide stocks were initially treated with
1,1,1,3,3,3-hexafluoro-isopropanol (HFIP) (Merck), then dissolved in traces of
dimethyl sulfoxide (DMSO) (Merck) (<5 %), filtered through 0.2 μm filters and
finally in milli-Q water to reach a final concentration of 200 μM or up to 1 mM for
dye-negative peptides. Dithiothreitol (DTT) (1 mM) was included in solutions of
peptides spanning cysteine or methionine residues. All peptides were incubated at
room temperature for a period of 5 days on a rotating wheel.

Thioflavin-T and pFTAA-binding assays. Amyloid aggregation was monitored
using fluorescent spectroscopy-binding assays. Th-T (Sigma) or pFTAA (Ebba
Biotech AB) was added in half-area black 96-well microplates (Corning, USA) at a
final concentration of 25 and 0.5 μM, respectively. Fluorescence intensity was
measured in replicates (n= 6) using a PolarStar Optima and a FluoStar Omega
plate reader (BMG Labtech, Germany), equipped with an excitation filter at 440 nm
and emission filters at 490 and 510 nm, respectively.

Transmission electron microscopy. Peptide solutions were incubated for 5 days
at room temperature in order to form mature amyloid-like fibrils. Suspensions (5
μL) of each peptide solution were added on 400-mesh carbon-coated copper grids
(Agar Scientific Ltd., England), following a glow-discharging step of 30 s to
improve sample adsorption. Grids were washed with milli-Q water and negatively
stained using uranyl acetate (2% w/v in milli-Q water). Grids were examined with a
JEM-1400 120 kV transmission electron microscope (JEOL, Japan), operated at 80
keV.

Congo red staining. Droplets (10 μL) of peptide solutions containing mature
amyloid fibrils were cast on glass slides and permitted to dry slowly in ambient
conditions in order to form thin films. The films were stained with a Congo red
(Sigma) solution (0.1% w/v) prepared in milli-Q water for 20 min. De-staining was
performed with gradient ethanol solutions (70–90%).

Determination of peptide propensities. Surface exposure and secondary struc-
ture analysis was performed using the FoldX energy force field on the available
crystal structures for acylphosphatase-2 (PDB ID:1APS), amphoterin (PDB

ID:1CKT and 1HME), apolipoprotein-C2 (PDB ID:1I5J), α-synuclein (PDB
ID:1XQ8), β2-microglobulin (PDB ID:1A1M), casein (PDB ID:6FS5), gelsolin (PDB
ID:3FFN), Het-S (PDB ID:2WVN), kerato-epithelin (PDB ID:5NV6), lactoferrin
(PDB ID:1CB6), prolactin (PDB ID:1RW5), major prion protein (PDB ID:1E1G),
repA (PDB ID:1HKQ), serum amyloid alpha (PDB ID:4IP8), Sup35 (PDB
ID:4CRN) and Ure2p (PDB ID:1HQO). Partition coefficients were calculated using
PlogP, which specialises in peptides with blocked termini72. Structural alignment
and visualisation were performed with the aid of YASARA73. Sequence similarities
were calculated using the BLOSUM62 matrix currently available under the Bio-
strings R library. Correlation plots were generated using the ggpairs() function
available under the GGally R library and ROC curves were calculated using ROCR.

Dimensionality reduction analysis. A defined amyloid-forming sequence space
was constructed by merging the experimentally determined amyloid sequences of
the 96-peptide screen, identified by Cordax, to the amyloid sequence content
extracted from WALTZ-DB. Prior to t-SNE analysis, scoring outputs using Cordax,
PASTA23, TANGO7 and WALTZ21 were calculated for each peptide entry. Peptide
description was complemented with a 20-dimensional vector using the available R
package Peptides. All data points were reduced and embedded in 2D-space using
the Rtsne package, with perplexity (p= 45), iteration steps (n= 5000) and learning
rate (default) defined based on the initial guidelines proposed by van der Maaten
and Hinton74. UMAP reduction was performed using the R umap package and
three-dimensional PCA analysis was conducted using pca3d R package and
visualised with scatter3D, respectively.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 3a–d, 4l, m and 6a, c, d are provided as a Source Data
file. Other data are available from the corresponding authors upon reasonable request.

Code availability
CORDAX is implemented in Python and is freely accessible for academic and non-profit
users at https://cordax.switchlab.org/.
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