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Abstract

In this study, we generalize fuzzy Γ‐module, as in-

tuitionistic fuzzy Γ‐submodule of Γ‐module (IFΓM),

and utilize it for modeling the spread of coronavirus

in air travels. Certain fundamental features of

intuitionistic fuzzy Γ‐submodule are provided, and it

is proved that IFΓM can be considered as a complete

lattice. Some elucidatory examples are demonstrated

to explain the properties of IFΓM. The relevance

between the upper and lower α‐level cut and in-

tuitionistic fuzzy Γ‐submodules are presented and the

characteristics of upper and lower under image

and inverse image of IFΓM are acquired. It is verified

that the image and inverse image of intuitionistic

fuzzy Γ‐submodule are preserved under the module

homomorphism. The obtained IFΓM is used to

model the aerial transition of viral diseases, that is,

COVID‐n, via flights.
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1 | INTRODUCTION

The theory of fuzzy set was established by Zadeh,1 then Rosenfeld proposed a relation between
fuzzy set and group theory and regulated the notion of fuzzy subgroups.2 Atanassov established the
intuitionistic fuzzy set (IFS) that involved basic and fundamental concepts as the extension of fuzzy
sets.3 In fact, the IFS has been beneficial to tackle incomplete and vague information. This theory is
more effective as an IFS, related to the degree of nonmembership and membership in a unit
interval, while a fuzzy set is associated to the degree of membership of an element in a specified set.
Numerous ideas have been developed via IFS theory, for instance, Biwas4 defined the intuitionistic
fuzzy subgroups of a group, and Kim et al. surveyed the intuitionistic fuzzy ideals of semirings.5

The authors presented the universal coefficient theorem in the category of intuitionistic fuzzy
modules.6 Sharma initiated the concept of t‐intuitionistic fuzzy subgroup,7 fuzzy quotient group,8

α β( , )‐cut of intuitionistic fuzzy group,9 homomorphism of intuitionistic fuzzy group,10 and direct
product of intuitionistic fuzzy group.11 Jun et al. investigated the quotient structures of intuitionistic
fuzzy finite state machines,12 they also studied the intuitionistic nil radicals of intuitionistic fuzzy
ideals and Euclidean intuitionistic fuzzy ideals in rings.13 Based on the intuitionistic fuzzy im-
plications, Zhou et al. introduced the intuitionistic fuzzy rough sets.14

Studies on Γ‐related were extended by Nobusawa15 who characterized Γ‐rings and afterwards
Barnes16 and Luh17 improved the structure ofΓ‐rings. Sen et al. presented the idea ofΓ‐semigroup
as a generalization of semigroup, after that, Rao defined the idea of Γ‐semiring.18 The authors
introduced the theory of Γ‐semihypergroup and expanded various classical concepts of semi-
groups.19 Ameri et al. developed the concept of Γ‐module over a Γ‐ring and extended fuzzy
Γ‐hypermodules and fuzzy Γ‐modules.20,21 They also defined a connection between fuzzy
Γ‐hypermodules and Γ‐modules through fundamental relations. Another study was done on
fuzzy Γ‐hypermodules and fuzzy Γ‐hyperrings to obtain basic results.22 Other researchers
proposed the concept of IFSs in Γ‐semigroups,23 while Ersoy et al. studied the IFS in the
Γ‐semihyperring.24 The authors extended the Atanassov intuitionistic fuzzy grade of
hypergroups,25 the Atanassov intuitionistic S T( , )‐fuzzy n‐ary subhypergroups and their traits,26

and the Atanassov intuitionistic fuzzy interior ideals of Γ‐semigroups.27 Latif et al. explored basic
theorems of t‐intuitionistic fuzzy isomorphism of t‐intuitionistic fuzzy subgroups.28

Gulzar et al. developed some classes of t‐intuitionistic fuzzy subgroups,29 and then de-
termined the new applications of complex IFSs in group theory.30 In fact, IFSs are helpful in
advanced systems, systems theory, decision making, and so on. Recently, Ejegwa presented the
correlation coefficient between IFSs and its applications in real‐life decision‐making problems.31

Alcantud et al. studied the aggregation of infinite chains of IFSs and their applications with
temporal IFSs.32 Others extended the complex IFS by quaternion numbers along with utilizing
them in decision making.33 Wei et al. defined an information‐based score function of interval‐
valued IFSs and its application in multiattribute decision‐making.34 Also, Tao et al. explored
dynamic multicriteria decision making in real life.35 There are many other potential applications
of IFSs in chemistry, mathematics, programming, physics, medicine, and machine learning.
Kumar De et al. used the IFSs for medical diagnosis,36 while the authors proposed the appli-
cations of IFS in medicine.37 Ejewa et al. utilized the IFSs in electoral systems.38 Mahanta et al.
surveyed a novel distance measure with various applications,39 while others analyzed the mea-
sure of width‐based distance on the interval‐valued IFS.40

The coronavirus disease‐2019 (COVID‐19) pandemic is a serious global crisis that has
quickly spread over the world, causing millions of mortalities till date. Although the first
cases were reported in China, new cases were identified in all other nations in a short
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period of time.41 This viral disease has infected humanity worldwide with typical symptoms of
fever, sore throat, cough, fatigue and dyspnea. Despite the capability of some countries on
effective vaccination against coronavirus disease, the emergence of new infected cases is
unpredictable and seriously worrying, as there is yet neither an adamant treatment against the
mutated versions of COVID nor a prohibition methodology against the detrimental/deadly side
effects of known vaccines.42 As such, various countries implemented severe precautions to
decelerate the diffusion of this disease after the World Health Organization (WHO) officially
publicized the epidemic situation in mid‐March 2019.43

Due to the COVID‐19 outbreak, many countries have faced case threats through inbound
international and national flights. After identifying the first cases of coronavirus in different
countries, strict rules were imposed on the airlines that yielded the disruption
of global transportation.44 In fact, to lessen the chances of proliferation of COVID‐19,
very strict protocols were issued by governments on aerial sectors. These restrictions included
installing high‐efficiency air filters in aircrafts, imposing C‐reactive protein (CRP) tests and
vaccinations for travelers, wearing protective masks, and keeping social distances during the
aerial trips.45 While the air travels are considered as an essential transportation service
worldwide, the surveillance/modeling of the corresponding global factors (studied here) is
necessary to resume safe aerial trips with reduced/controlled COVID threats46 (Figure 1).

The main contribution of this paper is the generalization of fuzzy Γ‐module through
the development of IFS, and the construction of new application for the spread of viral
diseases, that is, coronavirus, among individuals in air travels. By using Γ‐module,
we expand the framework of IFS via the expression of some basic and significant
characteristics with certain foundational traits. In Section 3, the intuitionistic fuzzy

FIGURE 1 Impact of COVID‐19 outbreak on flights [Color figure can be viewed at wileyonlinelibrary.com]
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Γ‐submodule (IFΓM) is established via the notion of Γ‐modules to extend the fuzzy sets.
Fundamental properties of intuitionistic fuzzy Γ‐submodule are found, and it is verified
that IFΓM can be regarded as a complete lattice. Furthermore, by considering the upper
and lower α‐level cut, we express the relationship between them and IFΓM, along with
several traits of upper and lower via image and inverse image of IFΓM. It is shown that the
image and inverse image of intuitionistic fuzzy Γ‐submodule are preserved under the
module homomorphism. In Section 4, the elucidatory examples address the application of
IFΓM in the immunological transmission of COVID‐n.

2 | PRELIMINARIES

The IFSs are the generalization of the fuzzy sets which were proposed by Atanassov.3 An
IFS A of a nonvoid set X is described by the formation  A t t ζ t t X= { , ϑ ( ), ( ) }A A , where

⟶Xϑ : [0, 1]A is the degree of membership and ⟶ζ X: [0, 1]A is the degree of non-
membership of the element t X , and we have  t ζ t0 ϑ ( ) + ( ) 1.A A Note that we will write
A ζ= (ϑ , )A A instead of  A t t ζ t= { , ϑ ( ), ( ) }A A . Consider ϑc the complement of ϑ which is de-
termined by t tϑ ( ) = 1 − ϑ ( )A

c
A . Let A ζ= (ϑ , )A A and B ζ= (ϑ , )B B be two IFS of X . Thus, the

next statements are introduced  t X , as follows:

(i)    A B t t ζ t ζ tϑ ( ) ϑ ( ), ( ) ( )A B A B ,
(ii)  A ζ t t= ( ), ϑ ( )c

A A ,
(iii)     A B t t ζ t ζ t= ϑ ( ) ϑ ( ), ( ) ( )A B A B ,
(iv)     A B t t ζ t ζ t= ϑ ( ) ϑ ( ), ( ) ( )A B A B ,
(v) □ ♢   A t t A ζ t ζ t= ϑ ( ), ϑ ( ) , = ( ), ( )A A

c
A
c

A .

and if A{ }i i I be arbitary family of IFS in X , where  A ζ= ϑ ,i A Ai i
, thus

(i)      A x ζ x= ϑ ( ), ( )i I i i I A i I Ai i
, that is, the intersection of Ai,

(ii)      A x ζ x= ϑ ( ), ( )i I i i I A i I Ai i
, that is, the union of Ai.

Definition 2.1 (Barnes16). Suppose R and Γ be additive abelian groups. R is considered
as a Γ‐ring if a mapping exists:

∶ ⟶R R R· × Γ ×

⟶r α r r α r r α r( , , ) . . (= )1 1 2 1 1 2 1 1 2

so that   r r r R α α, , , , Γ1 2 3 1 2 , the next circumstances hold:

(i) r r α r r α r r α r( + ) = +1 2 1 3 1 1 3 2 1 3;
(ii) r α α r r α r r α r( + ) = +1 1 2 3 1 1 3 1 2 3;
(iii) r α r r r α r r α r( + ) = +1 1 2 3 1 1 2 1 1 3;
(iv) r α r α r r α r α r( ) = ( )1 1 2 2 3 1 1 2 2 3 .
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Definition 2.2 (Ameri and Sadeghi).20 Consider R as a Γ‐ring. A left Γ‐module under R is
an additive abelian group M via a map ∶ ⟶R M M· × Γ × that ⟶  r γ m r γ m( , , ) , so
that for all m m m M, ,1 2 and γ γ γ, , Γ1 2 and r r r R, ,1 2 the next implications are
satisfied:

(i)      r γ m m r γ m r γ m( + ) = +1 2 1 2

(ii)      r r γ m r γ m r γ m( + ) = +1 2 1 2

(iii)      r γ γ m r γ m r γ m( + ) = +1 2 1 2

(iv)        r γ r γ m r γ r γ m( ) = ( )1 1 2 2 1 1 2 2 .

A nonvoid subset S of M is considered as left (right) Γ‐submodule of M provided for any
S S S,1 2 implies S S S+1 2 and also  R S S S R SΓ ( Γ ).

3 | FUNDAMENTAL FEATURES OF IFS OF
Γ‐SUBMODULES

Definition 3.1. A fuzzy left (right) Γ‐module over a Γ‐ring R is introduced to be a couple
M( , ϑ), where, M is a left Γ‐module and function ⟶Mϑ : [0, 1] that holds the following
circumstances:

(i) ϑ(0) = 1,
(ii) x y min x yϑ( + ) {ϑ( ), ϑ( )},
(iii)  rγx x xγr xϑ( ) ϑ( )(ϑ( ) ϑ( )).ϑ is considered as a fuzzy Γ‐module of M supposing ϑ is

a fuzzy left Γ‐module and also fuzzy right Γ‐module of M .

Example 3.2. Assume M = n for prime integer n, and R = and Γ = . Define

∶ ⟶· × × n n

with ⟼ ≔ r γ x r γ x rγx( , , ) , for every   r R γ x M, Γ, , thus M is a Γ‐module
under a Γ‐ring R (Figure 2).

Moreover, introduce the fuzzy set ϑ of M as follows:

FIGURE 2 Γ‐module M
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∕




x
x

ϑ( ¯ ) =
1, if ¯ = 0̄,

1 3, otherwise,

Thus, ϑ is a fuzzy Γ‐module of M .

Example 3.3. Suppose M = and R = and Γ be a subring of ( , +, ). Hence, R is a
Γ‐ring and M( , +) is an abelian group. Define

∶ ⟶· × Γ ×

with ⟼ ≔ r γ m r γ m rγm( , , ) for every   r R γ m M, Γ, . Therefore, M is a
Γ‐module. Now, describe ϑ in the following way:

∕




m
m

ϑ( ) =
1, if = 0,

3 5, otherwise.

Hence, ϑ is a fuzzy Γ‐module of M .

Definition 3.4. Assume M be a left Γ‐module under a Γ‐ring. An IFS  A ζ= ϑ ,A A ofM
is described as left intuitionistic fuzzy Γ‐submodule if for all   x y M r R γ, , , Γ the
next statements is satisfied:

(i) ϑ (0) = 1A and ζ (0) = 0A ,
(ii) x y min x yϑ ( + ) {ϑ ( ), ϑ ( )}A A A and ζ x y max ζ x ζ y( + ) { ( ), ( )}A A A ,
(iii) x rγxϑ ( ) ϑ ( )A A and ζ x ζ rγx( ) ( )A A .

Denote that IFΓM is intuitionistic fuzzy Γ‐submodule. Also, it is defined for right
Γ‐submodule, the IFS of  A ζ= ϑ ,A A of M is considered an IFΓM provided it is left and
right IFΓM.

Example 3.5. AssumeM = and R = and Γ = . Then, M( , +) is an abelian group
and R is a Γ‐ring. Define

∶ ⟶· × ×

written by ⟼r γ x rγx( , , ) , for every   r R γ x M, Γ, . Thus, M is a Γ‐module.
Describe two fuzzy sets ϑ and ζ of M , in the following way:

∕




x
x

ϑ ( ) =
1, if = 0,

1 3, otherwise,A

and

∕

∕







ζ x

x

x( ) =

0, if = 0,

2 3, if = 1,

2 5, otherwise.
A
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Hence,  A ζ= ϑ ,A A is an IFΓM of M .

Proposition 3.6. Suppose A{ }i i I be a family of IFΓM. Hence,  Ai I i and  Ai I i are
IFΓM.

Proof. We will verify  A IF MΓi I i , and the rest is similar. Let A{ }i be IFΓM for every
i I . So, we prove the statements:

(i)      ϑ (0) = ϑ (0) … ϑ (0) = 1 … 1 = 1A A A( )i I i n1
and  

ζ ζ(1) = (1) …A A( )i I i 1

  ζ (1) = 0 … 0 = 0An
.

(ii)




 



 

 
   
    


)

x y x y x y

x y x y

x x y y

x y

ϑ ( + ) = ϑ ( + ) … ϑ ( + )

(ϑ ( ) ϑ ( )) … (ϑ ( ) ϑ ( ))

= (ϑ ( ) … ϑ ( )) (ϑ ( )) … ϑ ( )

= ϑ ( ) ϑ ( )

A A A

A A A A

A A A A

A A

( )

( ) ( )

i I i n

n n

n

i I i i I i

1

1 1

1 1 1

(iii)      x x x rγx rγx rγxϑ ( ) = ϑ ( ) … ϑ ( ) ϑ ( ) … ϑ ( ) = ϑ ( )A A A A A A( ) ( )i I i n n i I i1 1 ,
and   

   ζ x ζ x ζ x ζ rγx ζ rγx ζ rγx( ) = ( ) … ( ) ( ) … ( ) = ( )A A A A A A( ) ( )i I i n n i I i1 1
.

This completes the proof. □
Proposition 3.7. Assume M be a Γ‐module under Γ‐ring R. Thus, IF ΓM is a complete
lattice under the inclusion .

Proof. Assume A{ }i i I be any subset of IFΓM, hence  A IF MΓi I i . Evidently,  Ai I i is
the largest intuitionistic fuzzy Γ‐submodule contained in Ai. Therefore,   A A=i I i i I i.
Also,  A IF MΓi I i , and it is the least intuitionistic fuzzy Γ‐submodule containing Ai. So,

  A A=i I i i I i. It yields that IFΓM is a complete lattice. □

Theorem 3.8. If S1 is a Γ‐submodule of M , hence  S χ χ˜ = ,S S
c

1 1 1
is an IF Γ M of M .

Proof. Assume   x y S r R γ, , , Γ1 . Since S1 is Γ‐submodule, so x y S+ 1 and
rγx S1. We verify the next statements.

(i) χ x( ) = 1S1
and χ x( ) = 0S

c
1

,

(ii)  χ x y min χ x χ y( + ) = 1 { ( ), ( )} = 1 1 = 1S S S1 1 1
, and



{ }

χ x y χ x y min χ x χ y

max χ x χ y

max χ x χ y

( + ) = 1 − ( + ) 1 − { ( ), ( )}

= {1 − ( ), 1 − ( )}

= ( ), ( ) ,

S
c

S S S

S S

S
c

S
c

1 1 1 1

1 1

1 1

(iii) χ rγx χ x( ) = 1 ( )S S1 1
and χ rγx χ rγx χ x χ x( ) = 1 − ( ) 1 − ( ) = ( )S

c
S S S

c
1 1 1 1

.
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Supposing x S1 or y S1, thus χ x( ) = 0S1
or χ y( ) = 0S1

. Therefore,

χ x y min χ x χ y( + ) 0 = { ( ), ( )},S S S1 1 1

and



{ }
{

max χ x χ y max χ x χ y

min χ x χ

χ x y

( ), ( ) = {1 − ( ), 1 − ( )}

= 1 − ( ),

= 1 ( + )

S
c

S
c

S S

S S

S
c

1 1 1 1

1 1

1

□

Theorem 3.9. Consider S1 be a nonvoid subset of M . If  S χ χ˜ = ,S S
c

1 1 1
is an IF ΓM of M ,

then S1 is a Γ‐submodule of M .

Proof. Assume that  S χ χ˜ = ,S S
c

1 1 1
is an IFΓM of M . We should verify for  x y S r, ,1

R γ, Γ that x y S+ 1 and rγx S1. It yields that

 χ x y min χ x χ y( + ) { ( ), ( )} = 1 1 = 1S S S1 1 1

and

 { }χ x y max χ x χ y( + ) ( ), ( ) = 0 1 = 1S
c

S
c

S
c

1 1 1

So, χ x y( + ) = 1S1
then, x y S+ 1. Also, we have

χ rγx χ x( ) ( ) = 1S S1 1

and

χ rγx χ x( ) ( ) = 0S
c

S1 1

It means that rγx S1. □

Proposition 3.10. Assume that  A ζ= ϑ ,A A be an IFΓM of M , and  α0 1. Introduce
an IFS  B ζ= ϑ ,B B on M by x α xϑ ( ) = ϑ ( )B A and ζ x α ζ x( ) = (1 − ) ( )B A , for all x M .
Hence,  B ζ= ϑ ,B B is an IFΓM of M .

Proof. We have

 x ζ x α x α ζ x0 ϑ ( ) + ( ) = ϑ ( ) + (1 − ) ( ) 1.B B A A

□

Proposition 3.11. Suppose that  A ζ= ϑ ,A A be an IFΓM of M . Describe an IFS
 B ζ= ϑ ,B B on M , by x xϑ ( ) = (ϑ ( ))B A

2 and ζ x ζ x( ) = 1 − (1 − ( ))B A
2, for all x M . Thus,

 B ζ= ϑ ,B B is an IFΓS of M .

Proof. Consider  A ζ= ϑ ,A A be an IFΓM of M . So, we have x yϑ ( + )A

min x y{ϑ ( ), ϑ ( )}A A . Then,
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x y min x y min x y min x y(ϑ ( + )) ( {ϑ ( ), ϑ ( )}) = {(ϑ ( )) , (ϑ ( )) } = {ϑ ( ), ϑ ( )}.A A A A A B B
2 2 2 2

Since x rγxϑ ( ) ϑ ( )A A , therefore x rγx(ϑ ( )) (ϑ ( ))A A
2 2, that implies x rγxϑ ( ) ϑ ( )B B . Also,

we have


 

 

 

 

 
 

ζ x y max ζ x ζ y

ζ x y min ζ x ζ y

ζ x y min ζ x ζ y

ζ x y min ζ x ζ y

ζ x y max ζ x ζ y

ζ x y max ζ x ζ y

ζ x y max ζ x ζ y

( + ) { ( ), ( )}

(− ( + )) {(− ( )), (− ( ))}

(1 − ( + )) ( {1 − ( ), 1 − ( )})

(1 − ( + )) {(1 − ( )) , (1 − ( )) }

−(1 − ( + )) {−(1 − ( )) , −(1 − ( )) }

1 − (1 − ( + )) {1 − (1 − ( )) , 1 − (1 − ( )) }

( + ) { ( ), ( )}.

A A A

A A A

A A A

A A A

A A A

A A A

B B B

2 2

2 2 2

2 2 2

2 2 2

In addition, we have


 

 

 

 
 

ζ x ζ rγx

ζ x ζ rγx

ζ x ζ rγx

ζ x ζ rγx

ζ x ζ rγx

ζ x ζ rγx

( ) ( )

− ( ) − ( )

(1 − ( )) (1 − ( ))

−(1 − ( )) −(1 − ( ))

1 − (1 − ( )) 1 − (1 − ( ))

( ) ( ).

A A

A A

A A

A A

A A

B B

2 2

2 2

2 2

The proof is completed. □

Theorem 3.12. An IFS  A ζ= ϑ ,A A of left (right) Γ‐module M is an IF ΓM if and only if
the fuzzy sets ϑA and ζA

c are fuzzy left (right) Γ‐module.

Proof. Let  A ζ= ϑ ,A A be IFΓM of M . By definition, ϑA is left fuzzy Γ‐module.
Moreover, for  x y M γ, , Γ, we attain

(i) ζ ζ(0) = 1 − (0) = 1 − 0 = 1A
c

A .
(ii)



{ }

ζ x y ζ x y

max ζ x ζ y

min ζ x ζ y

min ζ x ζ y

( + ) = 1 − ( + )

1 − { ( ), ( )}

= {1 − ( ), 1 − ( )}

= ( ), ( ) ,

A
c

A

A A

A A

A
c

A
c

(iii)



ζ rγx ζ rγx

ζ x

ζ x

( ) = 1 − ( )

1 − ( )

= ( ),

A
c

A

A

A
c

Hence, ζA
c is fuzzy left Γ‐module.
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On the contrary, assume that the fuzzy sets ϑA and ζA
c are fuzzy left (right) Γ‐module.

So, x y min x yϑ(0) = 1, ϑ( + ) {ϑ( ), ϑ( )}, and rγx xϑ( ) ϑ( ), for all   x y M r R γ, , ,

Γ. Also,

(i) ζ ζ(0) = 1 − (0) = 1 − 1 = 0A A
c ,

(ii)

 { }
{ }

ζ x y ζ x y

min ζ x ζ y

max ζ x ζ y

max ζ x ζ y

( + ) = 1 − ( + )

1 − ( ), ( )

= 1 − ( ), 1 − ( )

= { ( ), ( )},

A A
c

A
c

A
c

A
c

A
c

A A

(iii) ζ rγx ζ rγx ζ x ζ x( ) = 1 − ( ) 1 − ( ) = ( )A A
c

A
c

A .

Thus,  A ζ= ϑ ,A A is an IFΓM of M . □

Theorem 3.13. Assume  A ζ= ϑ ,A A be IFΓM of M . Hence,□A and ♢A are also IFΓM
of M .

Proof. Suppose  A ζ= ϑ ,A A be IFΓM of M . For all   x y M r R γ, , , Γ, we attain

(i) ϑ(0) = 1,
(ii) x y min x yϑ( + ) {ϑ( ), ϑ( )},
(iii)  rγx x xγr xϑ( ) ϑ( )(ϑ( ) ϑ( )).

Therefore, we have

ϑ (0) = 1 − ϑ (0) = 1 − 1 = 0,A
c

A

and



{ }

x y x y

min x y

max x y

max x y

ϑ ( + ) = 1 − ϑ ( + )

1 − {ϑ ( ), ϑ ( )}

= {1 − ϑ ( ), 1 − ϑ ( )}

= ϑ ( ), ϑ ( ) ,

A
c

A

A A

A A

A
c

A
c

and


rγx rγx

x

x

ϑ ( ) = 1 − ϑ ( )

1 − ϑ ( )

= ϑ ( ).

A
c

A

A

A
c

It implies that □A is an IFΓM of M . Similarly, we can verify for ♢A. □

Remark 3.14. For a proper IFS of A, we have□ ♢ A A A and□ ♢ A A A, but if
A is a fuzzy Γ‐module, then we have □ ♢A A A= = .
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U α(ϑ ; )A is described as an upper bound α‐level cut of ϑ, and written by U α(ϑ ; ) =A

 x M x α{ ϑ ( ) }A , and also L α(ϑ ; )A is considered as lower bound α‐level cut of ϑ, and written
by  L α x M x α(ϑ ; ) = { ϑ ( ) }A A , for any fuzzy set ϑ of M and α [0, 1].

Theorem 3.15. An IFS A of a Γ‐module M is a left (right) IFΓM if and only if for every
α β, [0, 1], the subsets U α(ϑ ; )A and L ζ β( ; )A of M are left (right) Γ‐submodule.

Proof. Suppose that  A ζ= ϑ ,A A be IFΓM of M . Let x y U α, (ϑ ; )A . Since
x y min x yϑ ( + ) {ϑ ( ), ϑ ( )}A A A , and  x α y αϑ ( ) , ϑ ( )A A so we have  x y α αϑ ( + )A

α= , it means that x y U α+ (ϑ ; )A . Also, since rγx xϑ( ) ϑ( ), and x αϑ ( )A , so we
have  rγx x αϑ( ) ϑ( ) , it yields that rγx U α(ϑ ; )A .

Now, assume that x y L ζ β, ( ; )A . Since ζ x y max ζ x ζ y( + ) { ( ), ( )}A A A , and ζ x( )A

β ζ y β, ( )A , so we have  ζ x y β β β( + ) =A , it follows x y L ζ β+ ( ; )A . Moreover,
since ζ rγx ζ x( ) ( ), and ζ x β( )A , so we have  ζ rγx ζ x β( ) ( ) , we conclude that

rγx L ζ β( ; )A .
On the contrary, assume that the subsets U α(ϑ ; )A and L ζ β( ; )A of M are left

Γ‐submodule. Let  x y M γ, , Γ, and x α y α ζ x βϑ ( ) = , ϑ ( ) = , ( ) =A A A0 1 0, and ζ y( ) =A

β1, that α α0 1 and β β0 1. If x y U α, (ϑ ; )A 0 and x y L ζ β, ( ; )A 1 , by hypothesis we
attain x y U α+ (ϑ ; )A 0 , and x y L ζ β+ ( ; )A 1 . Therefore,

α min x y x y= {ϑ ( ), ϑ ( )} ϑ ( + ),A A A0

β max ζ x ζ y ζ x y= { ( ), ( )} ( + ).A A A1

Also, rγx U α(ϑ ; )A 0 , and rγx L ζ β( ; )A 1 , so we have rγx αϑ ( )A 0, and ζ rγx β( )A 1.
Thus, rγx xϑ ( ) ϑ ( )A A , and ζ rγx ζ x( ) ( )A A . Hence,  A ζ= ϑ ,A A is an IFΓM of M . □

Definition 3.16. Assume that  A ζ= ϑ ,A A and  B ζ= ϑ ,B B be two IFS of M and M .
Consider ⟶π M M: be a map. Hence, we have

(i) The image of A under the map π is signified by π A( ), that is written π A( ) =
ζ(ϑ , )π A π A( ) ( ) , which  m M , we note

 








m

m π m
ϑ ( ¯ ) =

ϑ ( ), if ( ¯ ) ,

0, otherwise,
π A

m π m
A

( )
( ¯ )

−1
−1

and

 








ζ m

ζ m π m
( ¯ ) =

( ), if ( ¯ ) ,

1, otherwise.
π A

m π m
A

( )
( ¯ )

−1
−1

(ii) The inverse image of B is signified by π B( )−1 , that is written π B( ) =−1

( )ζϑ ,π B π B( ) ( )
−1 −1 , which for m M , we note

m π m ζ m ζ π mϑ ( ) = ϑ ( ( )), ( ) = ( ( )).π B B π B B( ) ( )
−1 −1
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The image and inverse image are depicted in Figure 3.

Proposition 3.17. Assume M1 and M2 be two Γ‐modules over Γ‐ring R and ⟶π M M: 1 2

be a surjective homomorphism. Suppose  A ζ= ϑ ,A A is an IFΓM of M1, thus for every
α β, [0, 1], we have

(i) π U α U α( (ϑ ; )) = (ϑ ; )A π A( ) ,
(ii) π L ζ β L ζ β( ( ; )) = ( ; )A π A( ) .

Proof. We prove (i),

   
    
   
 
 
 

( )

y π U α x U α π x y

x U α x π y

x α x π y

x α

y α

y U α

( (ϑ ; )) (ϑ ; ); ( ) =

(ϑ ; ); ( )

ϑ ( ) ; ( )

ϑ ( )

ϑ ( )

(ϑ ; )

A A

A

A

x π y A

π A

π A

0 0

0 0
−1

0 0
−1

( ) 0

( )

( )

0
−1

also, we prove (ii) in the following:

FIGURE 3 Image and inverse image of IFS

   

    

   

 
 

 

( )

y π L ζ β x L ζ β π x y

x L ζ β x π y

ζ x β x π y

ζ x β

ζ y β

y L ζ β

( ( ; )) ( ; ); ( ) =

( ; ); ( )

( ) ; ( )

( )

( )

( ; ).

A A

A

A

x π y A

π A

π A

0 0

0 0
−1

0 0
−1

( ) 0

( )

( )

0
−1

□
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Proposition 3.18. Suppose M1 and M2 be two Γ‐modules over Γ‐ring R and ⟶π M M: 1 2

be a surjective homomorphism. Assume  B ζ= ϑ ,B B be an IFΓM of M2, hence for every
α β, [0, 1], we have

(i) ( )π U α U α( (ϑ ; )) = ϑ ;B π B
−1

( )−1 ,
(ii) ( )π L ζ β L ζ β( ( ; )) = ;B π B

−1
( )−1 .

Proof. We verify (i) in the following:

  
 
 

  ( )

x π U α π x U α

π x α

x α

x U α

( (ϑ ; )) ( ) (ϑ ; )

ϑ ( ( ))

ϑ ( )

ϑ ; .

B B

B

π B

π B

−1

( )

( )

−1

−1

Moreover, we prove (ii) as follows:

  
 
 

  ( )

x π L ζ β π x L ζ β

ζ π x β

ζ x β

x L ζ β

( ( ; )) ( ) ( ; )

( ( ))

( )

; .

B B

B

π B

π B

−1

( )

( )

−1

−1

□

Definition 3.19. Assume M be Γ‐module over R, and M be Γ‐module over R . If the
map ⟶π M M: and bijection ⟶φ : Γ Γ and ⟶ψ R R: exist. π φ ψ( , , ) is called a
homomorphism of M to M , provided for all  x y M γ, , Γ, we attain

π x y π x π y( + ) = ( ) + ( ),

π rγx ψ r φ γ π x( ) = ( ) ( ) ( ).

Moreover, if π be a bijection, then we call π φ ψ( , , ) is an isomorphism.

Theorem 3.20. Assume M be Γ‐module, and M be Γ‐module. Let π φ ψ( , , ) be
homomorphism from M to M . Hence,

(i) if  A ζ= ϑ ,A A is an IFΓM of M , thus π A( ) is an IFΓM of M .
(ii) if  B ζ= ϑ ,B B is an IFΓM of M , thus π B( )−1 is an IFΓM of M .

Proof. (i): Since π A ζ( ) = (ϑ , )π A π A( ) ( ) , hence for all    x M γ r R x y, Γ, , ′, ′

 M γ r R¯ , ′ Γ̄, ′ ¯, we have
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







  


 

x y t

z

z z z

min x y

min x y

min x y

ϑ ( ′ + ′) = ϑ ( )

ϑ ( )

= ϑ ( ) = ϑ ( ) = ϑ ( )

{ϑ ( ), ϑ ( )}

= { ϑ ( ), ϑ ( )}

= {ϑ ( ′), ϑ ( ′)},

π A
t π x y

A

π z x y
A

π z π x π y
A

π z π x y
A

z x y
A

π x x π y y
A A

π x x
A

π y y
A

π A π A

( )
( ′+ ′)

( )= ′+ ′

( )= ( )+ ( ) ( )= ( + ) = +

( )= ′, ( )= ′

( )= ′ ( )= ′

( ) ( )

−1

Moreover,   r γ x t z zϑ ( ′ ′ ′) = ϑ ( ) ϑ ( ) = ϑ ( ) =π A t π r γ x A π z r γ x A π z ψ r φ γ π x A( ) ( ′ ′ ′) ( )= ′ ′ ′ ( )= ( ) ( ) ( )−1

  z z x xϑ ( ) = ϑ ( ) ϑ ( ) = ϑ ( ′)π z π rγx A z rγx A π x x A π A( )= ( ) = ( )= ′ ( ) . It is straightforward to prove
for ζπ A( ). Thus, π A( ) is an IFΓM of M .

The proof of (ii) is analogous to (i). □

4 | APPLICATION OF IFΓM FOR THE SPREAD TREND OF
COVID ‐n VIA AIR TRAVELS

The application of an IFS on‐submodules is expressed for the diffusion of coronavirus
disease 2019 (COVID‐19) via flights. COVID‐19 is the most recent epidemic disease which
has affected all over the world yielding nearly 4 million deaths till July 2021. This viral
disease was first emerged in Wuhan, China, and quickly spread across the world in a short
period of time, entangling all the countries and devastating numerous infrastructures.41

Air travels have negatively assisted the global epidemic of viral diseases, specifically those
highly infectious diseases, that is, COVID‐n.46 It was reported that after a major flight,
there have been some new patients infected with coronavirus.47 Here, we utilize the de-
veloped IFΓM to model the dispersion of coronavirus disease between individuals who
traveled to different countries via different airlines. In this transition, we appoint Γ as the
set of airlines, R as the set of countries, and M as the set of family members (Figure 4).

FIGURE 4 The set R and Γ
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Assume Γ be important airlines which operate in different countries. Consider Γ =

Qatar Airline Delta Airline United Airline{ , , } with the operation “+” that is defined as follows:

x y  x y+ = The airline which plays a role in disease transmission to and 

The set Γ with the operation + is shown in Table 1.
Thus, (Γ, +) is an abelian group.
Suppose R be the countries that participated in our model. Let R China Canada USA= { , , }

and the operation  determined in the following manner:

a b = The country which contaminates a and b.

The set R via the operation  is given in Table 2.
Therefore, R( , ) is an abelian group. Now, we introduce the operation “” in the next way:

⟶
⟼


 

R R R
r γ r r γ r

: × Γ ×
( , , ′) ′ = 1

which  r γ r′ means the country infected by COVID‐19 in relation with the airlines.
Hence, R( , , ) is Γ‐ring.

Consider the set M as the family members who travel to countries R with airlines Γ. Let
M Bob Jack Sara Nancy= { , , , }. Describe the operation “” as follows:

t s = The person who transmits the disease to t and s

In Table 3. M( , ) is defined.
Then, M( , ) is the abelian group. Introduce the operation “⊙” for all   r R γ m M, Γ, ,

in the following manner:

⊙ ⟶

⟼ ⊙ ⊙

R M M

r γ m r γ m a

: × Γ ×

( , , ) =

TABLE 1 Group (Γ, +)

+ Qatar Airline =A Delta Airline =B United Airline = C

Qatar Airline = A A B C

Delta Airline = B B C A

United Airline = C C A B

TABLE 2 Ring R( , )

 China = 1 Canada= 2 USA= 3

China = 1 1 2 3

Canada = 2 2 1 3

USA= 3 3 2 1

5148 | FIROUZKOUHI ET AL.



Therefore, ⊙M( , , ) is Γ‐module over Γ‐ring R.
The IFS A of M is determined as follows.
The degree of membership can be interpreted as a percentage of dependence. Table 4 de-

picts that the disease transmission power of Bob is more than the others, Jack is in the second
rank and so on. To verify that A is IFΓM of M , we pursue the following procedure for all
elements of A. For example,    b d c b dϑ ( ) = ϑ ( ) = 0.5 ϑ ( ) ϑ ( ) = 0.6 0.5A A A A , and

   ζ b d ζ c ζ b ζ d( ) = ( ) = 0.3 ( ) ( ) = 0.4 0.4A A A A . Also, ⊙ ⊙ r γ b aϑ ( ) = ϑ ( ) = 1A A bϑ ( )A

= 0.6, and ⊙ ⊙ ζ r γ b ζ a ζ b( ) = ( ) = 0 ( ) = 0.4A A A . Therefore, an IFS  A ζ= ϑ ,A A is IFΓM
of M .

5 | CONCLUSION

In this paper, a framework for the IFS associated to Γ‐submodule was constructed to generalize
the fuzzy set. Certain features of IFS of Γ‐modules were expressed along with illustrative ex-
amples, and a link between upper and lower α‐level cut and intuitionistic fuzzy Γ‐submodules
was also presented. By applying the module homomorphism, the image and inverse image of
intuitionistic fuzzy Γ‐submodule were preserved under the homomorphism. In addition, the
convenient circumstance was carried out to create the t‐IFS of Γ‐modules, α β( , )‐IFS of Γ‐modules,
homomorphism and direct product of IFS of Γ‐modules which were the main characteristics of
the intuitionistic fuzzy Γ‐submodules. The effective application of this survey was demonstrated in
modeling the spread of COVID‐19 via air travels. The results rationalized the immunological case
by using the developed intuitionistic fuzzy Γ‐submodules. There is a potential to exploit the
capability of IFS of Γ‐subrings and IFS of Γ‐subgroups in other fields.
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TABLE 4 Intuitionistic fuzzy set A

A Degree of membership and nonmembership of COVID‐19

Bob = a (1,0)

Jack = b (0.6, 0.4)

Sara = c (0.5,0.3)

Nancy = d (0.5,0.4)

TABLE 3 Module M( , )

 Bob = a Jack = b Sara = c Nancy = d

Bob = a a b c d

Jack = b b a d c

Sara = c c d a b

Nancy = d d c b a
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