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Abstract

Cigarette smoking induces a profound transcriptomic and systemic inflammatory response. 

Previous studies have focused on gene level differential expression of smoking, but the genome-

wide effects of smoking on alternative isoform regulation have not yet been described. We 

conducted RNA sequencing in whole-blood samples of 454 current and 767 former smokers in 

the COPDGene Study, and we analyzed the effects of smoking on differential usage of isoforms 

and exons. At 10% FDR, we detected 3167 differentially expressed genes, 945 differentially used 

isoforms and 160 differentially used exons. Isoform switch analysis revealed widespread 3′ UTR 

lengthening associated with cigarette smoking. The lengthening of these 3′ UTRs was consistent 

with alternative usage of distal polyadenylation sites, and these extended 3′ UTR regions were 

significantly enriched with functional sequence elements including microRNA and RNA-protein 

binding sites. These findings warrant further studies on alternative polyadenylation events as 

potential biomarkers and novel therapeutic targets for smoking-related diseases.
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1. Introduction

Cigarette smoking is a major risk factor for a wide range of diseases including cancers, 

cardiovascular and respiratory diseases. Approximately one in five deaths in the United 

States is attributable to smoking [1–5]. Globally, smoking-related annual mortality is 

projected to rise from 3 million in 1995 to 10 million by 2030, with 70% of these deaths 

occurring in developing countries [2]. The associated socioeconomic burden is enormous, 

with the proportion of health care expenditure in the US attributable to smoking estimated to 

range between 6% and 18% across different states [6].

Smoking cessation has been shown to reverse many smoking-related adverse health effects 

and substantially reduce mortality [2,7]. At the molecular level, the majority of smoking-

deregulated genes revert to normal expression levels following smoking cessation, while 

a smaller subset of genes remain persistently altered in former smokers [8,9]. While 

these genomic studies shed light on smoking-related transcriptional modulations at the 

gene level, few studies have investigated the effect of smoking on alternative isoform 

regulation. Most multi-exon human genes are expressed in multiple transcript isoforms, 

and alternative expression of these isoforms are modulated through multiple mechanisms 

including alternative splicing, alternative promoter usage and alternative polyadenylation. 

With regulatory impacts on mRNA and protein localization, stability and functional 

interactions, alternative isoform regulation plays an important role in tissue and cell type 

specificity and disease susceptibility [10–13].

In a previous RNA-seq analysis of 515 current and former smokers, we identified instances 

of differential exon usage predominantly localized to the first or last exons of the involved 

transcripts, indicating smoking-related alterations in transcription initiation or termination 

[14]. In the current study, we characterized alternative isoform regulation and associated 

biological pathways in response to cigarette smoking in a larger RNA-seq sample of 

1221 current and former smokers in the COPDGene Study. We quantified transcriptomic 

alterations at the gene, isoform and exon level, and analyzed the consequences of alternative 

isoform usage (i.e. isoform switching [15]). We discovered a widespread switch in current 

smokers toward increased usage of isoforms with markedly longer 3′ UTRs. This was 

mediated through alternative usage of distal polyadenylation sites and resulted in the 

acquisition of additional binding sites for microRNAs (miRNAs) and other functional 

elements.

2. Methods

2.1. Study subjects

This study includes 454 current smokers and 767 former smokers from COPDGene Study 

[16]. Self-identified non-Hispanic whites and African Americans between the ages of 45 and 
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80 years with a minimum of 10 pack-years lifetime smoking history were enrolled at 21 

centers across the United States. COPDGene conducted two study visits approximately five 

years apart, and additional longitudinal follow-up of this cohort is ongoing. At the second 

study visit, complete blood count (CBC) data and PaxGene RNA tubes were collected. 

Smoking history was ascertained by self-report. Participants defined as current smokers 

answered yes to the question “Do you smoke cigarettes now (as of one month ago?)”, and 

for a subset of subjects smoking status was confirmed by serum cotinine measurement. 

Institutional review board approval and written informed consent was obtained for all 

subjects.

2.2. Cotinine measurement

Cotinine measurements were obtained from plasma samples of subjects in two COPDGene 

clinical centers (National Jewish Health and University of Iowa). Plasma was collected 

using an 8.5 mL p100 tube (Becton Dickinson), and global metabolite data was generated 

using the Metabolon Global Metabolomics Platform (Durham, NC, USA). The data were 

normalized to remove batch effects [17].

2.3. RNA extraction, sequencing and expression quantification

Total RNA was extracted from peripheral blood samples, and paired end reads were 

generated from Illumina sequencers and aligned to the GRCh38 genome (Supplementary 

Text 1). Gene Transfer Format (GTF) annotation was downloaded from Biomart Ensembl 

database (Ensembl Genes release 94, GRCh38.p12 assembly) on October 21, 2018. Exons 

from the GTF were broken into disjoint parts (exonic parts) sharing a common set of 

transcripts [18]. Sequencing read counts on genes and exonic parts were generated from 

featureCounts in Rsubread [19] (v1.32.2). Isoform expression estimates were obtained using 

Salmon [20] (v0.12.0) and tximport [21] (v1.10.0).

2.4. Filtering, normalization, differential expression and usage analysis

Low expressed genomic features (average counts per million (CPM) < 0.2 or the number 

of subjects with CPM > 0.5 less than 50) were filtered before applying TMM [22] 

normalization from edgeR [23] (v3.24.3) (Supplementary Text 1). To test for differential 

expression of genomic features between current and former smokers, we employed the 

linear modeling approach implemented in limma [24,25] (v3.38.3), where the mean-variance 

relationship is accounted for by applying observation-specific weights estimated from voom 

[26]. We adjusted for covariates including age, race, gender, total pack-years of exposure, 

forced expiratory volume in one second (FEV1), complete blood cell count proportions and 

library prep batch. To test differential usage of isoforms and exonic parts, we used diffSplice 

from limma. False discovery rate (FDR) was controled with Benjamini-Hochberg procedure 

[27]. A significance cutoff of 10% FDR was used.

2.5. Gene set enrichment analysis

Gene ontology [28,29] (GO) biological function enrichment of gene sets derived from 

differential expression and usage analysis were assessed via Fisher exact test statistic with 
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weight01 algorithm available in topGO (v2.33.1) that accounts for dependency in GO 

topology [30]. P-value <0.05 was considered significant.

2.6. Isoform switch analysis

Isoforms identified from differential usage analysis were further examined for their splicing 

patterns relative to a synthetic pre-RNA in their parent genes using IsoformSwitchAnalyzeR 

(v1.12.0) [31]. Eight categories of splicing events were characterized, including exon 

skipping (ES), multiple exon skipping (MES), mutually exclusive exons (MEE), intron 

retention (IR), alternative 5′ splice site (A5), alternative 3′ splice site (A3), alternative 

transcription start site (ATSS) and alternative transcription termination site (ATTS). By 

pairwise comparison between down-used and up-used isoforms, we examined eight aspects 

of isoform switch consequences – namely, changes in overall isoform length, 3′ UTR 

length, 5′ UTR length, number of exons, intron retention, sensitivity to nonsense-mediated 

mRNA decay (NMD), location of transcription start site (Tss) and transcription termination 

site (Tts). The net effects of these splicing events and switch consequences were aggregated 

at the gene level and tested for statistical significance using a binomial test.

2.7. Sequence and motif analysis

Genomic annotations of polyadenylation cleavage sites (PASs), AU-rich elements (AREs), 

miRNAs and RNA-binding proteins (RBPs) binding sites were collected from multiple 

sources (Supplementary Text 1). Flanking sequences of PASs were searched for 

polyadenylation [poly (A)] signal motifs of AATAAA and TTTTTTTTT. Frequencies of 

these annotated sequence elements and identified poly(A) signal motifs were computed, 

smoothed and visualized at each position of a given set of equal-length sequences extracted 

based on some criterion (e.g. sequences up to 60 nucleotides [nts] upstream of PASs in 3′ 
UTR exonic parts that were up-used in smokers).

2.8. Statistical, network and eQTL analysis

Demographic differences between current and former smokers were assessed via Student’s 

t-test and Pearson’s Chi-squared test for continuous and categorical variables, respectively. 

Isoform and exonic part length comparisons were performed using the Wilcoxon signed 

rank test. Enrichment tests of sequence elements in 3′ UTRs were performed using Fisher’s 

exact test. To account for difference in 3′ UTR lengths, we repeated the enrichment analysis 

limiting to the last 100 nts at 3′ end of the UTRs. To identify individual miRNA and RBPs 

whose binding sites were enriched at a higher density in 3′ UTRs, we conducted a binomial 

test with the hypothesized probability of success equal to the ratio of the sum of the lengths 

of the 3′ UTRs of interest over the total length of 3′ UTRs. The identified individual 

miRNAs, RBPs and their target genes were visualized as a directed regulatory network 

using the Fruchterman-Reingold layout [32], and network communities were detected using 

a multi-level modularity optimization algorithm implemented in igraph R package (v1.2.5).

Expression quantitative trait locus (eQTL) analyses were performed to test for association 

between single nucleotide polymorphisms (SNPs) within 1 MB cis window and the 

expression values of genes and exonic parts in 796 NHW subjects in COPDGene. SNPs with 

minor allele frequency > 5% were tested. Expression values were regressed on additively 
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coded SNP genotypes using linear regression implemented in MatrixQTL [33]. The models 

were also adjusted for age, gender, principal components of genetic ancestry, and 35 PEER 

factors obtained from the expression data [34]. The identified QTLs at 5% FDR cutoff were 

cross-referenced against the NHGRI-EBI GWAS catalog accessed on May 07, 2021 using 

makeCurrentGwascat from gwascat (v2.13.5), and visualized with LocusZoom [35].

2.9. Data availability

The gene, isoform and exon count data used for this analysis are available in GEO [36,37] 

(accession number GSE171730). A Shiny app to explore and visualize the data and result is 

available at http://cdnm-castaldi.org/smoking_deu_2021/.

3. Results

3.1. Differential gene expression

The demographics and clinical characteristics of the study subjects (454 current smokers and 

767 former smokers) are summarized in Supplementary Table ST1. In a subset of subjects, 

serum cotinine levels confirmed the general accuracy of subjects’ self-reported smoking 

behavior in the COPDGene Study (Supplementary Fig. SF1). To evaluate gene expression 

changes in peripheral blood in response to active cigarette smoking, we obtained gene level 

RNA-seq counts, and performed differential gene expression (DGE) analysis comparing 

current versus former smokers while adjusting for other demographic and clinical covariates. 

Out of 22,020 genes evaluated, we identified 1542 up-regulated and 1625 down-regulated 

genes at 10% FDR (Supplementary Fig. SF2, Supplementary Table ST2). The top ten DGE 

genes are listed in Table 1. We then performed GO enrichment analyses on DGE genes and 

found 335 over-represented biological processes with various aspects of inflammation and 

platelet activation topping the list (Supplementary Table ST3).

3.2. Differential expression and usage of isoforms

We next generated Salmon estimates of isoform expression and assessed differential isoform 

expression (DIE) between current and former smokers. Out of 85,437 isoforms tested, 1026 

up-regulated and 988 down-regulated isoforms were identified at 10% FDR (Supplementary 

Table ST4, Supplementary Fig. SF3). These isoforms map to 1547 genes, 77% (1190/1547) 

of which were also differentially expressed in DGE analysis. The vast majority (1347/1547 

= 87%) of these genes had multiple expressed isoforms, and for 64% (860/1347) of 

these genes the dominant isoform (i.e. most highly expressed isoform) was differentially 

expressed. GO enrichment analysis identified 290 over-represented biological processes 

(Supplementary Table ST5), 37% of which were also identified in the DGE enrichment 

analysis.

Unlike DIE, differential isoform usage (DIU) analysis detects changes in the fractional 

composition of isoforms originating from the same parent gene (i.e. isoform switch [15]). 

An isoform is deemed as up-used (down-used) if it accounts for a higher (lower) fraction 

of the parent gene expression in current smokers than former smokers. We identified 389 

up-used and 556 down-used isoforms (Supplementary Table ST6), corresponding to 804 

genes of which 31% (250/804) were also differentially expressed in the DGE analysis 
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(Supplementary Fig. SF4). Interestingly, DIU occurred largely in non-dominant isoforms 

(646/804 = 80%). GO enrichment analysis of genes containing DIU isoforms identified 100 

over-represented biological processes (Supplementary Table ST7), 12% of which overlapped 

with the DGE enrichment results. The most enriched biological processes include GTPase 

activity, Wnt-signaling, and regulation of innate immunity. The top ten DIU isoforms and 

enriched GO terms are shown in Tables 2 and 3, respectively.

3.3. Alternative splicing events and consequences

Isoform switches identified from the DIU analysis can be further analyzed to characterize 

specific splicing events and potential consequences [31]. An example isoform switch in 

Sestrin 3 (SESN3) is shown in Fig. 1a. The down-used and up-used isoforms in SESN3 have 

distinct splicing patterns that could result in multiple potential consequences at the RNA and 

protein level.

By comparing splicing patterns between isoforms, we identified six categories of alternative 

splicing events prevalent in smoking-associated DIU isoforms. Three of these splicing 

categories (alternative transcription start site, alternative termination site, and intron 

retention) are more prevalent in the up-used isoforms (Supplementary Text 1). We next 

assessed the consequences of switching from down-used to up-used isoforms on eight 

isoform characteristics including UTR length, position of transcription start and termination 

site, intron retention, and sensitivity to NMD. We found isoform switching resulted in higher 

usage of isoforms that had longer overall length, longer 3′ UTRs, and fewer exons (p < 

0.05 for all, Fig. 1b–c). In the example of SESN3, the up-used isoform has a longer isoform 

length due primarily to marked elongation of the 3′ UTR (7742 nucleotides [nts] vs 107 nts 

in the down-used isoform).

3.4. Smoking-associated increased usage of isoforms with extremely long 3′ UTRs

To further examine the significant isoform switch consequences related to length, we 

compared the length distribution of up-used, down-used, and non-DIU isoforms in genes 

identified through DIU analysis. We observed that isoforms up-used in current smokers 

were notably longer (median isoform lengths 2997 nts, 2323 nts, and 1221 nts for up-used, 

down-used, and non-DIU isoforms, respectively). The smoking-related transcript elongation 

occurred primarily in the coding region sequence (CDS) and 3′ UTRs but not in 5′ UTRs 

(Fig. 2). We also noted a strong correlation between CDS length and 3′ UTR length in all 

analyzed isoforms (Spearman rho = 0.78).

Since these isoform-level analyses depend on the reliability of isoform expression 

estimation, we also performed differential exon usage (DEU) analysis on exonic part read 

counts directly supported by alignments. Exonic parts were derived from transcriptome 

annotations as described in [18] and illustrated in Fig. 3a. We identified 126 up-used and 34 

down-used exonic parts contained within 128 genes (Supplementary Table ST8). Forty-five 

percent (57/128) of these genes were also differentially expressed, 74% (42/57) of which 

were down-regulated.

Analysis on DEU exonic parts lengths confirmed the switch toward isoforms with extremely 

long 3′ UTRs (Fig. 3b). Differentially used 3′ UTRs (DEU 3′ UTRs) accounted for 40% 
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(64/160) of all identified DEU exonic parts, nearly all (56/64) of which were up-used 

in current smokers. Of the genes containing a DEU 3′ UTR, about half (26/54) were 

differentially expressed with the large majority (19/26) showing decreased expression in 

current smokers. GO enrichment analysis of genes with up-used DEU 3′ UTRs identified 

over-representation of transcriptional regulation (e.g. polyadenylation and miRNA binding), 

Wnt-signaling and NF-kB signaling (Supplementary Table ST9).

3.5. Elongation of 3′ UTRs is not an artifact of transcript length bias

Transcript length bias in RNA-seq data analysis can arise when statistical power to detect 

differential expression is greater for longer isoforms, due to the fact that read counts are 

proportional to not only expression levels but also transcript lengths [38]. To determine 

whether the observed smoking-associated 3′ UTR elongation is driven by length bias, we 

compared our analysis on data where smoking status was randomly permuted. The results of 

this permutation analysis demonstrate that the magnitude of length-related effects observed 

in the non-permuted analysis far exceeds the effects seen with permutation, and that the 

directional preference of positive log-fold-changes for longer 3′ UTR isoforms in current 

smokers is absent in the permuted data (Fig. 4). These results indicate that the observed 

smoking-associated 3′ UTR elongation is not driven by transcript length bias.

3.6. Alternative polyadenylation mediates 3′ UTR elongation

We next sought to determine whether smoking-associated 3′ UTR lengthening occurs in 

a controlled manner through transcriptional termination mechanisms involving alternative 

polyadenylation (APA). To test the hypothesis on alternative polyadenylation site (PAS) 

usage, we assessed whether annotated PAS are enriched within up-used 3′ UTRs. The 

majority of up-used 3′ UTRs (50/56) contained at least one annotated PAS, representing 

a thirtyfold enrichment over all other tested 3′ UTRs within the same genes (OR = 

30.1, P-value <0.001), and a twentyfold enrichment over 3′ UTRs across all genes. These 

enrichment scores remain highly significant when each 3′ UTR is trimmed to the last 100 

nts at its 3′ end (Table 4, poly(A) sites). In contrast, PAS were identified in only 25% of 

down-used 3′ UTRs. We also observed at least one PAS in close proximity to the distal 

boundary of up-used 3′ UTRs (median distance of 7 nts), consistent with the hypothesis that 

the 3′ UTR extension is mediated through alternative usage of PAS.

To ascertain whether there were any differences in strength of PAS in up-used 3′ UTRs 

relative to PAS in other 3′ UTRs in the same genes, we examined the frequency of the 

canonical poly(A) motif (AATAAA) as a surrogate for overall PAS strength. We focused on 

externally verified PAS within the last 100 nts of a 3′ UTR exonic part, and we counted 

instances in which AATAAA motifs were located within 60 nts upstream of a PAS. We 

found PASs in up-used 3′ UTRs had a higher frequency of AATAAA motifs than PAS in 

non-DEU 3′ UTRs from the same genes (44.7% versus 29.8%). The presence of AATAAA 

motifs was also correlated to exonic part differential usage P-values (Spearman rho = 0.19) 

and log-fold-changes (Spearman rho = 0.26). A similar pattern was observed for another 

strong poly(A) motif TTTTTTTTT (Fig. 5a–c).
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To determine the localization of our DEU 3′ UTRs, we classified all exonic parts in 

genes containing DEU 3′ UTRs as distal (located at the gene end) and proximal (located 

at an upstream 3′ UTR). Fifty-two percent (29/56) of DEU 3′ UTRs were distal, and 

the frequency of the canonical poly(A) motif in these genes was highest in distal PASs 

(52.3%), compared to 35.9% for proximal PASs. Similarly, we found the highest frequency 

of poly(A) motif TTTTTTTTT at distal PASs. The positional frequencies of these motifs are 

shown in Fig. 5d–e. This analysis highlights the predominant localization of DEU 3′ UTRs 

at gene ends with strong distal poly(A) signals.

3.7. Enrichment of functional regulatory elements in smoking-elongated 3′ UTRs

3′ UTRs often harbor functional binding sites that regulate mRNA stability and localization. 

Using the core pentamer motif AUUUA of the adenylate-uridylate (AU)-rich elements 

(AREs), we found that AREs are significantly enriched in up-used 3′ UTRs relative to 

non-smoking associated 3′ UTRs (OR = 35.9, P-value <0.001). When considering the 

density of AREs per unit length of 3′ UTR, ARE sites also occur at significantly higher 

frequency in up-used 3′ UTRs. We also observed enrichment of Targetscan predicted 

miRNA binding sites (OR = 7.8, P-value <0.001) within up-used 3′ UTRs (Table 4). The 

chance of co-occurrence of these functional elements (including PAS) in up-used 3′ UTRs 

is significantly higher (Supplementary Table ST10). Positional frequency analysis clearly 

demonstrates an enriched distribution of PASs, AREs, and miRNA binding sites over the 

elongated 3′ UTRs, especially at the distal end (Fig. 6).

Extending the global enrichment analysis to individual regulatory factors, we identified five 

miRNAs and three RBPs whose binding sites were enriched in up-used 3′ UTRs. To explore 

putative coordination between these miRNAs and RBPs, a regulatory network of these 

entities and their target genes were constructed. Using a community detection algorithm, 

we identified five communities (modularity score 0.32) of dense connections, including four 

connected communities and one isolated RBP community (MATR3). Interestingly, AGO2, a 

member of the largest community, is a target for both the top 2 miRNA candidates and the 

top 2 RBP candidates, suggesting that these miRNAs and RBPs may act in a coordinated 

manner in post-transcriptional regulation of AGO2 and other target genes (Fig. 7). AGO2 

protein is essential to miRNA and siRNA-mediated post-transcriptional gene-silencing, and 

the most distal 3′ UTR of AGO2 is up-used in response to smoking (q-value = 7.78e–8).

3.8. Alternative polyadenylation is implicated in smoking-related human diseases and 
traits

To relate smoking-induced alternative polyadenylation with human diseases and traits, we 

first performed eQTL analysis to identify genetic variants within a 1 MB cis window 

associated with the expression level of smoking-related DEU 3′ UTRs. We found 2840 

significant QTLs at 5% FDR for 29 DEU 3′ UTRs in 25 genes. The majority (2582/2840 

= 90.9%) of these QTLs were specifically associated with the expression level of 3′ UTR 

rather than the gene expression level. We then cross-referenced these QTLs against the 

NHGRI-EBI GWAS catalog [39,40] and identified 79 GWAS variants that were significantly 

associated with expression levels of DEU 3′ UTRs in 11 genes. The most significant 

QTLs were associated with the up-used 3′ UTR in ERAP1 (Supplementary Table ST11), 
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an endoplasmic reticulum–expressed aminopeptidase that trims peptides for presentation 

by MHC class I molecules [41]. The minor allele of the lead QTL variant for ERAP1, 

rs7063, disrupts a canonical poly(A) motif AATAAA for the proximal poly(A) site, leading 

to increased usage of the distal poly(A) site and an isoform switch from the shorter isoform 

ENST00000443439 to the longer isoform ENST00000296754 with extended 3′ UTR (Fig. 

8a–c). Although rs7063 is not cataloged in the NHGRI-EBI GWAS database, it is in 

linkage disequilibrium (LD) to various degrees with nearby QTLs and GWAS variants 

including those associated with protein expression levels, alcohol dependence, ankylosing 

spondylitis and psoriasis (Fig. 8d). These results implicate alternative polyadenylation in 

post-transcriptional protein level modulation and smoking-related diseases and traits [42–

44].

4. Discussion

Cigarette smoking increases susceptibility to many diseases including chronic obstructive 

pulmonary disease, cardiovascular disease, and multiple cancers. While the epidemiologic 

association of smoking to these disease risks is well-established, the underlying molecular 

basis is not fully understood, and the effects of smoking on alternative isoform regulation 

and posttranscriptional modulation have not been previously described. In a large cohort of 

current and former smokers, we used whole-blood RNA-seq to characterize the alternative 

splicing mechanisms and likely functional consequences of smoking-associated isoform 

switching. We demonstrated that smoking results in marked 3′ UTR elongation via 

alternative polyadenylation of genes enriched for specific biological pathways with disease 

implications. This 3′ UTR lengthening leads to the acquisition of post-transcriptional 

regulatory sites and is often associated with decreased overall expression of the affected 

genes.

The effect of smoking on gene expression in blood has been well-described [14,45–48]. 

Our top associated genes were consistent with these previous studies. The largest meta-

analysis of smoking and the blood transcriptome included 10,233 subjects, identifying 1270 

differentially expressed genes in current vs. never smokers and only 39 genes in former vs. 

never smokers [48]. Out of the top 25 smoking gene signatures for current vs. never smokers 

identified in this meta-analysis, 23 were also recovered as top differentially expressed genes 

when comparing current against former smokers in our present study. In the analysis of a 

smaller but newly generated RNA-seq dataset from COPDGene that includes a balanced 

number of current, former and never smokers, we further confirmed the high similarity 

of results when comparing current smokers against former smokers or never smokers 

(Supplementary Text 1). These results are consistent with the previous findings that the 

majority of smoking-deregulated genes revert to normal expression levels following smoking 

cessation [8,9,48].

The only previous large-scale study related to alternative splicing in smoking was published 

on an earlier, smaller set of RNA-seq data from COPDGene [14]. This study identified 

9 instances of DEU events but did not pursue analysis on isoform expression changes 

and switches, and the statistical power of that study was insufficient to systematically 

characterize alternative isoform regulation and posttranscriptional modulation in smoking. 
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Expanding to twice as many subjects in the current study enabled us to identify hundreds of 

genes and biological pathways affected by smoking-associated isoform switching and APA 

events.

APA is a major RNA-processing mechanism that generates distinct 3′ termini on mRNAs 

and other RNA polymerase II transcripts, and contributes to human diseases including 

cancer, immunological and neurological diseases [49]. APA plays an important role in 

the cellular response to oxidative stress, heat shock and starvation [50]. Various kinds of 

environmental stress have been shown to increase utilization of distal polyadenylation sites 

[51] and lead to transcriptional readthrough beyond annotated gene ends [52]. Previous work 

has shown that some transcripts with longer 3′ UTRs harbor repressive elements in extended 

3′ UTR regions [53]. These functional sites often reside in adenylate-uridylate (AU)-rich 

elements that serve as regulatory hotspots characterized by joint binding of regulatory 

factors such as RBPs and miRNAs [54]. These observations suggest that APA may be 

a common post-transcriptional mechanism employed by mammalian cells when rapid 

modulations of RNA and protein distributions are required in response to cellular stress. 

Smoking could be one of a larger class of exposures that elicits this posttranscriptional stress 

response, and additional studies of RNA-protein binding, RNA stability and trafficking are 

needed to elucidate its full spectrum of posttranscriptional modulations.

While previous genome-wide association studies (GWAS) have identified numerous genetic 

variants associated with smoking and smoking-related phenotypes [55–60], functional 

interpretation of these variants remains challenging. Genetic variants could directly alter 

poly (A) motifs and RBP binding sites to modulate APA events, and several studies have 

been undertaken in recent years to systematically map novel apaQTLs and their disease 

etiologies [61–64]. Our preliminary 3′ UTR eQTL analysis in the current study suggests 

APA as a potential molecular phenotype to link genetic variants to smoking-related human 

diseases and traits. Further systematic apaQTL studies are needed to identify APA-related 

genetic-environment interactions conferring disease susceptibility.

The strengths of this study are the large sample size of RNA-seq data and the genome-wide 

assessment of alternative isoform regulation and posttranscriptional modulation in smoking. 

Our CBC quantifications do not capture variability of immune cell subpopulations, limiting 

our ability to localize these effects to specific cell types. Some of our results may reflect 

underlying changes in unmeasured cell type subpopulations. In future studies, the use of 

single cell data (scRNA-seq) or cell type deconvolution methods may provide additional 

insights. scRNA-seq may offer unique advantage in studying APA as the most popular 

scRNA-seq protocols specifically sequence the 3′ end of transcripts [65].

In conclusion, our findings from 1221 current and former smokers demonstrate 

widespread effects of smoking on alternative isoform regulation, highlighting specifically 

posttranscriptional mechanisms of APA and 3′ UTR lengthening. In the future, when 

longitudinal follow-up data are available for these subjects, we may be able to relate these 

posttranscriptional events to prospective health outcomes, and develop APA biomarkers and 

therapeutic targets for smoking-related diseases [66].

Xu et al. Page 10

Genomics. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding/Acknowledgements

This work was funded by R01 HL124233, R01 HL147326, R01 HL111527, U01 HL089897, U01 HL089856, 
R01HL125583, R01HL130512, R01 GM101237, R01 HL11152, K25HL140186 and K08HL141601. Research 
reported in this publication was supported by the NHLBI, NIGMS and FDA Center for Tobacco Products (CTP). 
The content is solely the responsibility of the authors and does not necessarily represent the official views of the 
NIH or the Food and Drug Administration.

Conflict of interest statement

P. Castaldi has received personal fees and grant support from GlaxoSmithKline, Bayer, and Novartis. C. Hersh 
has received grants from NHLBI, Bayer, Boehringer-Ingelheim, Novartis and Vertex. A. Laederach has received 
consultant fees from Ribometrix.

References

[1]. Fiore MC, Trends in cigarette smoking in the United States: the epidemiology of tobacco use, 
Med. Clin. N. Am 76 (1992) 289–303.

[2]. Fagerström K, The epidemiology of smoking: health consequences and benefits of cessation, 
Drugs 62 (2002) 1–9.

[3]. Sasco AJ, Secretan MB, Straif K, Tobacco smoking and cancer: a brief review of recent 
epidemiological evidence, Lung Cancer 45 (2004) 3–9.

[4]. Tonstad S, Johnston JA, Cardiovascular risks associated with smoking: a review for clinicians, Eur. 
J. Prev. Cardiol 13 (2006) 507–514.

[5]. Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J, Active smoking and the risk of type 2 
diabetes: a systematic review and meta-analysis, J. Am. Med. Assoc 298 (2007) 2654–2664.

[6]. Ekpu VU, Brown AK, The economic impact of smoking and of reducing smoking prevalence: 
review of evidence, Tob. Use Insights 8 (2015). TUI.S15628.

[7]. Anthonisen NR, et al. , The effects of a smoking cessation intervention on 14.5-year mortality: A 
randomized clinical trial, Ann. Intern. Med 142 (2005) 233–239. [PubMed: 15710956] 

[8]. Bossé Y, et al. , Molecular signature of smoking in human lung tissues, Cancer Res. 72 (2012) 
3753–3763. [PubMed: 22659451] 

[9]. Beane J, et al. , Reversible and permanent effects of tobacco smoke exposure on airway epithelial 
gene expression, Genome Biol. 8 (2007).

[10]. Wang ET, et al. , Alternative isoform regulation in human tissue transcriptomes, Nature 456 
(2008) 470–476. [PubMed: 18978772] 

[11]. Reyes A, Huber W, Alternative start and termination sites of transcription drive most transcript 
isoform differences across human tissues, Nucleic Acids Res. 46 (2018) 582–592. [PubMed: 
29202200] 

[12]. Kwan T, et al. , Genome-wide analysis of transcript isoform variation in humans, Nat. Genet 40 
(2008) 225–231. [PubMed: 18193047] 

[13]. Tazi J, Bakkour N, Stamm S, Alternative splicing and disease, Biochim. Biophys. Acta Mol. basis 
Dis 1792 (2009) 14–26.

[14]. Parker MM, et al. , RNA sequencing identifies novel non-coding RNA and exon-specific effects 
associated with cigarette smoking, BMC Med. Genet 10 (2017) 1–10.

[15]. Vitting-Seerup K, Sandelin A, The landscape of isoform switches in human cancers, Mol. Cancer 
Res 15 (2017) 1206–1220. [PubMed: 28584021] 

[16]. Regan EA, et al. , Genetic epidemiology of COPD (COPDGene) study design, COPD J. Chronic 
Obstr. Pulm. Dis 7 (2010) 32–43.

[17]. Gillenwater LA, et al. , Metabolomic profiling reveals sex specific associations with chronic 
obstructive pulmonary disease and emphysema, Metabolites 11 (2021) 161. [PubMed: 33799786] 

Xu et al. Page 11

Genomics. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[18]. Anders S, Reyes A, Huber W, Detecting differential usage of exons from RNA-Seq data, Nat. 
Preced (2012) 1–30, 10.1038/npre.2012.6837.2.

[19]. Liao Y, Smyth GK, Shi W, The subread aligner: fast, accurate and scalable read mapping by 
seed-and-vote, Nucleic Acids Res. 41 (2013) e108–e108. [PubMed: 23558742] 

[20]. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C, Salmon provides fast and bias-aware 
quantification of transcript expression, Nat. Methods 14 (2017) 417–419. [PubMed: 28263959] 

[21]. Soneson C, Love MI, Robinson MD, Differential analyses for RNA-seq: Transcript-level 
estimates improve gene-level inferences [version 2; referees: 2 approved], F1000Research 4 
(2016).

[22]. Robinson MD, Oshlack A, A scaling normalization method for differential expression analysis of 
RNA-seq data, Genome Biol. 11 (2010) R25. [PubMed: 20196867] 

[23]. Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data, Bioinformatics 26 (2010) 139–140. [PubMed: 
19910308] 

[24]. Ritchie ME, et al. , Limma powers differential expression analyses for RNA-sequencing and 
microarray studies, Nucleic Acids Res. 43 (2015), e47. [PubMed: 25605792] 

[25]. Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK, Robust hyperparameter estimation 
protects against hypervariable genes and improves power to detect differential expression, Ann. 
Appl. Stat 10 (2016) 946–963. [PubMed: 28367255] 

[26]. Law CW, Chen Y, Shi W, Smyth GK, Voom: precision weights unlock linear model analysis tools 
for RNA-seq read counts, Genome Biol. 15 (2014) R29. [PubMed: 24485249] 

[27]. Benjamini Y, Hochberg Y, Controlling the false discovery rate: a practical and powerful approach 
to multiple testing, J. R. Stat. Soc. Ser. B 57 (1995) 289–300.

[28]. Ashburner M, et al. , Gene ontology: tool for the unification of biology, Nat. Genet 25 (2000) 
25–29. [PubMed: 10802651] 

[29]. Blake JA, et al. , Gene ontology consortium: going forward, Nucleic Acids Res. 43 (2015) 
D1049–D1056. [PubMed: 25428369] 

[30]. Alexa A, Rahnenfuhrer J, Lengauer T, Improved scoring of functional groups from gene 
expression data by decorrelating GO graph structure, Bioinformatics 22 (2006) 1600–1607. 
[PubMed: 16606683] 

[31]. Vitting-Seerup K, Sandelin A, IsoformSwitchAnalyzeR: analysis of changes in genome-wide 
patterns of alternative splicing and its functional consequences, Bioinformatics 35 (2019) 4469–
4471. [PubMed: 30989184] 

[32]. Fruchterman TMJ, Reingold EM, Graph drawing by force-directed placement, Softw. Pract. Exp 
21 (1991) 1129–1164.

[33]. Shabalin A, Matrix A, eQTL: ultra fast eQTL analysis via large matrix operations, 
Bioinformatics 28 (2012) 1353–1358. [PubMed: 22492648] 

[34]. Stegle O, Parts L, Piipari M, Winn J, Durbin R, Using probabilistic estimation of expression 
residuals (PEER) to obtain increased power and interpretability of gene expression analyses, Nat. 
Protoc 7 (2012) 500–507. [PubMed: 22343431] 

[35]. Pruim RJ, et al., LocusZoom: Regional visualization of genome-wide association scan results, in: 
Bioinformatics 27, Oxford University Press, 2011, pp. 2336–2337.

[36]. Edgar R, Domrachev M, Lash AE, Gene expression omnibus: NCBI gene expression and 
hybridization array data repository, Nucleic Acids Res. 30 (2002) 207–210. [PubMed: 11752295] 

[37]. Barrett T, et al. , NCBI GEO: archive for functional genomics data sets - update, Nucleic Acids 
Res. 41 (2013) D991–D995. [PubMed: 23193258] 

[38]. Oshlack A, Wakefield MJ, Transcript length bias in RNA-seq data confounds systems biology, 
Biol. Direct 4 (2009) 1–10. [PubMed: 19144117] 

[39]. MacArthur J, et al. , The new NHGRI-EBI catalog of published genome-wide association studies 
(GWAS catalog), Nucleic Acids Res. 45 (2017) D896–D901. [PubMed: 27899670] 

[40]. Buniello A, et al. , The NHGRI-EBI GWAS catalog of published genome-wide association 
studies, targeted arrays and summary statistics 2019, Nucleic Acids Res. 47 (2019) D1005–
D1012. [PubMed: 30445434] 

Xu et al. Page 12

Genomics. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[41]. Haroon N, Inman RD, Endoplasmic reticulum aminopeptidases: biology and pathogenic 
potential, Nat. Rev. Rheumatol 6 (2010) 461–467. [PubMed: 20531381] 

[42]. Kalman D, Kim S, DiGirolamo G, Smelson D, Ziedonis D, Addressing tobacco use disorder in 
smokers in early remission from alcohol dependence: the case for integrating smoking cessation 
services in substance use disorder treatment programs, Clin. Psychol. Rev 30 (2010) 12–24. 
[PubMed: 19748166] 

[43]. Videm V, Cortes A, Thomas R, Brown MA, Current smoking is associated with incident 
ankylosing spondylitis - the HUNT population-based Norwegian health study, J. Rheumatol 41 
(2014) 204–211.

[44]. Armstrong AW, Harskamp CT, Dhillon JS, Armstrong EJ, Psoriasis and smoking: a systematic 
review and meta-analysis, Br. J. Dermatol 170 (2014) 304–314. [PubMed: 24117435] 

[45]. Charlesworth JC, et al. , Transcriptomic epidemiology of smoking: the effect of smoking on gene 
expression in lymphocytes, BMC Med. Genet 3 (2010).

[46]. Vink JM, et al. , Differential gene expression patterns between smokers and non-smokers: cause 
or consequence? Addict. Biol 22 (2017) 550–560. [PubMed: 26594007] 

[47]. Beineke P, et al. , A whole blood gene expression-based signature for smoking status, BMC Med. 
Genet 5 (2012).

[48]. Huan T, et al. , A whole-blood transcriptome meta-analysis identifies gene expression signatures 
of cigarette smoking, Hum. Mol. Genet 25 (2016) 4611–4623. [PubMed: 28158590] 

[49]. Gruber AJ, Zavolan M, Alternative cleavage and polyadenylation in health and disease, Nat. Rev. 
Genet 20 (2019) 599–614. [PubMed: 31267064] 

[50]. Sadek J, Omer A, Hall D, Ashour K, Gallouzi IE, Alternative polyadenylation and the stress 
response, Wiley Interdiscip. Rev. RNA 10 (2019), e1540. [PubMed: 31050180] 

[51]. Hollerer I, et al. , The differential expression of alternatively polyadenylated transcripts is a 
common stress-induced response mechanism that modulates mammalian mRNA expression in a 
quantitative and qualitative fashion, RNA 22 (2016) 1441–1453. [PubMed: 27407180] 

[52]. Vilborg A, et al. , Comparative analysis reveals genomic features of stress-induced transcriptional 
readthrough, Proc. Natl. Acad. Sci. U. S. A 114 (2017) E8362–E8371. [PubMed: 28928151] 

[53]. Pai AA, et al. , Widespread shortening of 3′ untranslated regions and increased exon inclusion 
are evolutionarily conserved features of innate immune responses to infection, PLoS Genet. 12 
(2016).

[54]. Plass M, Rasmussen SH, Krogh A, Highly accessible AU-rich regions in 3′ untranslated regions 
are hotspots for binding of regulatory factors, PLoS Comput. Biol 13 (2017).

[55]. Xu K, et al. , Genome-wide association study of smoking trajectory and meta-analysis of 
smoking status in 842,000 individuals, Nat. Commun 11 (2020) 1–11. [PubMed: 31911652] 

[56]. Furberg H, et al. , Genome-wide meta-analyses identify multiple loci associated with smoking 
behavior, Nat. Genet 42 (2010) 441–447. [PubMed: 20418890] 

[57]. Liu M, et al. , Association studies of up to 1.2 million individuals yield new insights into 
the genetic etiology of tobacco and alcohol use, Nat. Genet 51 (2019) 237–244. [PubMed: 
30643251] 

[58]. Erzurumluoglu AM, et al. , Meta-analysis of up to 622,409 individuals identifies 40 novel 
smoking behaviour associated genetic loci, Mol. Psychiatry 25 (2020) 2392–2409. [PubMed: 
30617275] 

[59]. Siedlinski M, et al. , Genome-wide association study of smoking behaviours in patients with 
COPD, Thorax 66 (2011) 894–902. [PubMed: 21685187] 

[60]. Thorgeirsson TE, et al. , Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking 
behavior, Nat. Genet 42 (2010) 448–453. [PubMed: 20418888] 

[61]. Mittleman BE, et al. , Alternative polyadenylation mediates genetic regulation of gene 
expression, Elife 9 (2020) 1–21.

[62]. Yang Y, et al. , SNP2APA: a database for evaluating effects of genetic variants on alternative 
polyadenylation in human cancers, Nucleic Acids Res. 48 (2020) D226–D232. [PubMed: 
31511885] 

Xu et al. Page 13

Genomics. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[63]. Li L, Gao Y, Peng F, Wagner EJ, Li W, Genetic basis of alternative polyadenylation is an 
emerging molecular phenotype for human traits and diseases, SSRN Electron. J (2019), 10.2139/
ssrn.3351825.

[64]. Mariella E, Marotta F, Grassi E, Gilotto S, Provero P, The length of the expressed 3′ UTR is an 
intermediate molecular phenotype linking genetic variants to complex diseases, Front. Genet 10 
(2019) 714. [PubMed: 31475030] 

[65]. Shulman ED, Elkon R, Cell-type-specific analysis of alternative polyadenylation using single-cell 
transcriptomics data, Nucleic Acids Res. 47 (2019) 10027–10039. [PubMed: 31501864] 

[66]. Ren F, Zhang N, Zhang L, Miller E, Pu JJ, Alternative polyadenylation: a new frontier in post 
transcriptional regulation, Biomarker Res. 8 (2020) 67.

Xu et al. Page 14

Genomics. Author manuscript; available in PMC 2022 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Smoking-associated isoform switches and consequences. An example of the identified 

isoform switches in the DIU analysis of current smokers vs. former smokers is shown in 

panel a, where only isoforms accounting for more than 5% of the gene expression are 

displayed. The statistical significance of DGE, DIE and DIU analysis is marked on the 

box plots (*: q-value <0.1, ***: q-value <0.01, ns: nonsignificant). In panel b, pairwise 

comparisons between up-used and down-used isoforms for all tested genes are performed to 

assess specific consequences of isoform switches (e.g. 3′ UTR length is longer or shorter in 

up-used versus down-used isoforms from the same gene), and the fraction of DIU isoforms 

involved in a given type of switch consequence is shown. Panel c summarizes the net effects 

of these switch consequences at the gene level aggregated over all pairwise comparisons 

between up-used and down-used isoforms. Each gene will have a binary designation of 

its net switch consequence, and the fraction of genes with a particular designation and 

its confidence interval are shown. A binomial test is performed to assess the statistical 

significance of the gene fractions with respect to a null hypothesis of 0.5. The dot size 

is proportional to the number of genes whose DIU isoforms have a given type of switch 

consequences, and statistical significance of the binomial test is indicated by red colored 

dots. NMD: nonsense-mediated mRNA decay, identified from a premature termination 
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codon >50 nt upstream of the last exon-exon junction. Tss: transcription start site. Tts: 

transcription termination site.
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Fig. 2. 
3′ UTR lengthening with up-used DIU isoforms in current smokers. Isoforms were 

classified into three DIU categories (non-differentially used, down-used, up-used) according 

to their differential usage test statistics comparing current vs. former smokers. Isoforms 

within each gene were grouped by category to compute average isoform length, 5′ UTR 

length, 3′ UTR length, and CDS length. These average lengths were compared across DIU 

categories using the Wilcoxon signed rank test, and the significant P-values are denoted in 

the violin plots. Significant differences in CDS and 3′ UTR length were observed, especially 

in up-used DIU isoforms.
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Fig. 3. 
3′ UTR lengthening of up-used DEU exonic parts in current smokers. Non-overlapping 

exonic parts were derived from collapsed Ensembl gene models, as illustrated in panel 

a. Exonic parts that overlap annotated 5′ and 3′ UTRs are colored in green and cyan, 

respectively. In panel b, exonic parts were classified into three DEU categories (non-

differentially used, down-used, up-used) according to their differential usage test statistics 

comparing current vs. former smokers. Exonic parts within each gene were grouped by 

category to compute the average 5′ UTR and 3′ UTR exonic parts length. These average 

lengths were compared between the three DEU categories using the Wilcoxon signed rank 

test, and the significant P-values are denoted in the violin plots. A significant increase in 3′ 
UTR exonic part length was observed in up-used DEUs.
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Fig. 4. 
Directional preference in smoking-induced transcriptional regulation in observed versus 

permuted data. Left-hand panels demonstrate that a trend toward positive log fold changes 

(i.e. higher expression and usage in smokers) with longer features is present in the observed 

data but not the permuted data. Right-hand panels show the increasing percentage of features 

detected as up-regulated or up-used in smokers as the features become longer. Features were 

sorted by length, and statistics (average log fold changes and feature lengths) were computed 

from a sliding window of size 300 and step size 15 nts. A LOWESS curve was fit to these 

statistics and shown with 95% confidence interval in the left-hand panels for the three types 

of analysis (DIE, DIU and DEU comparing current vs. former smokers) in both the observed 

and permuted data. In the right-hand panels, the percentage of features stratified by status of 

differential expression and usage were shown on the y axis.
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Fig. 5. 
Positional frequency of poly(A) motifs upstream of polyadenylation sites (PASs) at up-used 

3′ UTRs in current smokers. Genomic sequences upstream of PASs are extracted, and the 

frequencies of poly(A) motifs at each base position are computed and smoothed in the 

visualization. In panels a–b, PASs are categorized according to the DEU analysis of the 

3′ UTRs harboring these sites. In panels d–e, PASs are categorized as distal and proximal 

depending on their location relative to the annotated end of the gene. In panels a–b and d–e, 

the dashed lines mark the position of experimentally determined PAS cleavage sites in 3′ 
UTR exonic parts from genes containing up-used 3′ UTRs in the DEU analysis comparing 

current vs. former smokers. In panel c, the smoothed density of the canonical poly(A) motif 

in 3′ UTRs is displayed. Each row represents the last 100 nts of a 3′ UTR exonic part, 

ordered by DEU P-values.
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Fig. 6. 
Positional frequency of functional elements in up-used 3′ UTRs in current smokers. 

Genomic sequences up to 4 kb upstream of the 3′ UTR exonic part ends are extracted, 

and the frequencies of functional elements (PAS, ARE, miRNA) at each base position are 

computed and smoothed in the visualization. The exonic parts analyzed here include all 3′ 
UTRs from genes containing up-used 3′ UTRs comparing current vs. former smokers.
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Fig. 7. 
Regulatory network of micro-RNAs (miRNAs), RNA-binding proteins (RBPs) and their 

target genes with up-used 3′ UTRs in current smokers. Candidate regulatory factors 

(5 miRNAs and 3 RBPs) were identified from enrichment tests of binding sites from 

TargetScan and e-CLIP experiments in up-used 3′ UTRs comparing current vs. former 

smokers. Five network communities are designated by the node coloring and shaded 

polygons. p-values from the binomial enrichment tests are shown. Node size is proportional 

to the −log10 transformed binomial p-values. Node shape: sphere = miRNA; circle = RBP; 

square = target gene. Edge width is proportional to the number of binding sites. Edge colour 

designates the within (black) or between (gray) community links.
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Fig. 8. 
Genetic effects on alternative polyadenylation in ERAP1. Panel a shows sequentially in 

each row the log fold changes for the exonic parts in the DEU analysis comparing current 

vs. former smokers, the coverage of RBP, miRNA, ARE and APA cleavage sites, and the 

Ensembl gene model for ERAP1. The exonic parts differential usage pattern is further 

illustrated in panel b using log transformed counts adjusted for covariates. Panel c highlights 

the genetic variant directly disrupting the canonical poly(A) motif at the proximal poly(A) 

site. A LocusZoom plot is displayed in panel d, showing the eQTL FDR for the association 

of SNPs with the up-used 3′ UTR of ERAP1. The SNPs are colored according to linkage 

disequilibrium with the lead eQTL variant rs7063, and are annotated based on the effects on 

APA motifs and annotations in NHGRI-EBI GWAS catalog (n and y in the top legend means 

lacking and having effect/association, respectively).
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Table 2

Top 10 differentially used Isoforms in current smokers versus former smokers.

Ensembl transcript ID HUGO gene name Log fold change Average log expression Adjusted P-value

ENST00000586582 SEMA6B 1.54 −1.41 3.04E-21

ENST00000589889 SEMA6B −1.54 0.03 3.04E-21

ENST00000233156 TFPI −0.87 0.76 3.55E-14

ENST00000244174 IL9R 0.97 −1.81 1.78E-10

ENST00000540368 ATP6V0A2 −0.77 −0.19 2.66E-10

ENST00000517625 SKP1 −0.43 4.11 5.83E-10

ENST00000278499 SESN3 −0.61 4.19 9.34E-10

ENST00000477931 GNAS −0.56 4.13 3.76E-09

ENST00000362091 FBH1 −0.44 3.94 3.76E-09

ENST00000333007 TNFAIP2 −0.87 0.48 3.80E-09
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Table 3

Top 10 gene ontology biological processes enriched in genes with differentially used isoforms in current 

smokers versus former smokers.

GO ID GO term Total number of genes in 
category

Number of smoking-
associated genes in category

P-value

G0:0043547 positive regulation of GTPase activity 308 45 1.00E-05

G0:0046822 regulation of nucleocytoplasmic transport 97 12 3.10E-04

G0:0006607 NLS-bearing protein import into nucleus 24 7 9.50E-04

G0:0010172 embryonic body morphogenesis 9 5 1.27E-03

G0:0008053 mitochondrial fusion 19 7 1.30E-03

G0:0045088 regulation of innate immune response 300 21 1.30E-03

G0:0034497 protein localization to phagophore assembly site 13 5 1.31E-03

G0:0006610 ribosomal protein import into nucleus 8 4 1.31E-03

G0:0075522 IRES-dependent viral translational initiation 10 4 3.51E-03

G0:0016055 Wnt signaling pathway 289 34 3.68E-03
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