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The predictive value of modified-DeepSurv
in overall survivals of patients with lung cancer

Jie Lei,1,8 Xin Xu,2,8 Junrui Xu,3,8 Jia Liu,4 Yi Wang,5 Chao Wu,6,7 Renquan Zhang,3,* Zhemin Zhang,2,*

and Tao Jiang1,9,*

SUMMARY

The traditional prognostic model may induce the possibility of incorrect assessment of mortality risk un-
der the assumption of linearity. It is urgent to develop a non-linearity precise prognostic model for
achieving personalized medicine in lung cancer. In our study, we develop and validate a prognostic model
‘‘Modified-DeepSurv’’ for patients with lung carcinoma based on deep learning and evaluate its value for
prognosis, while Cox proportional hazard regression was used to develop another model ‘‘CPH.’’ The
C-index of the Modified-DeepSurv and CPH was 0.956 (95% confidence interval [CI]: 0.946–0.974) and
0.836 (95% CI: 0.774–0.896), respectively, in the training cohort, while the C-index of the Modified-
DeepSurv and CPH was 0.932 (95%CI: 0.908–0.964) and 0.777 (95%CI: 0.633–0.919), respectively, in
the test dataset. TheModified-DeepSurvmodel visualization was realized by a user-friendly graphic inter-
face. Modified-DeepSurv can effectively predict the survival of lung cancer patients and is superior to the
conventional CPH model.

INTRODUCTION

Lung cancer is the second most diagnosed cancer worldwide.1 In China, the morbidity and mortality of lung cancer rank first among all types

of cancer.2 The prognosis of lung cancer patients with different clinical stages is different, and even the survival rate could vary within the same

stage.3,4 The tumor-node-metastasis (TNM) staging system in the 8th Edition of the American Joint Committee on Cancer (AJCC) is the

routinemethod to predict prognosis.5 Recently, it has been found that age, sex, histopathology, and treatment choices could be independent

prognostic factors that significantly contribute to the individualized prediction of survival.6 Therefore, it is urgent to construct a precise prog-

nostic model for achieving personalized medicine and further improving the survival rates of lung cancer patients.7

Cox proportional hazard (CPH) is a semi-parametric model that calculates the effects of observed covariates on the risk of an occurring

event.8 The model was popular as a way of predicting outcomes.9 In practice, most CPH models lack a fixed hazard ratio (HR) and ignore

interactions between risk factors. These deficienciesmay increase the possibility of incorrectmortality risk assessment under linearity assump-

tions. The nomogram based on CPH is a reliable tool that has demonstrated the ability to quantify risk factors by combining and clarifying

significant clinical characteristics of oncology.6,10 However, these models have several limitations for the precise evaluation of overall survival

(OS) and progression-free survival (PFS).11 Because the clinical characteristics in the real world are mostly nonlinear, these nomogrammodels

were based on linearity assumptions rather than nonlinear analyses.12 Therefore, nonlinear functions are required to fit survival data in the real

world accurately and aim to improve survival models’ performance.11,13

Artificial intelligence (AI), consistingofmachine learning (ML) anddeep learning (DL), has been applied to a lot of fields ofmedicine.14–16ML, a

branch of AI that enables the detection of relationships from complex datasets, has recently been employed for the survival prediction of lung

oncological outcomes. DeepSurv is an extension ofDL-based survival analysis that combines aCPHmodelwith amodernDL algorithm11 andhas

beenused to estimate the survival riskswith a recommender system inmultiple cancers.14,17,18 She et al. conducted a study applyingDeepSurv to

the prognosis prediction of 17,322 patients with lung cancer,19 which used a static framework-TensorFlow operation mode, to construct a calcu-

lation diagram of TensorFlow with a fixed state operational process. In contrast, considering the data characteristics of our study, we choose the
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Table 1. Baseline characteristics between training and test dataset (original, missing data reported)

Overall (n = 1907) Training (n = 1430) Test (n = 477) p value

Age (year, median [Q1-Q3]) 59.0 [52.0–65.0] 59.0 [51.0–65.0] 60.0 [52.0–65.0] 0.355

Sex (n, %) 0.357

Female 1095 (57.4%) 812 (56.8%) 283 (59.3%)

Male 812 (42.6%) 618 (43.2%) 194 (40.7%)

Pathological type (n, %) 0.457

Adenocarcinoma 1779 (93.3%) 1330 (93.0%) 449 (94.1%)

Others 128 (6.7%) 100 (7.0%) 28 (5.9%)

Tumor size 0.596

(Median [Q1-Q3]) 1.30 [1.00–2.00] 1.30 [1.00–2.00] 1.20 [0.800–2.00]

Missing 469 (24.6%) 360 (25.2%) 109 (22.9%)

Smoking history (n, %) 0.415

Never smoked 248 (13.0%) 193 (13.5%) 55 (11.5%)

Former smoker 308 (16.2%) 234 (16.4%) 74 (15.5%)

Current smoker 1309 (68.6%) 970 (67.8%) 339 (71.1%)

Missing 42 (2.2%) 33 (2.3%) 9 (1.9%)

Nodules type (n, %) 0.742

Mixed ground glass 304 (15.9%) 222 (15.5%) 82 (17.2%)

Pure ground glass 438 (23.0%) 327 (22.9%) 111 (23.3%)

Solid 981 (51.4%) 738 (51.6%) 243 (50.9%)

Missing 184 (9.6%) 143 (10.0%) 41 (8.6%)

Tumor-lung interface (n, %) 1

Blurred 1032 (54.1%) 772 (54.0%) 260 (54.5%)

Clear 676 (35.4%) 506 (35.4%) 170 (35.6%)

Missing 199 (10.4%) 152 (10.6%) 47 (9.9%)

Nodular edge (n, %) 0.562

Irregular 425 (22.3%) 311 (21.7%) 114 (23.9%)

Lobulated 126 (6.6%) 100 (7.0%) 26 (5.5%)

Smooth 883 (46.3%) 660 (46.2%) 223 (46.8%)

Spiculated 269 (14.1%) 203 (14.2%) 66 (13.8%)

Missing 204 (10.7%) 156 (10.9%) 48 (10.1%)

Vacuole sign (n, %) 0.485

No 1621 (85.0%) 1211 (84.7%) 410 (86.0%)

Yes 152 (8.0%) 118 (8.3%) 34 (7.1%)

Missing 134 (7.0%) 101 (7.1%) 33 (6.9%)

Vascular abnormalities (n, %) 0.869

No 1619 (84.9%) 1214 (84.9%) 405 (84.9%)

Yes 154 (8.1%) 114 (8.0%) 40 (8.4%)

Missing 134 (7.0%) 102 (7.1%) 32 (6.7%)

Pleural traction (n, %) 0.098

No 1121 (58.8%) 855 (59.8%) 266 (55.8%)

Yes 650 (34.1%) 472 (33.0%) 178 (37.3%)

Missing 136 (7.1%) 103 (7.2%) 33 (6.9%)

Calcification (n, %) 0.351

No 1700 (89.1%) 1269 (88.7%) 431 (90.4%)

Yes 71 (3.7%) 57 (4.0%) 14 (2.9%)

(Continued on next page)
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Pytorch operationmode, which is based on a dynamic framework. The operation process is optimally arranged for different values and can build

protocols and results in a short time. Furthermore, only some studies compare the performance of traditional statistics (such as the well-known

CPH model) with DL techniques in terms of the ability to predict survival for malignant lung tumors. Thus, we developed a Modified-DeepSurv

model basedon the Pytorch operationmode,which contains 18 variables topredict the survival of lung cancer patients, and compared itwith the

CPH model in terms of discrimination and calibration. Further, the weights of the variables in the model were also explored and ranked.

RESULTS

Baseline characteristics

A total of 2,521 lung cancer patients were included in this study. One-thousand nine-hundred and seven patients were included in the final

analysis (1,430 in the training set, 477 in the test set), while 188 and 426 patients were excluded formissing survival information and ambiguous

Table 1. Continued

Overall (n = 1907) Training (n = 1430) Test (n = 477) p value

Missing 136 (7.1%) 104 (7.3%) 32 (6.7%)

Enhancement (n, %) 0.313

No 1511 (79.2%) 1136 (79.4%) 375 (78.6%)

Yes 197 (10.3%) 141 (9.9%) 56 (11.7%)

Missing 199 (10.4%) 153 (10.7%) 46 (9.6%)

Visceral pleural invasion (VPI) (n, %) 0.849

No 1284 (67.3%) 978 (68.4%) 306 (64.2%)

Yes 95 (5.0%) 71 (5.0%) 24 (5.0%)

Missing 528 (27.7%) 381 (26.6%) 147 (30.8%)

Surgery (n, %) 0.591

Lobectomy 1151 (60.4%) 854 (59.7%) 297 (62.3%)

Segmentectomy 331 (17.4%) 252 (17.6%) 79 (16.6%)

Wedge 344 (18.0%) 255 (17.8%) 89 (18.7%)

Missing 4 (0.2%) 4 (0.3%) 0 (0%)

T (n, %) 0.156

Tis 1211 (63.5%) 911 (63.7%) 300 (62.9%)

1 205 (10.7%) 159 (11.1%) 46 (9.6%)

2 16 (0.8%) 10 (0.7%) 6 (1.3%)

3 23 (1.2%) 19 (1.3%) 4 (0.8%)

4 299 (15.7%) 209 (14.6%) 90 (18.9%)

Missing 153 (8.0%) 122 (8.5%) 31 (6.5%)

N (n, %) 0.55

0 1565 (82.1%) 1175 (82.2%) 390 (81.8%)

1 68 (3.6%) 47 (3.3%) 21 (4.4%)

2 115 (6.0%) 84 (5.9%) 31 (6.5%)

3 3 (0.2%) 2 (0.1%) 1 (0.2%)

Missing 156 (8.2%) 122 (8.5%) 34 (7.1%)

M (n, %) 0.89

0 1719 (90.1%) 1283 (89.7%) 436 (91.4%)

1 39 (2.0%) 30 (2.1%) 9 (1.9%)

Missing 149 (7.8%) 117 (8.2%) 32 (6.7%)

Status (n, %) 0.447

0 1834 (96.2%) 1372 (95.9%) 462 (96.9%)

1 73 (3.8%) 58 (4.1%) 15 (3.1%)

Survival duration (month, median[Q1-Q3] 15.3 [9.20–24.3] 15.3 [9.20–24.3] 15.3 [9.20–24.4] 0.62

VPI: Visceral pleural invasion.
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pathological diagnosis, respectively. In the training dataset, the median age of the subjects was 59.0 years, 43.2% of the subjects were men,

and 93.0% had adenocarcinoma. In the test dataset, the median age of the subjects was 60.0 years, 40.7% were men, and 94.1% had adeno-

carcinoma. Solid nodules account for 51.6% of the training dataset and 50.9% of the test dataset. There were no significant differences in

smoking history, maximum tumor diameter, tumor-lung interface, nodular edge, vacuole sign, vascular abnormalities, pleural traction, calci-

fication, enhancement, visceral pleural invasion (VPI), surgery, pathological T stage, pathological N stage, pathological M stage, and survival

duration between the two datasets (all p > 0.05). There was no significant difference between the two datasets after multiple imputations. The

clinical and pathological characteristics of the training and test datasets were shown in Tables 1 and S1.

OS analysis and independent factors that affect OS

During the observation, 73 patients (3.8%) succumbed to lung cancer. In the training set, 58 cases (4.1%) died during follow-up, and the me-

dian survival duration was 15.3 months (95% confidence interval [CI]: 9.20–24.3 months) (Table 1). In the test dataset, 15 patients (3.1%) died

during follow-up, and the median survival duration was 15.3 months (95% CI: 9.20–24.4 months) (Table 1). The Kaplan-Meier OS distributions

of the training and test sets were similar to each other (p = 0.19) (Figure 1). Those with higher ages (HR, 95%CI: 1.04, 1.00–1.07), blurred tumor-

lung interface (HR, 95%CI: 3.08, 1.27–7.46), calcification (HR, 95%CI: 3.33, 95%CI, 1.54–7.19), N stage (N2 HR, 95%CI: 4.45 (2.46–8.06), N3 HR,

95%CI: 10.41 (2.27–47.63)), andM stage (HR, 95%CI: 4.22, 95%CI, 1.77–10.07) were associated with shorterOS. The longerOSwas correlated

with pure ground glass (HR, 95% CI: 0.18, 0.04–0.73). Detailed results of the univariate and multivariate CPH prediction results for OS in the

training dataset were presented in Table 2.

Comparison of survival model performance

In the training dataset, the C-index of Modified-DeepSurv was higher than that of CPH, 0.956 (0.946–0.974) vs. 0.836 (0.774–0.896), and in the

test dataset, the C-index of Modified-DeepSurv was higher than that of CPH, 0.932 (0.908–0.964) vs. 0.777 (0.633–0.919) (Table 3). The cali-

bration curve also indicated that Modified-DeepSurv also showed good calibration in both the training and the test cohort (Figure 2). The

importance of variables in the training set of the Modified-DeepSurv was analyzed (Table S2).

Model visualization

In the prediction window, the system invokes a prediction model (Figure 3; Video S1), and the Modified-DeepSurv model is used to predict

patients’ survival probability. The analysis results are visualized in a graphic view as a survival curve, indicating the patient input’s survival prob-

ability over time.

DISCUSSION

"Medical +AI" is the trend of current science and technology development. It is also an important approach to achieving widely beneficial

medical care, assisting doctors in carrying out clinical diagnosis and treatment conveniently, reasonably, and scientifically. In this study, the

Modified-DeepSurv model was constructed to predict lung patients’ OS based on the large real-world database and the DL algorithm. The

model was compared with the model constructed by Cox regression. The performance of the Modified-DeepSurv model is superior to the

Cox regression model. This study also demonstrated that DL algorithms could provide a novel solution to assist clinicians in treatment de-

cisions or clinical trial design through personalized, predictive models.

In this study, the CPHmodel combined gender, age, the history of the tumor, histological grade, tumor shape, tumor size, surgery, and TNM

stage, and its C-indexwas lower than theModified-DeepSurvmodel both in the training cohort and the test cohort. Thismay be causedby some

Figure 1. Kaplan-Meier curves of overall survival (OS) distribution of the training and test datasets
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Table 2. Cox regression analysis in the training dataset

Characteristics

Univariate analysis Multivariate analysis

HR 95% CI p HR 95% CI p

Age 1.04 1.01–1.07 0.012 1.04 1–1.07 0.024

Sex

Female – – – – – –

Male 1.92 1.13–3.26 0.016 – – –

Pathological type

Others – – – – – –

Adenocarcinoma 0.39 0.2–0.78 0.007 – – –

Tumor size 1.17 1.03–1.33 0.015 – – –

Smoking history

Never smoked – – – – – –

Former smoker 1.51 0.78–2.94 0.223 – – –

Current smoker 1.75 0.92–3.34 0.089 – – –

Nodules type

Solid – – – – – –

Pure ground glass 0.12 0.03–0.48 0.003 0.18 0.04–0.73 0.017

Mixed ground glass 0.14 0.02–1.05 0.056 0.24 0.03–1.74 0.157

Tumor-lung interface

Clear – – – – – –

Blurred 3.52 1.5–8.23 0.004 3.08 1.27–7.46 0.013

Nodular edge

Smooth – – – – – –

Spiculated 2.79 1.34–5.81 0.006 – – –

Lobulated 1.54 0.5–4.72 0.452 – – –

Irregular 2.96 1.51–5.8 0.002 – – –

Vacuole sign

No – – – – – –

Yes 1.4 0.55–3.51 0.48 – – –

Vascular abnormalities

No – – – – – –

Yes 0.68 0.16–2.81 0.595 – – –

Pleural traction

No – – – – – –

Yes 1.63 0.97–2.73 0.066 – – –

Calcification

No – – – – – –

Yes 2.96 1.4–6.27 0.005 3.33 1.54–7.19 0.002

Enhancement

No – – – – – –

Yes 2.04 1.15–3.62 0.015 – – –

Visceral pleural invasion (VPI)

No – – – – – –

Yes 1.78 0.87–3.65 0.113 – – –

Surgery

Wedge – – – – – –

(Continued on next page)
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shortcomings of the model itself. The CPHmodel is a semi-parametric model that can be used to calculate the effect of observed covariates on

the risk of event occurrence, such as death or cancer recurrence.20 The risk model assumes that a patient’s risk of death is a linear combination of

covariates, an assumption known as the "Assumption of equal proportions". However, in real-world datasets, the assumption of equal propor-

tions is often not satisfied.21 Therefore, more survival models are needed to fit survival data to nonlinear risk functions better. In the large amount

of patient health data, DL orML can be integrated into electronic health records and provide clinicians with valuable prognostic information.14,19

DeepSurv algorithm is a risk network that applies DL technology to Cox regression, and it is a deep feedforward neural network.11 The

influence of patients’ covariates on their risk is predictedby the network learningweights.22 DL techniquesmay be amore verifiable prediction

method due to the ability to handle large datasets with complex, nonlinear, heterogeneous distributions.23,24 DL is unique, and it can

construct models by applying Boolean logic, absolute condition, conditional probability, and other unconventional logarithmic strategies.

In the previous study, the DeepSurv algorithm used TensorFlow operation mode, a static framework, to construct a calculation diagram of

TensorFlow, and then different data can be input. The operation process is a fixed state.19 This kind of inflexible operation method will inev-

itably lead to low efficiency.11,14 In our study, we choose the Pytorch operationmode, which ismore suitable for small sample projects. Pytorch

is based on a dynamic framework. In the operation process, it will be arranged optimally according to different values, and it can establish

protocols and produce results in a short time. However, it also has some limitations: the analysis lacks transparency. Although DL involves

multilayer analysis that may make meaningful predictions, these layers often cannot be interpreted meaningfully.

In our result, the importance of variables showed that surgery is the first important variable for OS. The choice of surgical method is very

important for the survival of lung cancer patients. However, in a previous study, the type of surgery was not a prognostic factor for either

lung cancer-related or non-lung cancer-relatedOS in geriatric lung cancer patients.25 However, in a nationwide propensity-matched study, there

were significant differences in 1-year or 5-year survival rates among those who underwent different surgical methods for patients with lung can-

cer.26 The effect of surgical methods on survival remains controversial. Therefore, prospective studies with larger samples are needed to confirm

the importance of types of surgery on survival. Nodule typewas the secondmost important variable for survival in theModified-DeepSurvmodel.

In a recent study, nodule type was associated with OS. Moreover, pure ground glass opacity (GGO) was positively correlated with OS in

Table 2. Continued

Characteristics

Univariate analysis Multivariate analysis

HR 95% CI p HR 95% CI p

Segmentectomy 0.16 0.04–0.7 0.015 – – –

Lobectomy 0.76 0.42–1.4 0.382 – – –

T

Tis – – – – – –

1 5 0.68–36.61 0.113 – – –

2 12.71 1.67–96.49 0.014 – – –

3 39.81 3.59–441.91 0.003 – – –

4 13.89 1.61–119.94 0.017 – – –

N

0 – – – – – –

1 2.82 1.17–6.79 0.021 2.17 0.89–5.27 0.088

2 5.88 3.28–10.53 <0.001 4.45 2.46–8.06 <0.001

3 14.69 3.48–61.99 <0.001 10.41 2.27–47.63 0.003

M

0 – – – – – –

1 5.09 2.29–11.33 <0.001 4.22 1.77–10.07 0.001

VPI: Visceral pleural invasion.

Table 3. C-index of CPH and Modified-DeepSurv models

Model

C-index, 95% CI

Training Dataset Test Dataset

CPH 0.836 (0.774–0.896) 0.777 (0.633–0.919)

Modified-DeepSurv 0.956 (0.946–0.974) 0.932 (0.908–0.964)

C-index: concordance index, CPH: Cox proportional hazard.
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pathological stage I invasive lung adenocarcinoma.27 In a large sample size study, nodule type was associated withOS, and it is an independent

risk factor for survival in patients with resected stage I non-small cell lung cancer (NSCLC).28 These results suggest that the surgery method and

the type of nodules are the key factors affecting the survival of patients. These results are similar to those obtained by traditional CPHmethods,

which need to be confirmed by clinical practice. Smoking history was a well-known prognostic factor for lung cancer. In our Modified-Deepsurv

model, smoking history was the ninth most important variable; however, it was not included in the multivariate Cox model. It is possible that

Modified-DeepSurv model retains more variables than traditional CPH model, avoiding useful variables that are eliminated from the variable

screening process before building the model. Converting methodology into informative clinical tools is always a great concern of researchers

and clinicians. A graphic interface is a tool that visualizes the complex operation process to help doctors assess the survival status of patients

and give appropriate care recommendations.29,30 In our study, we developed an easy-to-use survival prediction tool based on the Modified-

DeepSurv model. When a patient’s information is entered, the survival probability of that patient can be predicted intuitively.

TheModified-DeepSurvmodel was constructed by a DL algorithm in this study. The predictive variables in this model were age, sex, path-

ological type, smoking history, maximum tumor diameter, nodules type, tumor-lung interface, nodular edge, vacuole sign, vascular abnor-

malities, pleural traction, calcification, enhancement, VPI, surgery, pathological T stage, pathological N stage, and pathological M stage,

which could predict the survival of lung cancer patients better than the CHP model. In the era of big data, DL and AI play an important

role in assessing prognosis by improving the quantitative ability of patient risk estimation and providing a new direction for developing

more accurate prognostic prediction methods.

Limitations of the study

Firstly, as a retrospective study, the information bias causedby follow-up cannot be avoided; limited follow-up time resulted in limited number

of deaths, and that may influence the application scenarios of the prediction model. Secondly, the external validation is necessary. Although

the prediction model was well constructed and tested, for studies that require big data to complete model construction, the sample size of

our study is still small; thus, a larger amount of data from different clinical centers is needed for validation in the future. Thirdly, DL algorithms

were still the most difficult method to interpret,31 despite the fact that the trained DL model can be directly integrated into the electronic

medical record system, and clinicians can put patient data intoWeb-based forms to predict OS for lung cancer patients easily and effectively.
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M.M., and Pérez-Vicente, S. (2011). Survival
analysis and Cox regression. Allergol.
Immunopathol. 39, 362–373.

22. Jared, L., Katzman, U.S., Alexander, C., Bates,
J., Jiang, T., and Kluger, Y. (2016). Deep

Survival: A Deep Cox Proportional Hazards
Network.

23. Wang, G., Lam, K.M., Deng, Z., and Choi, K.S.
(2015). Prediction of mortality after radical
cystectomy for bladder cancer by machine
learning techniques. Comput. Biol. Med. 63,
124–132.

24. McCarthy, J.F., Marx, K.A., Hoffman, P.E.,
Gee, A.G., O’Neil, P., Ujwal, M.L., and
Hotchkiss, J. (2004). Applications of machine
learning and high-dimensional visualization
in cancer detection, diagnosis, and
management. Ann. N. Y. Acad. Sci. 1020,
239–262.

25. Lin, Y.J., Chiang, X.H., Lu, T.P., Hsieh, M.S.,
Lin, M.W., Hsu, H.H., and Chen, J.S. (2021).
Thoracoscopic Lobectomy Versus Sublobar
Resection for pStage I Geriatric Non-Small
Cell Lung Cancer. Front. Oncol. 11, 777590.
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Materials availability

This study did not generate new unique reagents.

Data and code availability

� Deidentified final results supporting this study are available for research purposes upon reasonable written request to the correspond-

ing author. Access to such data is available from the date of publication and requires a Data Access Agreement, which is examined and

approved by the ethics committees who approved this research.
� The code used for reproducing our analysis result are no available.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

A retrospective,multicenter cohort studywas conducted. Patientswith lungcancerdiagnosedbypathology in theTangduHospital, XinjiangPeo-

ples’ Hospital and The First Affiliated Hospital of Anhui Medical University from April 2014 toMay 2022 were included in constructing the model

and followedupuntil July 2022. Thepatients diagnosedwithoutdeterminatepathologyor survival datawereexcluded. This studywas conducted

in accordance with the World Medical Association Declaration of Helsinki and approved by the Ethics Committee of all participating hospitals.

Because this study was retrospective and data were analyzed anonymously, informed consent from all patients was not required. All the patients

were Han Chinese from mainland China and provided written informed consent for the use of clinical information and tissue specimens.

METHOD DETAILS

Data collection and outcome definition

Data were extracted from the electronic medical record system of the above hospitals. Sex, age, histological type, TNM stage, tumor size,

metastasis status, operation, survival time and survival status were collected. OS was defined as the time from surgery to death or the end.

Deep learning algorithm

DeepSurv algorithm is a risk network that applies deep learning technology to nonlinear Cox regression. It is a deep feedforward neural

network. DeepSurv uses amultilayer perceptron to self-learn the effects of a covariate. Priori selection and interaction of the covariates should

be considered in designing theCPHmodel, but DeepSurv has the advantage of not considering this. The network parameter setting is the key

to building the Modified-DeepSurv model. Modified-DeepSurv comprises 1 input layer, multiple hidden layers, and 1 node with tanh activa-

tion and output. In our study, the number of input vector is 18, the total number of hidden layer nodes is 450, and the activation function is

SeLU. We used the Adam optimizer with a learning rate of 0.07 and a learning rate decay of 0.003. The input vector X needs normalization

before training. The number of hidden layer nodes is obtained by a large number of experiments during training. The random forest approach

is used to rank the importance of the input vectors.

The data processing

Multiple imputations (MIs)

Each variable was observed to determine the missing proportion, and variables with excessive missing proportions were deleted. To

ensure the regularity of data distribution to the greatest extent, MIs were performed on the missing variables. The tool used the R software

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python (version 3.6.9) Python Software Foundation https://www.python.org

R (version 4.2.1) The R Foundation https://www.r-project.org/

pyTorch (version 1.4.0) pyTorch software https://pytorch.org/
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(https://www.r-project.org/) mice package, and the MIs were performed five times, with maxit = 10 and seed = 1234. After comprehensive

consideration, the fifth imputation dataset was used for the final analysis.

Data transformation

The two models are independent in the way they do data transformation. For the development of Modified-DeepSurv model, firstly, the text

data was digitized. In detail, for binary categorical data, sex, it was 0 for female and 1 for male; Pathological type, it was 0 for others and 1 for

adenocarcinoma; Tumor interface, it was 0 for blurred and 10 for clear; Vacuole sign, vascular abnormalities, pleural traction, calcification,

enhancement, and visceral pleural invasion (VPI), it was 0 for no and 10 for yes, respectively; For multi-categorical data, smoking history, it

was 0 for never, 10 for current, and 20 for former; Nodules type, it was 0 for solid, 10 for mixed ground glass, and 20 for pure ground glass

nodule (pGGN); The nodular edge, it was 0 for irregular, 10 for spiculated, 20 for smooth, and 30 for lobulated; Surgery, it was 0 for lobectomy,

10 for wedge, 20 for segmentectomy. Second, the digitized data were normalized: 0 and 1 do not need processing, with the floating-point

values reserved for 0.0 and 1.0. For normal data: floating-point value normalized between -1.0 and 1.0 (normal distribution). For categorical

data, linear scaling to floating-point values is between -1.0 and 1.0. Time to event data, normalized to a floating point value between 0.0 and

4.0. Digitized and normalizedwere processed by python3.6.9. For CPHmodel, before data analysis, data were assigned a value, with an event

as 1 for dependent variables and no event as 0. For continuous independent variables, no need to assign it. For binary categorical indepen-

dent variables, sex, it was 0 for female and 1 for male; Pathological type, it was 0 for others and 1 for adenocarcinoma; Tumor interface, it was

0 for blurred and 1 for clear; Vacuole sign, vascular abnormalities, pleural traction, calcification, enhancement, and visceral pleural invasion

(VPI), it was 0 for no and 1 for yes, respectively. For multi-categorical independent variables, smoking history, it was 0 for never, 1 for current, 2

for former; Nodules type, it was 0 for solid, 1 for mixed ground glass, and 2 for pGGN; nodule edge: 0 for irregular, 1 for spiculated, 2 for

smooth, 3 for lobulated; Surgery, it was 0 for lobectomy, 1 for wedge, 2 for segmentectomy. In either of the above two models, the numbers

are used as a numerals, not for the values they represent, just as symbols.

Model visualization

Wedeveloped a user-friendly risk prediction interface programming by python3.6.9 to facilitate survival prediction of theModified-DeepSurv

model. This interface consists of 2 windows: the user input window and the survival prediction window. The user input window is designed to

help users input all entries regarding patient characteristics intoModified-DeepSurv model by manual. The user input window allows users to

predict the survival probability based on specific patient information by clicking the predict buttons.

QUANTIFICATION AND STATISTICAL ANALYSIS

The data of included patients were randomly assigned into the training and test dataset in the ratio of 3:1. Measurement data were expressed

asmedian, interquartile range (IQR). Categorical data were represented as numbers (%), and comparison between groups was analyzed using

chi-square test. Kaplan-Meier was used to calculate the survival rate, and the log-rank test was used to compare survival rates between

groups. Cox proportional hazards regression was used to analyze the factors affecting OS in the training cohort, while the hazard ratio

(HR) and its corresponding 95% confidence interval (CI) were calculated. Analyzed variables including patient age, sex, pathological type,

smoking history, maximum tumor diameter, nodules type, tumor-lung interface, nodular edge, vacuole sign, vascular abnormalities, pleural

traction, calcification, enhancement, VPI, surgery, pathological T stage, pathological N stage, and pathological M stage. The final multivariate

COX model was developed by stepwise regression to obtain the best result with the smallest Akaike information criterion (AIC).32 Perfor-

mances of the CPH and deep learningmodel were compared using the fivefold cross-validated Harrel’s C-index. The fivefold cross-validation

technique was used in all CPH and Modified-DeepSurv training processes. The C-index and calibration curve were used to evaluate the

discrimination and calibration of the model. The Bootstrap method was used for calculation, and the resampling times were 1000.

The survival package of R 4.2.1 software (https://www.r-project.org/) was used to construct the Cox proportional hazard regressionmodel,

and the PyTorch DeepSurv repo in Python 3.6.9 was used to construct the Modified-DeepSurv model (https://github.com/jaredleekatzman/

DeepSurv). All other data were analyzed by R 4.2.1 software. All tests were two-sided, and p<0.05 was considered statistically significant.
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