
1ScIentIfIc REPOrts |  (2018) 8:7029  | DOI:10.1038/s41598-018-25436-2

www.nature.com/scientificreports

Asymptotic stability of a modified 
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Jomar F. Rabajante3, Hiromu Ito5, Satoru Morita   1,2,4, Genki Ichinose1,4, Takuya Okabe   4, 
Tatsuya Togashi6, Kei-ichi Tainaka1,2, Akira Shimizu7, Takashi Nagatani8 & Jin Yoshimura1,2,4,6,9

Predator-prey systems have been studied intensively for over a hundred years. These studies have 
demonstrated that the dynamics of Lotka-Volterra (LV) systems are not stable, that is, exhibiting either 
cyclic oscillation or divergent extinction of one species. Stochastic versions of the deterministic cyclic 
oscillations also exhibit divergent extinction. Thus, we have no solution for asymptotic stability in 
predator-prey systems, unlike most natural predator-prey interactions that sometimes exhibit stable 
and persistent coexistence. Here, we demonstrate that adding a small immigration into the prey or 
predator population can stabilize the LV system. Although LV systems have been studied intensively, 
there is no study on the non-linear modifications that we have tested. We also checked the effect of the 
inclusion of non-linear interaction term to the stability of the LV system. Our results show that small 
immigrations invoke stable convergence in the LV system with three types of functional responses. 
This means that natural predator-prey populations can be stabilized by a small number of sporadic 
immigrants.

In the past, unexpected large quotas in animal and fish catches had been occasionally reported. The phenomenon 
was attributed to the predators in those communities1–4. This predator and prey relationship is probably the most 
studied ecological dynamics in recent history. Theoretical studies of this system began when Alfred Lotka and 
Vito Volterra independently developed the well-known predator-prey model in the 1920s. Lotka developed the 
model to study autocatalytic chemical reactions and Volterra extended it to explain the fish catches in the Adriatic 
Sea. Since the earliest developments of the basic Lotka-Volterra system (LV system)5–10, many mathematical var-
iations of predator-prey systems have been developed to explain unexpected changes and temporal fluctuations 
in the dynamics of animal populations. This system is considered to explain the dynamics of natural populations 
of snowshoe hare (Lepus americanus, the prey) and Canadian lynx (Lynx canadensis, the predator) that were 
estimated from the yearly changes in the collected number of furs11. In addition, unlike in natural communities, it 
has been shown that long-term coexistence of predators and prey is possible in a laboratory using predatory and 
prey mites12. Thus, the LV system has become the classical mathematical model for explaining the predator-prey 
interactions in natural communities5–11.

Mathematical properties of the classical LV system show either cyclic oscillation or divergent extinction of 
one species13. In any closed LV system, it is also important to note that the predators will eventually die out 
with the extinction of the preys. This means that the persistent predator-prey systems, without additional 

1Department of Mathematical and Systems Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 
432-8561, Japan. 2Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, 
Hamamatsu, 432-8561, Japan. 3Mathematics Division, Institute of Mathematical Sciences and Physics, University 
of the Philippines Los Baños, College, Laguna, 4031, Philippines. 4Graduate School of Integrated Science and 
Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan. 5Department of General 
Systems Studies, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan. 6Marine Biosystems 
Research Center, Chiba University, Uchiura, Kamogawa, Chiba, 299-5502, Japan. 7Department of Biological Sciences, 
Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan. 
8Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan. 
9Department of Environmental and Forest Biology, State University of New York College of Environmental Science and 
Forestry, Syracuse, NY, 13210, USA. Takeru Tahara and Maica Krizna Areja Gavina contributed equally to this work. 
Correspondence and requests for materials should be addressed to J.Y. (email: yoshimura.jin@shizuoka.ac.jp)

Received: 4 October 2017

Accepted: 20 April 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-4826-1966
http://orcid.org/0000-0001-5219-6218
http://orcid.org/0000-0001-7518-5837
mailto:yoshimura.jin@shizuoka.ac.jp


www.nature.com/scientificreports/

2ScIentIfIc REPOrts |  (2018) 8:7029  | DOI:10.1038/s41598-018-25436-2

stabilizing mechanisms, should exhibit cyclic oscillations. However, stable coexistence in wild predator-prey 
systems has been observed10. Nonetheless, the case of the lynx-hare interaction8 seems extremely unique nat-
ural predator-prey system. We often find stable coexistence of both prey and predator populations in the wild 
such as that of spider wasps (Pompilidae family, the predator) and spiders (the prey)10. These observations imply 
that there should be an additional stabilizing mechanism in natural predator-prey systems. For example, strong 
intraspecific competition in both predator and prey yields stable coexistence14. However, we have no evidence of 
such strong intraspecific competition in the wild. Thus, these observations of the most natural systems contradict 
with the original solution of the classical LV system.

In this paper, we explore the convergent solutions in predator-prey systems by modifying the classical LV sys-
tem. Because most predator-prey systems in the wild are not isolated, we consider the effects of fixed (or random) 
number of immigrants at regular intervals on the predator and prey populations. By adding few immigrants, the 
LV systems with type I, II, and III functional responses exhibit asymptotic stability. Similarly, adding few immi-
grants to the predator population stabilizes the modified LV systems where both predator and prey coexist. In 
the latter case, the LV system may be interpreted as a host-parasite system, because the parasites are more likely 
to become immigrants. We then briefly discuss the implications of the modified LV system on the predator-prey 
systems found in the wild.

Models and Results
Here, we consider the modified Lotka-Volterra systems with few predator and prey immigrants. Specifically, we 
analyze the asymptotic stability of the predator-prey systems by adding an immigration factor C(x) into the prey 
population or adding an immigration factor D(y) into the predator population in the classical LV system. The 
modified Lotka-Volterra systems with few immigrants is as follows:
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where x represents the prey population and y represents the predator population. The immigration function can 
be modeled into two ways:
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where d represents the number of predator immigrants, d/y represents the proportion of predator immigrants. 
We used the following assumptions for equations (2) and (3): x ≠ 0 (or y ≠ 0) when C(x) = c/x (or D(y) = d/y). 
In this model, the parameters r, b represent the reproduction rate of prey and the birth rate of predator for each 
prey captured, respectively. Parameters a and m represent the rate at which predators consume the prey and the 
mortality rate of predators, respectively.

Here, we consider the following four cases of immigration factor to investigate its effect to the long-term pop-
ulation dynamics of the predator-prey system (1):

(Case A1) prey immigrants (i.e., C(x) = c, D(y) = 0)
(Case B1) predator immigrants (i.e., C(x) = 0, D(y) = d)
(Case C1) few prey immigrants (i.e., C(x) = c/x, D(y) = 0)
(Case D1) few predator immigrants (i.e., C(x) = 0, D(y) = d/y)

We also consider the following four cases of the migration factor:

(Case A2) prey migrants (i.e., C(x) = −c, D(y) = 0)
(Case B2) predator migrants (i.e., C(x) = 0, D(y) = −d)
(Case C2) few prey migrants (i.e., C(x) = −c/x, D(y) = 0)
(Case D2) few predator migrants (i.e., C(x) = 0, D(y) = −d/y).

Analytically, we investigate the asymptotic stability of a steady state solution for the eight cases of the modified 
Lotka-Volterra systems with few immigrants (or migrants) into prey or predator population. We found that the 
immigration into the predator population has the same stabilization effect as that of the prey (refer to the support-
ing text in the Supplementary Information for the analytical solution). Moreover, we found that the immigration 
of both prey and predator (i.e., C(x) = c, D(y) = d) also stabilizes LV system (1). However, migration destabilizes 
the system for both populations (refer to the supporting text in the Supplementary Information for the analytical 
solution). The stability analysis of the steady-state solution of the modified LV system with small immigration is 
shown below:
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Case A1: Asymptotic stability of the LV system with few prey immigrants (refer to the supporting text in the 
Supplementary Information for the analytical solution). Here we investigate the stability of a steady state solution 
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Case B1: Asymptotic stability of the LV system with few predator immigrants (refer to the supporting text in 
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Case C1: Asymptotic stability of the LV system with few constant prey immigrants (refer to the supporting text 
in the Supplementary Information for the analytical solution). Here we investigate the stability of a steady state 
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Case D1: Asymptotic stability of the LV system (1) with few constant predator immigrants (refer to the sup-

porting text in the Supplementary Information for the analytical solution). Here we investigate the stability of a 
steady state solution ⁎ ⁎ ( )x y( , ) ,mr a d
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2= −  where mr2 > a2d of the modified LV system with few constant 
predator immigrants (i.e., C(x) = 0, D(y) = d/y). We have shown that the coexistence equilibrium 
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Using computer simulation, we examine the dynamics in the LV system (1) which can be seen in Figs 1–2. We 
illustrate sample trajectories of LV system (1) where C(x) = c, D(y) = 0 (Figs 1a and 2a), C(x) = c/x, D(y) = 0 (Figs 1b 
and 2b), C(x) = 0, D(y) = d (Figs 1c and 2c) and C(x) = 0, D(y) = d/y (Figs 1d and 2d). The resulting dynamics of 

Figure 1.  Phase space and long-term population dynamics of the predator-prey population described by LV 
system (1) with type I functional response and with/without small immigrants. Four cases of the modified LV 
system (1) with small immigration is compared to the classical LV system. Parameter values: Initial x = 5, Initial 
y = 5, r = 0.1, a = 0.1, b = 0.3, m = 0.2, c = 0.01, d = 0.01.
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the LV systems with the inclusion of a fixed number of immigrants on the predator or prey populations stabilizes 
the system (Fig. 1, c,d = 0.01), compared to the result of the classical LV systems which exhibits periodic oscillation 
(Fig. 1e, c,d = 0). However, the resulting dynamics with the inclusion of a positive migration factor destabilizes the 
system, i.e., no positive stable equilibria (see Supplementary Text for the stability analysis). In addition, LV system (1) 
with random number of immigration at regular interval will also exhibit convergence (Fig. 2, c,d = random(0.001, 
1)) while few immigrants will lead to asymptotic stability of the system (Fig. 1). Introducing a random number of 
immigrants in the LV system will only reduce the magnitude of oscillation but will still stabilize the system (Fig. 2). 
Note that also random immigration has the weakest effect on the population dynamics of the predator-prey model 
(Fig. 2). Moreover, as long as c and d are positive, their magnitudes do not affect the outcome.

Figure 2.  Modified LV model with random number of immigration at regular interval. Four cases of the 
modified LV system (1) with random number of immigration. Parameter values: Initial x = 5, Initial y = 5, 
r = 0.2, a = 0.1, b = 0.3, m = 0.2, c = random(0.001, 1), d = random(0.001, 1). Results are shown for 1,500 steps, 
with an average of 15 runs. Random (i, j) means uniform random number between i and j.
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Table 1.  Nature of equilibria of Lotka-Volterra system (4) (refer to Supplementary information for the analytical 
solution). β = −rb hmr( ). *Note that the characteristic equation is given by λ − λ + =J JTr( ) Det( ) 02 . If 

<JTr( ) 0 and >JDet( ) 0 where J is the Jacobian matrix, the steady state is locally asymptotically stable.
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We also used the modified LV model with non-linear functional response and small immigrants. We change 
the predation term using a general (non-linear) functional response. The modified LV model is shown on the 
following equations6,7,10:
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where h, α are the functional response coefficient which involve handling time etc. and Hill exponent, respec-
tively. The values for C(x) and D(y) are similar to equations (2) and (3). Note that when h = 0 and α = 0 then the 
interaction term is referred to as type I functional response which is equivalent to LV system (1). When h ≠ 0 and 
α = 0 then the interaction term is referred to as type II functional response. Moreover, when h ≠ 0 and α > 0 then 
the interaction term is referred to as type III functional response. To be more specific we use α = 1 for the type 
III functional response.

We summarize the nature of equilibria of the modified LV system (4) in Table 1 (refer to the Supplementary 
Information for the analytical solution). Satisfying the condition to become locally asymptotically stable (refer 
to Supplementary Tables S2–S5), we show illustrations for the LV system (4) with type II and III functional 
responses and small immigration (Figs 3–4). The resulting dynamics of the LV systems (4) with type II func-
tional responses and a fixed number of immigrants on the predator or prey population stabilizes the system 
(Fig. 3a–d, c,d = 0.01), compared to the result of the LV systems (4) without immigrants which destabilizes the 
system (Fig. 3e, c,d = 0, refer to Supplementary Text in the Supplementary Information for the stability analysis). 
Moreover, the resulting dynamics of the LV systems (4) with type III functional responses and with/without small 
immigrants on the predator or prey population stabilizes the system (Fig. 4).

Discussions
Population persistence and extinction are the extremes of population dynamics5. The classical LV systems show 
that periodic orbital relationship between the populations of prey and predator cannot be eliminated over time. 
Note that population of the predators will collapse if the prey becomes extinct. However, this does not imply that 

Figure 3.  Phase space and long-term population dynamics of the predator-prey population described by LV 
system (4) with type II functional response and with/without small immigrants. Four cases of the modified LV 
system (4) with small immigration is compared to LV system (4) without small immigrants. Parameter values: 
Initial x = 5, Initial y = 5, r = 0.1, a = 0.1, b = 0.3, m = 0.2, c = 0.01, d = 0.01 and h = 0.1.



www.nature.com/scientificreports/

6ScIentIfIc REPOrts |  (2018) 8:7029  | DOI:10.1038/s41598-018-25436-2

the prey will also die out if the population of the predators collapses. Instead, prey population will continuously 
persist over time and will most likely proliferate. The only other solution of the LV systems is cyclic oscillation and 
we cannot find other stable convergence in the classical LV systems. Nonetheless, the stable coexistence of both 
the prey and predator populations can often be found in predator-prey systems in the wild10,15–17. The current 
findings show that very few migrants either in prey or predator yield asymptotic stability in the LV systems. Some 
natural and persistent prey-predator systems may be attributed to a very small number of immigrants in the LV 
systems regardless of prey or predator.

The biological meaning of immigrants is different when we add c (or d), and when c/x (or d/y) is added. In 
the former case, a small number of immigrants is added constantly to the population in every generation, which 
can happen if the habitat is attractive to the immigrants based on habitat quality. In the latter case, the number of 
immigrants changes depending on the current population. Fewer individuals immigrate if the current population 
is already high, which is a realistic scenario since carrying capacity can limit immigration. Their biological inter-
pretations are thus different, but both cases are qualitatively the same with both resulting to asymptotic stability 
(Eqs 1–4).

Very small immigration into either prey or predator population acts as a stabilizing factor to the LV systems 
(Figs 1–4). Adding positive immigration will average out all fluctuations in both the population of prey and 
predators. Note also from the results that a positive immigration factor is enough to change the quality of the 
population dynamics of the predator-prey model. This paper may imply that cyclic populations can be stabilized 
by adding few immigrations into them. In most natural populations, there are at least a few immigrants over time. 
These small numbers of immigrating species are sufficient for asymptotic stability in the prey-predator systems. 
This may explain some observed stability in prey-predator systems found in nature.
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