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Abstract The Inbred Long- and Short-Sleep (ILS, ISS)

mouse lines were selected for differences in acute ethanol

sensitivity using the loss of righting response (LORR) as

the selection trait. The lines show an over tenfold differ-

ence in LORR and, along with a recombinant inbred panel

derived from them (the LXS), have been widely used to

dissect the genetic underpinnings of acute ethanol sensi-

tivity. Here we have sequenced the genomes of the ILS and

ISS to investigate the DNA variants that contribute to their

sensitivity difference. We identified *2.7 million high-

confidence SNPs and small indels and *7000 structural

variants between the lines; variants were found to occur in

6382 annotated genes. Using a hidden Markov model, we

were able to reconstruct the genome-wide ancestry patterns

of the eight inbred progenitor strains from which the ILS

and ISS were derived, and found that quantitative trait loci

that have been mapped for LORR were slightly enriched

for DNA variants. Finally, by mapping and quantifying

RNA-seq reads from the ILS and ISS to their strain-specific

genomes rather than to the reference genome, we found a

substantial improvement in a differential expression anal-

ysis between the lines. This work will help in identifying

and characterizing the DNA sequence variants that con-

tribute to the difference in ethanol sensitivity between the

ILS and ISS and will also aid in accurate quantification of

RNA-seq data generated from the LXS RIs.

Introduction

McClearn (1962) observed that inbred laboratory mouse

strains differed substantially in the duration of the loss of

righting response, or ‘‘sleep time,’’ following an acute high

dose of alcohol (ethanol). He also noted that sleep time

showed an inverse correlation with a strain’s preference for

drinking an alcohol solution over water, which is consistent

with the well-supported observation in humans that indi-

viduals who are less sensitive to the sedative effects of

alcohol are at greater risk for developing alcohol-related

problems (Schuckit 1994), although it has been argued that

increased sensitivity to alcohol’s stimulatory effects is also

a contributing factor (King et al. 2014). It was subsequently

found that the difference in sleep time was due primarily to

brain sensitivity and not to differences in alcohol metabo-

lism (Kakihana et al. 1966). Since McClearn’s original

observation, the sleep time assay has become perhaps the

most widely used test of acute alcohol sensitivity in model

organisms, yet its genetic underpinnings remain elusive.
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McClearn and Kakihana (1981) undertook a bidirec-

tional selection experiment to create lines of mice that

would differ in their sleep time postulating that they would

be useful for investigating the genetics of this response and

ultimately learn how acute sensitivity relates to drinking

behavior. The founder population was a ‘‘heterogeneous

stock’’ (HS) which was derived from eight inbred strains

and maintained through restricted random mating

(McClearn et al. 1970). Sleep time was measured by

injecting the mice with 3.3 g/kg alcohol and measuring the

time from the loss to the regain of the righting response.

The dose was increased several times during selection

because the Short-Sleep (SS) line failed to respond as it

accumulated low-sensitivity alleles. After five generations,

the difference in sleep time between the Long-Sleep (LS)

and SS lines was approximately threefold and over tenfold

difference after 18 generations. Nearly 40 years later, the

ancestors of those lines, now inbred and referred to as the

ILS and ISS, still maintain their extreme difference in acute

alcohol sensitivity with the ISS requiring roughly twice the

amount of alcohol than the ILS for the two strains to

achieve similar sleep times (Radcliffe et al. 2006).

Recognizing that a single pair of selected lines had limited

utility for genetic studies, a recombinant inbred (RI) panel

was derived from the outbred LS and SS (DeFries et al.

1989); this panel no longer exists. A second RI panel, known

as the LXS, was created from the ILS and ISS and currently

consists of over 60 strains (Williams et al. 2004). The LXS

panelwas created frompairs of ILS/ISS-derived F2offspring

that were bred through brother–sister matings for more than

20 generations resulting in a panel of inbred strains, each of

which contains a random assortment of alleles from the ILS

and ISS (Williams et al., 2004). RI panels have been

invaluable for a variety of complex traits analysis approa-

ches, including genetic correlation analysis and quantitative

trait locus (QTL) mapping (Gora-Maslak et al. 1991). More

recently, both of these approaches have been combined with

massively parallel, high-throughput gene expression analy-

sis in what has been referred to as ‘‘genetical genomics’’

which aids in the identification of specific genes that may

contribute to genetic variation for a trait of interest (Chesler

et al. 2005; Jansen and Nap 2001).

We found that the sleep time difference in the ILS and

ISS appeared to be resulting from a substantial difference

in acute functional tolerance (AFT), at least in part (Rad-

cliffe et al. 2006). AFT, first noted by Mellanby (1919), is

the development of alcohol tolerance within a drinking

session and it is thought to be a critical factor in the rela-

tionship between acute sensitivity and alcoholism risk

noted above, although this relationship has not been firmly

established (Bujarski et al. 2015; Fillmore and Weafer

2012; King et al. 2014; Newlin and Thomson 1990). More

recently, with the use of the LXS RI panel, we showed a

highly significant genetic correlation between AFT and

drinking behavior and also mapped a significant QTL for

AFT on distal chromosome 4 where others have also

mapped QTLs for drinking behavior (Belknap and Atkins

2001; Bennett et al. 2015; Radcliffe et al. 2013; Saba et al.

2011). In addition to our AFT mapping study, sleep time

has been mapped in the LXS (Bennett et al. 2006) and they

also have been used for genetic analysis of a wide variety

of alcohol and non-alcohol-related traits such as low-dose

alcohol activation (Downing et al. 2006), alcohol drinking

(Saba et al. 2011), hearing loss (Noben-Trauth et al. 2010),

dietary restriction-mediated lifespan (Rikke et al. 2010),

and body weight (Bennett et al. 2005).

The QTL approach has not been as fruitful as first envi-

sioned, i.e., very few ‘‘QT genes’’ have been identified

despite the many thousands of QTLs that have been mapped

(Flint et al. 2005). However, technological and analytical

advances, including high-throughput gene expression anal-

ysis and ‘‘Next-Generation’’ deep sequencing technologies

(NextGen), are providing an unprecedented opportunity to

examine the molecular basis of QTLs (Harrison 2012).

Herewe report on the genome resequencing of the ILS and

ISSmouse strains using Illumina short-read deep sequencing

technology. Our strategy used a combination of three

libraries and paired-end sequencing to generate a catalog of

variants between the two strains. We have also been able to

delineate the ancestral origin of the strains using a hidden

Markov model approach with sequence data from six of the

eight strains that went into the ILS and ISS (Keane et al.

2011); one of the original HS progenitor strains (Is/Bi) has

long been lost and neither its sequence nor DNA is available

and the original RII strain is no longer available, though The

Jackson Laboratory carries several sub-strains that were

derived from the RIII. We have examined the variants that

fall into QTLs that have been mapped for the original

selection trait and other similar traits (e.g., AFT). Finally, in

conjunction with our quantitative RNA sequencing (RNA-

seq) of the brains of the ILS and ISS strains, we demonstrate

the importance of aligning RNA-seq reads to the genome

from which they were generated.

Materials and methods

Animals

The original Long- and Short-Sleep lines were selected

based on the duration of the loss of the righting response

from the first generation of a ‘‘heterogeneous stock’’ (HS)

which was created through a systematic intercrossing

scheme of 8 inbred laboratory mouse strains: A, AK,

BALB/c, C3H, C57BL, DBA/2, Is/Bi, and RIII (McClearn

and Kakihana 1981; McClearn et al. 1970; the
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nomenclature for the strain names used here and through-

out the rest of this paper is that used by the authors of these

publications). The intercrosses were designed so as to

preserve an equal frequency of the Y chromosome from

each of the progenitor strains. The HS was maintained

through restricted random mating.

The selected LS and SS lines were inbred in the early

1990s to create the Inbred Long- and Short-Sleep strains

(ILS, ISS; Markel et al. 1997). ILS and ISS breeders were

obtained from The Jackson Laboratory (Bar Harbor, ME)

and bred in-house in the UCAMC vivarium, a pathogen-

free facility. Offspring were weaned and sex-separated at

21 days of age. All experiments were conducted with

males that were group-housed in standard housing con-

taining 2–5 mice per cage. They were maintained in a

constant temperature (22–23 �C), humidity (20–24 %), and

light (14L/10D) environment. The mice were between 58

and 91 days of age (average: 74.9 ± 2.7) at the time of

their use. The mice used for the RNA-seq experiment were

part of a larger ongoing experiment with the ILS, ISS, and

LXS RI strains examining the effects of genetics and acute

alcohol on the brain transcriptome. Here we report only on

control ILS and ISS mice which were sacrificed 8 h after a

single intraperitoneal injection of normal saline (0.01 ml/

g); mice used for genome sequencing were completely

naı̈ve. The procedures described in this report have been

established to ensure the absolute highest level of humane

care and use of the animals, and have been reviewed and

approved by the UCAMC IACUC.

Full genome sequencing and analysis

An overview of the ILS and ISS sequencing strategy is

shown in Supplemental Figure S-1. DNA was extracted

from the liver of a single male ILS and single male ISS

mouse for full genome sequencing. A standard phenol/

chloroform/isoamyl (PCI) procedure was used to isolate

high-molecular weight DNA. Briefly, liver was dissected

and flash frozen in liquid nitrogen. Following grinding by

hand and tissue digestion (proteinase K), the sample was

added to PCI, mixed, and centrifuged. The aqueous phase

was removed and the DNA was precipitated with 7.5 M

ammonium acetate. A DNA pellet was formed by cen-

trifugation and then washed with 70 % ethanol. The pellet

was dried and resuspended in 10 mM Tris (pH 7.5). RNA

was removed by digestion with RNase A, followed by PCI

extraction and resuspension in Tris as before.

Three short-read sequencing libraries were prepared

from the DNA: a 2 9 100 paired-end library (*300 bp

insert) and two 2 9 100 mate-pair libraries (*4 kb

and *10 kb insert sizes). The paired-end library was

prepared using the Illumina TruSEQ DNA Library Sample

Preparation Kit and the mate-pair libraries were prepared

using the Illumina Nextera Mate Pair Sample Prep Kit; the

mate-pair libraries were bar-coded. The libraries were

constructed as per the manufacturer’s instructions.

Sequencing was performed by the University of Colorado

Denver Genomics and Microarray Core on an Illumina

HiSeq 2000 Sequencing System, as per the manufacturer’s

instructions. Sequencing utilized four flow-cell lanes per

strain for the paired-end library and two flow-cell lanes for

all four of the mate-pair libraries. The total number of reads

for each library can be seen in Supplemental Table S-1.

The raw reads from the paired-end short insert library

were mapped to the reference genome GRCm38/mm10

(mm10) using the BWA aligner (v. 0.5.9) (Li and Durbin

2009). A paired-end mapping strategy with default

parameters was utilized, setting the maximum insert size to

1000 (expected insert size 300). After mapping, the reads

were sorted and converted into binary alignment format

(BAM) via Samtools (v. 0.1.18; Li et al. 2009). The sorted

binary alignments then underwent post-processing to

remove duplicates via Picard’s MarkDuplicates (v. 1.72;

http://broadinstitute.github.io/picard) and local realignment

around indels using the Genome Analysis Toolkit (GATK;

v. 2.4-9; McKenna et al. 2010).

For the large insert mate-pair libraries, the adapter was

clipped from raw reads using FastX (v0.0.13.2; hannon-

lab.cshl.edu/fastx_toolkit/) and reads shorter than 16 base

pairs were removed. The remaining reads were reverse

complemented to obtain the forward–reverse orientation

required for most downstream analysis programs. Reads

were then mapped to mm10 via BWA (v0.5.9) using

appropriate insert size settings (10 kb library max size—

20,000; 4 kb library max size—8000).

ILS/ISS variant analysis

The short insert DNA seq libraries were used to call single-

nucleotide polymorphisms (SNPs) and small insertions and

deletions (indels) less than 50 base pairs with respect to

mm10 using the GATK Unified Genotyper with dbSNP

build 137. The initial SNP and indel call set consisted of

9,237,224 combined variants from the ILS and ISS. To

minimize false positives, this set was filtered using the

GATK Variant Quality Score Recalibrator (VQSR) and

apparent heterozygous positions were removed based on

the GATK Allelic Depth filter. Initially, a coverage depth

of five reads and a minimum 90 % of reads over any called

variant locus were required to support the variant allele.

Variants were classified in each strain as either common

(same variant in both strains, but different from mm10) or

strain-distinct (different between the ILS and ISS). For

common SNPs, a minimum of five reads were required in

each strain with a minimum of 90 % of the reads in support

of the variant. Candidate strain-distinct variants were cross-
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checked with the unfiltered raw variant set from the other

strain (the strain without the candidate strain-distinct

variant). If the read coverage in the other strain had a

minimum of three reads and at least 50 % of these reads

had the same sequence as the candidate strain-distinct

variant, we no longer consider this variant as strain-distinct

or common. Variants overlapping or within plus or minus

five base pairs of a repeat region of mm10 (lowercase in the

UCSC mm10 fasta file) were removed. The high-quality

variants were then compared to ENSEMBL reference

annotations to identify those that occurred within genes.

Individual ILS and ISS genome and gene annotation files

were generated using Seqnature (v 1.0; Munger et al. 2014)

incorporating the most high-confidence set of SNPs and

small indels for each strain into the mm10 reference

(common and strain-distinct).

Large structural variations (SVs;[50 bp) were called

using the SVMerge pipeline (v1.2r37; Wong et al. 2010)

which integrates results from multiple SV callers: Break-

DancerMax (v1.1.2; Chen et al. 2009) was run indepen-

dently on each DNA sequencing library (10 kb, 4 kb,

300 bp) to detect insertions, deletions, inversions, and

translocations; Pindel (v0.2.3; Ye et al. 2009) was run

utilizing all three libraries (10 kb, 4 kb, 300 bp) in a single

run to detect insertions, deletions, tandem duplications, and

inversions; SECluster, a component of the SVMerge

package (v1.2r37; Wong et al. 2010), utilizes paired-end

reads where only one read in the pair maps to detect

potential large insertions; and the short insert paired-end

library was used with CNVnator (v0.3; Abyzov et al. 2011)

to detect potential copy number gain and losses. After all

SV detection programs were run independently, the SV

calls were then filtered and merged across redundant calls

(i.e., overlapping) using the SVMerge pipeline (v1.2r37;

Wong et al. 2010) to produce a final set of SVs which were

then subjected to de novo assembly using Velvet (v1.2.07;

Zerbino and Birney 2008). Assembled contigs were aligned

back to the reference genome using exonerate (v2.2.0;

Slater and Birney 2005). SV calls overlapping telomeric

regions were excluded from further consideration. Strain-

specific SV events were determined as described in Sup-

plemental Methods.

Ancestor inference

A hidden Markov model (HMM) approach was used to

infer the likely ancestral origin of each segment of the ILS

and ISS genomes using sequence data from 6 of the 8

original ancestor strains: A, AK, BALB/c, C3H, C57BL,

and DBA/2 (Keane et al. 2011); the Is/Bi and RIII have not

been sequenced and DNA from the Is/Bi is not available.

Our HMM consisted of six states: one state for each

sequenced ancestor and one (Unk/C57) that captures both

the ‘‘unknown’’ (unsequenced) ancestors and C57BL.

Because C57BL is assumed to be genotypically nearly

identical to the mm10 reference genome (C57BL/6 J), it

was underrepresented in the SNP sets and therefore lacked

sufficient support to be a distinct state.

The fully probabilistic treatment of the HMM allows the

model to capture key features of the strain derivation.

Conceptually, emissions capture not only distinct ancestor

biases but also sequencing error and de novo mutations.

Transitions between the states correspond to recombination

events in the breeding history of ILS and ISS strains.

Therefore, fine-scale mouse recombination rates (Brun-

schwig et al. 2012) were incorporated as positional priors

to these transitions. Optimal emission and transition rates

were found using an Expectation-Maximization (EM)

algorithm (Dempster et al. 1977) with the previously

sequenced ancestor strain SNPs and the ILS or ISS strain-

distinct SNPs as input. At each EM iteration, regions with

identical SNP coverage across multiple ancestor strains are

re-labeled as identical by descent (IBD) for those ancestors.

Upon convergence, the final maximum-likelihood path

yielded the haploblock ancestral origins of the highest

confidence. The model accuracy was assessed by consis-

tency of indel variations between the ILS/ISS strain and the

inferred ancestral strain. A manuscript describing the

model is currently being prepared.

Quantitative RNA sequencing and analysis

Mice were administered normal saline (0.01 ml/g) and

sacrificed 8 h later by CO2 inhalation followed by decap-

itation. The brain was removed and further dissected into

cerebellum and whole brain (minus the olfactory bulbs),

and stored in RNALater at -20�C until RNA extraction.

The RNA-seq studies reported here only used the whole

brain sample. Total RNA was extracted using RNeasy Mini

Kit (Qiagen, Valencia, CA), and quantity and quality were

determined using a NanoDropTM spectrophotometer

(Thermo Fisher Scientific, Wilmington, DE) and Agilent

2100 BioAnalyzerTM (Agilent Technologies, Santa Clara,

CA). Ratios of absorbance at 260 and 280 nm were shown

to be excellent ([1.8), and RNA Integrity scores were also

shown to be excellent ([8.0). Total RNA was stored at

-80�C until library preparation.

Total RNA was isolated from nine mice per strain and

an equal amount of RNA from three mice of the same

strain was pooled for each library; thus, three libraries per

strain were prepared. Pooling in this manner reduces

within-strain variance which produces an effective increase

in statistical power without increasing the number of

libraries (Kendziorski et al. 2005; Kendziorski and Wang

2006). Samples were enriched for poly-A RNA using the

Dynabeads mRNA Purification kit (Invitrogen) as directed
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by the manufacturer. Paired-end (2 9 100, expected size of

300 bp), strand-specific, cluster-ready libraries were pre-

pared from the poly-A-enriched RNA using the ScriptSeq

RNA-Seq Library Preparation Kit v2 (Illumina), following

the manufacturer’s instructions. Sequencing was performed

by the University of Colorado Denver Genomics and

Microarray Core on an Illumina HiSeq 2000 Sequencing

System as per the manufacturer’s instructions with 6 bar-

coded libraries pooled per flow-cell lane. The total number

of reads for each library can be seen in Supplementary

Table S-2. We note that the ISS libraries produced

approximately twice as many reads as the ILS. We believe

that this was unlikely to be a biological effect and the

various procedures were scheduled in such a way as to

essentially eliminate any kind of strain-specific batch

effects, i.e., each of the dissections and RNA isolations

were conducted on completely different days, while the

library preps and sequencing were conducted on four dif-

ferent occasions with an ILS and an ISS sample paired on

two of the occasions and the remaining two ILS and ISS

libraries were prepped and sequenced on completely dif-

ferent days with other samples not related to this study. All

of the dissections, RNA isolations, and library preps were

performed using the same protocols and reagents, and by

the same person. In addition, there did not appear to be any

difference with regard to mapping parameters (see

Results). We can therefore only conclude that the differ-

ence in total reads was a random effect.

RNA sequencing data were mapped back to both the

reference mm10 genome and the strain-specific genomes

(ILS and ISS) using TopHat2 (v2.06; Kim et al. 2013)

using their respective transcriptome annotation files.

TopHat2 was run using the b2-very-sensitive option,

allowing for microexons but not novel junctions. A custom

script was used to compare read mapping locations in

mm10 versus the strain-specific genome.

Whole-gene quantification was determined using HTSeq

(v0.6.1; Anders et al. 2015) which provides raw read

counts over an annotated gene set. Only uniquely mapping

reads were used for quantification. Raw read counts were

then used as DESeq input for differential gene expression

analysis (v1.10.1; Anders and Huber 2010). The standard

DESeq workflow was followed. Genes having an adjusted

p value (Benjamini and Hochberg 1995) of 0.1 or less were

considered significantly differentially expressed.

In order to quantify the impact of mapping to the strain-

specific genomes versus to the reference genome (mm10),

custom scripts were used to compare the whole-gene count

files (from HTSeq) on a gene-by-gene basis to investigate

the change in read counts when mapping between genome

versions. As coordinates may shift in strain-specific gen-

omes, comparisons were based on DESeq identifiers for

whole genes and DEXSeq identifiers for exonic regions.

Exon quantification was performed using DEXSeq (v1.4.0;

Anders et al. 2012) using the standard workflow.

Results

We obtained over one billion raw reads for each of the ILS

and ISS genomes, and approximately 81 % of the reads

remained in each of the strains after filtering for low-

quality and duplicate reads (Supplemental Tables S-1 and

S-3). There was no significant difference in mapping

quality between the different libraries, as suggested by the

finding that approximately 95 % of the filtered reads

mapped to mm10 (Supplemental Table S-3). This resulted

in sequencing of the ILS and ISS genomes to 28.6-fold and

30.7-fold coverage, respectively. Consistent with the ILS

and ISS strains being highly inbred, the majority of

sequenced SNPs and small indels were homozygous

(99.89 % in ISS and 99.86 % in ILS). The small amount of

heterozygosity likely primarily arises from collapsing reads

from duplicated regions within the genome, as heterozy-

gous variants tend to cluster in repetitive regions of the

genome. It is also possible that a small number arise from

incomplete fixation during breeding or recent de novo

mutations.

Over 4 9 106 high-quality common and strain-specific

SNPs and small indels (\50 bp) were identified using just

the short insert library (Table 1; see link to file for the

complete list; note that a small number of these variants

have been published previously in Bennett et al. 2015). We

Table 1 Summary of genome-wide variants identified in the ILS and

ISS using the short insert paired-end library

Variant typea ILSb ISSc Commond

Total 1,582,616 1,114,887 1,434,163

SNPs 1,346,137 943,224 1,226,435

Deletions 118,831 87,076 107,161

Insertions 117,648 84,587 100,567

Coding total 15,472 10,732 15,219

Synonymous 9833 7140 9563

Non-synonymous 5391 3421 5451

Coding deletions 57 39 53

Coding insertions 47 39 44

Coding frameshift 108 74 87

Coding stop 36 19 21

dbSNP 1,372,946 949,884 1,281,181

Private (not in dbSNP) 209,670 165,003 152,982

a The variant type is in comparison to the reference
b Different than both ISS and reference
c Different than both ILS and reference
d Same in ILS and ISS, different than reference
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assessed the quality of the SNPs by comparison to a set of

43,870 informative ILS/ISS SNPs generated by Churchill

and colleagues at The Jackson Laboratory using the

Affymetrix Mouse Diversity Genotyping Array (see Saba

et al. 2011). In total, 99.7 % of the microarray-identified

SNPs were observed within our set of unfiltered SNPs; the

small number that did not confirm were due to a variety of

issues (see Supplemental Table S-4). When comparing the

array markers to our final filtered SNPs, we found an

overlap of 96.8 % suggesting that our final filtered variant

set is quite stringent.

We also compared, by manual inspection, our unfiltered

variants to a set of 7438 strain-specific variants identified

by Dumas et al. (2014) through exome sequencing. Most of

these SNPs were also within our unfiltered list (98 % in

ILS and 99 % in ISS). The missed SNPs either overlapped

repeat regions or had no evidence in our whole-genome

sequencing. Frameshifting indels were confirmed at a

lower efficiency (58 % ILS; 76 % ISS), likely reflecting

the relative difficulty in detecting these events with either

technology. Interestingly, many of the unconfirmed exome

sequencing variants appear heterozygous in our whole-

genome sequencing data. These heterozygous variants

could be indicative of potential CNVs. Indeed, of the 60

heterozygous positions, 12 overlap with a called CNV from

the SVMerge pipeline.

Our filtered, highest confidence set of variants included

a total of 2,697,503 strain-distinct SNPs and small indels,

which are distributed across the genome (Table 1; see

Supplemental Figure S-2). Approximately 87 and 85 % of

the strain-specific SNPs and indels were found in dbSNP

(build 37) in the ILS and ISS, respectively, suggesting that

the remainder have not previously been detected in any

other sequenced mouse strain. We observe that the strain-

specific variants (SNPs only) have a Ti/Tv ratio of 1.5 and

1.7 for ILS and ISS, respectively. These strain-distinct

variations impact 5911 annotated genes, including 236 that

result in disruption of an open reading frame through fra-

meshifts or the introduction of a stop codon (Table 1;

Fig. 1a).

Similar to our SNP analysis, we sought to identify the

highest confidence set of strain-distinguishing SVs, i.e.,

those that differ between the ILS and ISS. To this end, we

developed a novel method for scoring and selecting strain-

distinct events. SVs identified in either strain were scored

for reads supporting the event in both strain backgrounds.

We then identified the score cutoff that optimizes the false

discovery rate of strain-unique events (Supplemental Fig-

ure S-3 and Table S-5; see Supplemental Methods for

complete details), resulting in 7153 strain-specific events

(Table 2; Fig. 1b, c; Supplemental Figure S-2). By manual

inspection, we found good correspondence to copy number

variants (CNVs) that were previously identified by

arrayCGH (Dumas et al. 2014). A third of the previously

called CNVs were confirmed (same call within ± 600 bp

of breakpoints) using our pipeline. In another third of

cases, our pipeline identified some structural variation

within the region (±600 bp of breakpoints) though the

label of the aberration differed. For the remaining third, we

found no evidence of the CNVs in the sequencing data.

The inferred ancestry for the whole genome as deter-

mined by our HMM is shown in Fig. 2. On a per-chro-

mosome basis, we observed distinct patterns in the inferred

ancestor origin. In ILS and ISS, the three strains repre-

sented by Unk/C57 make up approximately 2/5 and 1/2 of

the total distribution, respectively (Supplemental Fig-

ure S-4). Aside from Unk/C57, we found that each other

ancestor contributed approximately evenly to both ISS and

ILS genome wide. We note that chromosome X for both

strains is classified almost completely as Unk/C57.

Approximately 23 % of the SNPs found in each of the X

chromosomes could, in fact, be assigned to one of the

ancestral strains, but these SNPs were distributed in a way

that prevented the HMM from detecting ancestral blocks of

any significant size. Also, it is possible that the X chro-

mosome was fixed either during a severe reduction in

fertility and thus in breeding families that occurred early on

during the selection of the LS and SS (McClearn and

Kakihana 1981) or during the inbreeding of the ILS and

ISS. We have full confidence that our sequencing analysis

and the HMM were correct; however, the fact that such a

high proportion of chromosome X was Unk/C57 for both

strains is difficult to explain.

Quantitative trait loci (QTLs) have been mapped for a

variety of traits in the LXS and other segregating popula-

tions derived from the ILS and ISS. Here we restrict our

analysis to those QTLs mapped for sleep time, the trait on

which the ILS and ISS were selected, and other closely

related traits such as acute and rapid tolerance for sleep

time (Supplemental Table S-6). We found that QTLs were

more variant dense than the rest of the genome despite

several QTLs that were mostly identical by descent (IBD)

(Fig. 3; Supplemental Figures S-2 and S-5). As one might

expect, within any given QTL, there is a difference

between the ILS and ISS in the ancestral makeup of the

QTL region (Fig. 2).

In order to determine the effect of mapping to a par-

ticular genome sequence on RNA-seq quantification, we

conducted a differential expression (DE) analysis on RNA-

seq data that were aligned to the mouse reference genome

from the C57BL/6 strain (mm10), and to the strain-specific

ILS and ISS genomes. Total reads mapped were slightly

lower when mapped to the reference genome compared to

the strain-specific genomes (71 vs. 72 % and 69 vs. 70 %

in the ILS and ISS, respectively); the same was true of

uniquely mapped reads (Supplemental Table S-7). The
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majority of uniquely mapping reads did not change in

mapping status or position; however, there was a net gain

in unique reads of 1.6 and 1.5 % in the ILS and ISS,

respectively. Additionally, a small number of unique reads

changed in location when mapped to the strain-specific

genome, but remained unique (\0.1 %; Supplemental

Table S-7).

In a comparison of ILS to ISS gene expression, 521 and

459 genes that had been mapped to mm10 or to the ILS/ISS

genomes, respectively, were found to be differentially

expressed (DE; Fig. 4a). The majority of DE genes (406)

were unaffected by the genome used for mapping; how-

ever, under the statistical parameters used, 115 DE genes

were lost and 53 were gained in the strain-specific genome

analysis relative to the mm10 analysis. The majority of

changes arose from more reads mapping to the strain-

specific genomes than mm10, as illustrated in the bar

graphs in Fig. 4a; however, many of the genes were lost

because they shifted from just barely significant to just

barely non-significant based on the statistical cutoff, or vice

versa (23 % of the significant mm10 DE genes and 30 % of

the significant strain-specific DE genes). In addition, a

portion of the genes had higher read counts when mapped

to mm10 than to the strain-specific genomes; nearly all

those that were significant were pseudogenes (34/35),

Fig. 1 Differences between ILS and ISS strains: Variant Breakdown.

a Combined totals of variants that differ between the ILS and ISS

strains. Synonymous mutations refer to a SNP(s) that alters the codon

sequence but not the amino acid produced. Synonymous and non-

synonymous mutations arise from the impact of a SNP on the

underlying codon. Frameshifts are any indel not divisible by three,

whereas deletions and insertions retain the reading frame. Variants are

counted once per gene. b Combined totals of structural variations that

differ between ILS and ISS strains. Losses and gains refer to changes

in copy number, whereas a deletion is a complete loss/absence of a

region. Chromosomal translocations refer to exchanges of large

segments between chromosomes and inversions are reversals.

c Distribution of structural variations by type, summarized by a

sliding window approach (500 k windows with 100 k step size)

(Color figure online)

Table 2 Summary of genome-wide structural variants identified in

the ILS and ISS

Variant typea ILSb ISSc

Total 4271 2882

Deletions 1488 1091

Gains 527 246

Losses 2168 1467

Inversions 29 31

Translocations 59 47

a The type of variant, in comparison to the reference
b Different than both ISS and reference
c Different than both ILS and reference
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whereas only 3 of the 8 strain-specific genome DE genes

were pseudogenes. Given that the strain-specific genomes

more accurately reflect the underlying genotype of the

strains, we note that 115 genes were false positives and 53

genes were false negative when differential expression was

called relative to mm10 (Fig. 4a).

We next conducted a similar analysis on exon usage.

Overall, the pattern compared to the full gene analysis was

similar, although the percentage of mm10 DE exons as a

proportion of total mm10 DE exons was substantially

higher than for DE genes (43 vs. 22 %; Fig. 4b). In addi-

tion, a much higher percentage of DE exons were found to

increase in reads when mapped to the strain-specific gen-

ome versus mm10 compared to the full gene analysis (bar

graphs in Fig. 4b). Perhaps unsurprisingly, the exons

whose DE is genome dependent were enriched for variants

compared to common DE exons (Fig. 4c). These SNP-

dense regions often gain additional reads when mapped to

the strain-specific genomes, which can result in a loss of

DE exons (Fig. 4d), but also in a gain (Supplemental

Figure S-6). We also observed that some exons change in

DE status despite being absent in strain-specific SNPs.

Manual inspection indicated that these exons were adjacent

to a SNP-dense exon, which resulted in changes in splice-

junction read mapping.

In earlier work, we examined the difference in gene

expression between naı̈ve ILS and ISS mice using shorter

read lengths (28 bp single-end reads) and a different

sequencing strategy (Darlington et al. 2013). We used the

current pipeline to determine if there would be a similar

mapping genome effect. Similar shifts were observed in the

set of DE genes when mapping to the strain-specific gen-

omes rather than to mm10, although the magnitude of

impact on exon DE was dampened in the earlier dataset

compared to the current study (Supplemental Figure S-7).

This is probably a reflection of both shorter read lengths

and lower depth of coverage in the earlier study. We also

compared DE genes in the current study to those identified

in the earlier study after running both datasets through an

identical pipeline using the strain-specific genomes.

Approximately half of the DE genes from each analysis

were found to be in common (Supplemental Figure S-7).

Discussion

Up until fairly recently, the field of quantitative genetics—

now generally referred to as complex traits analysis—was

mostly descriptive at the phenotypic level. As a result of

the development of high-throughput technologies such as

Fig. 2 Chromosomal

breakdown of ancestor

inference. For each

chromosome, distributions of

inferred ancestry in the ILS (on

left) and ISS (on right)

genomes. QTL regions (as listed

in Table S6) are boxed (Color

figure online)

Fig. 3 QTLs have an elevated variant density. Histogram summa-

rizing the variant density (variants/kb) throughout the genome on

autosomes. Red for non-QTL regions; blue for QTL regions (Color

figure online)
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Fig. 4 Impact of distinct reference genomes on differential expres-

sion. a Venn diagram comparing differential expression results

between ILS and ISS whole brain RNA-seq samples when mapped to

the reference genome (mm10, red) versus strain-specific genomes

created from SeqNature (green). Bar charts show fraction of genes

that were borderline to cutoff, increased or decreased when showing

mapping-specific significance. b Venn diagram comparing DEXSeq-

annotated exonic binned differential expression results when mapped

to mm10 versus the strain-specific genomes. c CDF plot of strain-

distinguishing variants over DEXSeq-annotated exonic bins for genes

considered differentially expressed only when mapped to mm10 (red),

only when mapped to strain-specific genomes (green), and common to

both mappings (blue). d DEXSeq gene plot showing expression level

(y-axis) for each exon (x-axis) for ENSMUSG00000021156 mapped

to mm10 (above) and strain-specific genomes (below). Exonic bins

considered differentially expressed against mm10 are no longer

considered differentially expressed when mapped to the strain-

specific genomes (Color figure online)
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expression microarrays and NextGen deep sequencing, and

also novel computational approaches, complex traits anal-

ysis has moved increasingly toward the molecular level.

Here, we have used NextGen deep sequencing to charac-

terize the genomes of a well-established mouse model of

acute alcohol sensitivity, the ILS and ISS. The two main

objectives of this study were to provide insight into the

genomic variants that could contribute to the enormous

phenotypic difference between the ILS and ISS, and to

generate ILS/ISS reference genomes for accurate align-

ment and quantification of RNA-seq data from an ongoing

acute alcohol experiment with the ILS, ISS, and the LXS

RI panel.

Our complete genome sequence refines our under-

standing of the distinct differences between the ILS and

ISS strains. We identified a large number of strain-specific

sequence variants that can be used as markers to distin-

guish between the strains and, importantly, to help eluci-

date the genetic factors that contribute to the difference in

acute alcohol sensitivity that exists between these strains.

Previous work had identified *40,000 SNPs (Saba et al.

2011) and fewer than 100 SVs (Dumas et al. 2014); here

we report *2.7 million SNPs and small indels, and over

7000 SVs that are different between the ILS and ISS,

greatly expanding our knowledge of potential variants that

contribute to phenotypic differences between the strains

and among the LXS RIs. In addition, we have identi-

fied *375,000 SNPs that are not present in dbSNP,

implying that they have not previously been detected in any

other sequenced mouse strains. Given that six of the eight

progenitors of the ILS and ISS strains have been

sequenced, this set of private variants likely contains both

de novo mutations and variants specific to the missing

sequence of the two ancestors, Is/Bi and RIII.

Our unfiltered set of SNPs and small indels is compa-

rable to the number of variants observed by Keane et al.

(2011) who used a less stringent filtering procedure; fil-

tering reduced that number by more than half. Moreover,

almost 100 % of our unfiltered SNPs were consistent from

the ILS/ISS Mouse Diversity Genotyping Array results and

about 3 % of those SNPs were lost after filtering. There-

fore, our final set of high-confidence variants likely

underestimates the actual number. We chose to go in a

more conservative direction in order to generate high-

quality genomes for mapping RNA-seq reads to the LXS

RI strains, of which the ILS and ISS are the progenitors;

this is discussed in more detail below.

Our sequencing of the ILS and ISS revealed a large

number of DNA variants, of which some number mediate

the phenotypic difference in sleep time between the strains.

One principal way in which this could occur is through an

effect on the structure of gene products. Conservatively, we

identified over 9000 SNPs and small indels that affect

protein structure and an additional nearly 17,000 non-

synonymous SNPs that may affect protein folding or traf-

ficking. We also identified over 6000 large structural

variants that potentially affect protein structure, although

confidence with those events is lower due to the difficulty

in their ascertainment.

A second mechanism through which DNA variants

could affect phenotypic outcome is through modulation of

the abundance of proteins. For example, SNPs found in

promoters or regulatory elements can influence the

expression of mRNA and there are numerous other

mechanisms through which transcription or translation can

be regulated. Although much less is known about how

DNA variants affect the regulation of expression than

protein structure, our sequencing results can be used in

combination with our ongoing LXS RNA-seq experiment

to gain insight into the variants that mediate differences in

expression.

The ILS and ISS were generated from a heterogeneous

population derived from 8 inbred mouse strains, 6 of which

are widely used and have been sequenced (Keane et al.

2011). These 6 strains—C57BL, A, AK, BALB/c, C3H,

and DBA/2—are closely related, especially the latter 5

which all were derived from a single line of Castle’s mice

(Beck et al. 2000). This is consistent with our ancestor

inference analysis, which indicates that approximately

25 % of the ILS and ISS genomes are IBD with respect to

these 5 strains. In contrast, 50 % of the ISS genome

comprises only 3 of the strains—the C57BL and the

unsequenced Is/Bi and RIII (Unk/C57)—which could not

be further distinguished, as described in Methods sec-

tion. This is higher than the 37.5 % that would be expected

by chance if all 8 strains were more or less equally rep-

resented. Interestingly, in 9 of the 15 QTLs related to sleep

time, substantially more of the genome comes from Unk/

C57 group than the other 5 strains combined. This is due

more to the genetic variation contributed by the Is/BI and/

or RIII than from the C57BL as mapping studies using

crosses derived from the C57BL/6 and DBA/2 strains show

limited genetic variation compared to the LXS RIs (Rad-

cliffe et al. 2000). Perhaps, this is expected since the Is/BI

and RIII are very unrelated to the other 6 strains, including,

apparently, the founder breeding pair for the Is/BI that

includes a wild mouse captured on an Israeli dock (Beck

et al. 2000), i.e., these two strains contributed as much or

more genetic variance to the ILS and ISS than all of the

other 6 strains. Should the RIII strain, which is still readily

available, be sequenced it could be used to both further

validate our ancestor inference and identify causal variants

within QTL regions.

Typically, only a fraction of the genetic variance is

accounted for in a QTL experiment. Part of this is probably

a result of the difficulty to detect epistatic interactions,
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which generally requires a large mapping population.

Another possibility is that some portion of the genetic

variance is mediated by a large number of small-effect

genes, i.e., the infinitesimal model (Fisher 1918). If much

of the genetic variance between the ILS and ISS fits this

model, it would explain why we observed an enrichment of

variants in QTL regions. If trait-relevant variants were

equally distributed among all variants, only variant-dense

regions would contain enough genes for their additive

effect to be detected as a QTL. Moreover, it appears that

there is not a particularly greater rate of recombination in

QTL regions than elsewhere in the genome based on our

ancestor inference analysis. Indeed, the genome was

derived almost entirely from only one or two strains for

some of the QTLs (e.g., Lore5, QTL-A, and QTL-B for

ILS, and Lore3, Lore5, QTL-C, and QTL-E for ISS) and

nearly all of the QTLs show ancestral distributions that are

both inconsistent with equal strain distribution and unlike

the strain distribution genome wide. This is consistent with

a model in which relatively large haplotype blocks from

each of the ancestors contained many linked small-effect

genes that move the phenotype in the same direction and

therefore remained intact during the selection process

(Barton and Keightley 2002). The remainder of the genetic

variance not accounted for by the mapped QTLs would

then be more or less randomly distributed throughout the

genome.

Early ‘‘genetical genomics’’ experiments that employed

hybridization microarrays to quantify whole-genome gene

expression tended to find an unusually high number of

cis-regulated expression QTLs (eQTLS; see Peirce et al.

2006). It was realized that many of these cis-eQTLs were

resulting from ‘‘SNP hybridization artifacts,’’ i.e.,

expression levels were artificially reduced by poor

hybridization of SNP-containing mRNA fragments from

genotypes that differed from the reference genome, the

C57BL/6, and, of course, the expression level segregated

with the SNP in the mapping population leading to a

false-positive cis-eQTL (Walter et al. 2007). A similar

phenomenon occurs with RNA-seq, although it is a

computational rather than physio-chemical effect as with

microarrays. Munger et al. (2014) examined the impact of

mapping to the reference on gene quantification and

eQTLs for mouse strains, finding that the identity of the

reference had a dramatic impact on a small number of

loci (but see Panousis et al. 2014). Here we have exten-

ded this effort to examine the impact of the reference on

differential expression. Despite the fact that mapping to

the strain-specific genomes influenced only a small

number of reads, we found that this effect impacted a

relatively large number of genes and exons. Consistent

with Munger et al. (2014), we found that pseudogenes are

notorious for creating this type of artifact, and much of it

becomes resolved with mapping to the correct genome.

This is also partly due to the particular statistical cutoff

that is used, i.e., approximately 25 to 30 % of the DE

genes affected by mapping genome were just barely sig-

nificant or non-significant. The percentage was less with

exons because of their much smaller size, which makes

them more sensitive to the effect. With a more or less

stringent statistical cutoff, these genes would be nearly

completely excluded or included, respectively; however,

for approximately 20 % of all DE genes, the effect is

robust and independent of statistical issues. This is a

higher value than that determined by Bottomly et al.

(2011) in a similar analysis of the C57BL/6 and DBA/2

mouse strains. The difference can be explained by two

technical distinctions: Bottomly et al. (2011) did not

include small indels in their analysis and they used a

considerably shorter read length (43 vs. 100 bp).

Regarding the latter issue, shorter read lengths are less

likely to overlap a SNP but are also less likely to be

unique (mappability). Additionally, the magnitude of

difference likely depends on the distance (extent of

variation) between the strain and the reference.

We have identified a large number of variants between

the ILS and ISS that were bidirectionally selected for acute

alcohol sensitivity. Even though these lines underwent an

artificial selection procedure, the genetic variation between

them is generally similar to that between any two randomly

chosen standard laboratory mouse strains (Keane et al.

2011). It is certainly true that only a subset of the DNA

variants contributes to the enormous difference in alcohol

sensitivity, i.e., many of the variants segregated randomly

or as a result of linkage and mediate genetic variation for

the large number of phenotypic differences between these

lines. Therefore, the catalog of DNA variants alone does

not definitively provide us with the relevant alcohol sen-

sitivity genes, it does provide us with candidates that can

be further refined using techniques such as QTL mapping

and other systems genetics analyses. Moreover, we now

have the ability to more effectively map RNA-seq reads for

our large ongoing LXS study which will also help identify,

or at least narrow down, the genes that are contributing to

acute alcohol sensitivity. It may be, however, that the

phenotypic difference is the result of many small-effect

genes which we have previously argued is the case for an

important QTL that maps to distal chromosome 4 (Bennett

et al. 2015). One primary goal of QTL mapping is to

identify the ‘‘QT gene’’; however, this may be possible for

only a limited number of genes that have a large enough

effect. Nonetheless, there may be some hope for the suc-

cessful dissection of the ILS/ISS QTLs by conducting

careful functional enrichment analyses with the RNA-seq

data that we generate from the LXS RI panel: the effect of

any individual gene among many may not be tractable, but
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the effect of a handful of functionally related gene clusters

may be. The current work contributes substantially to that

endeavor.
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