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Abstract

Lung cancer encompasses a constellation of malignancies with no validated prognostic
markers. p16'™4* expression has been reported in different subtypes of lung cancers;
however, its prognostic value is controversial. Here, we sought to investigate the clinical sig-
nificance of p16'™** immunoexpression according to specific staining patterns and its oper-
ational implications. A total of 502 tumors, including 277 adenocarcinomas, 84 squamous
cell carcinomas, 22 large cell carcinomas, 47 typical carcinoids, 12 atypical carcinoids, 28
large cell neuroendocrine carcinomas, and 32 small cell carcinomas were reviewed and
subjected to immunohistochemical analysis for p16'™** and Ki67. The spectrum of p16'™44
expression was annotated for each case as negative, sporadic, focal, or diffuse. Expression
at immunohistochemical level showed intra-tumor homogeneity, regardless tumor histo-
type. Enrichments in cells expressing p16'™** were observed from lower- to higher-grade
neuroendocrine malignancies, whereas a decrease was seen in poorly and undifferentiated
non-neuroendocrine carcinomas. Tumor proliferation indices were higher in neuroendo-
crine tumors expressing p16'™** while non-neuroendocrine malignancies immunoreactive
for p16"*A showed a decrease in Ki67-positive cells. Quantitative statistical analyses
including each histotype and the p16™** status confirmed the independent prognostic role
of p16'™*A expression, being a high-risk indicator in neuroendocrine tumors and a marker
of good prognosis in non-neuroendocrine lung malignancies. In this study, we provide cir-

cumstantial evidence to suggest that the routinary assessment of p16'™<* expression using
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a three-tiered scoring algorithm, even in a small biopsy, may constitute a reliable, reproduc-
ible, and cost-effective substrate for a more accurate risk stratification of each individual
patient.

Introduction

Lung cancer represents a heterogeneous group of tumors, embracing distinct entities with dif-
ferent morphologies, molecular features, clinical outcomes, and responses to therapy [1]. The
prognosis of these patients is generally poor, with a 5-year overall survival rate of approxi-
mately 17% only slightly improved in recent decades [2]. In this era of precision medicine, the
search for reliable prognostic markers is of remarkable clinical importance; however, no pro-
tein marker has been sufficiently validated for clinical use in lung malignancies, since the
results from more than five hundreds indexed studies are inconsistent and/or contradictory
[3-5]. To date, tumor histotype and disease stage remain the most important prognostic fac-
tors, that drive clinical management and treatment decision [1].

Since p16"™ 4 first characterization in the early nineties as a cyclin-dependent kinase inhib-
itor [6] it has continued to gain widespread importance in a plethora of malignancies, including
lung cancer [3, 7-11]. This tumor suppressor protein is encoded by the cyclin-dependent
kinase inhibitor 2A (CDKN2A, 9p21) and regulates gene expression at different levels by modi-
tying the functional equilibrium of transcription factors, microRNAs, post-transcriptional reg-
ulators and ultimately inhibiting transition of the cell cycle from G1 to S phase [12]. To date,
the role of CDKN2A and its transcript is of burgeoning interest in target therapies. For exam-
ple, oropharyngeal squamous cell carcinomas overexpressing p16"™** respond more favorably
to intensity-modulated radiotherapy treatment compared to ple'kaa
Furthermore, delivery of the whole p15/p16/p14ARF locus in bacterial artificial chromosomes
and induction of p16"™** using DNA methyltransferase inhibitors combined with histone dea-
cetylation inhibitors result in the suppression of cell development in human glioma and lung
epithelial tumor cells lines, respectively [14, 15]. Overall, ectopic induction of p16"™** in can-
cer cells inhibits cell growth and induces apoptosis and senescence, whereas CDKN2A silencing

reduces the p53-mediated response to chemotherapeutic agents [16].
Ink4A

-negative controls [13].

overexpression and patients’ survival in lung cancer has
Ink4A

The association between p16
been widely investigated, and there are several lines of evidence to suggest that p16
play a part in lung cancer tumorigenesis [3, 17-19]. However, only a handful of previously pub-
lished studies showed results potentially translatable into clinical practice, highlighting the
complexity and the ambiguity underpinning the role of p16™** and p16"™**-related path-
ways in lung tumors. At present, the diagnostic, prognostic and predictive values of this essen-
tial cell-cycle regulator remain controversial in the lung [20-23]. This could be related to the

could

small sample size of previously published studies focusing only on single major histotypes of
lung cancer, often individually, and the lack of correlation with clinical and molecular data.
Furthermore, the lack of standardization and reproducibility of previously proposed p16™<**
scoring systems in lung malignancies, often restricted to a dichotomous record of positive ver-
sus negative cases might have limited the significance of the previously reported results [17].
In this scenario, the purpose of our study was to investigate the clinical implication of spe-
cific patterns of p16™™** expression in a large series of lung malignancies using a three-tiered
scoring algorithm. Given the histologic and molecular intra- and inter-tumor heterogeneity of
lung tumors, and the biologic diversity of each histologic entity, we first sought to define
p16™ *A_expression heterogeneity, and subsequently to characterize the prognostic signifi-

cance of p16Ink4A testing in lung cancers using a semi-quantitative score. Moreover, as a
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hypothesis-generating aim, we explored the correlation between p16"™** status and Ki67 as

well as the most common molecular aberrations in well-known targetable cancer genes, such as
epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK).

Materials and Methods
Patients and tissue specimens

The study was conducted in accordance to local ethical guidelines. After obtaining institutional
review board (IRB) approval (San Paolo IRB #10664/13; Fondazione IRCCS Ca’ Granda IRB
#179/13), the routinely prepared formalin-fixed paraffin-embedded (FFPE) tissue blocks and
the archived slides of consecutive primary lung tumors were retrieved from the archives of the
Department of Pathology, A.O. San Paolo Hospital, Milan, Italy and integrated with selected
cases retrieved from the archives of the Department of Pathology, Fondazione IRCCS Ca’
Granda—Ospedale Maggiore Policlinico, including rarer histotypes. All patients have provided
signed consent forms. Taken together, 502 primary lung tumors, either surgical specimens

(n =383) or core biopsies (n = 119), diagnosed between 2000 and 2015, were included. The
study group was composed of 277 adenocarcinomas (ADC), 84 squamous cell carcinomas
(SCC), 22 large cell carcinomas (LCC), 47 typical carcinoids (TC), 12 atypical carcinoids (AC),
28 large cell neuroendocrine carcinomas (LCNEC), and 32 small cell carcinomas (SCLC). All
cases were centrally reviewed by four pathologists (NF, ADG, EGR, and SF) that performed ex
novo the histologic classification and pathologic staging, according to the latest editions of the
WHO classification of tumors of the lung and of the AJCC staging system, respectively [1, 24].
Specifically, the ADC group included glandular or solid tumors immunoreactive for thyroid
transcription factor (TTF1) and/or napsin A; SCCs encompassed keratinizing and non-kerati-
nizing p40-positive, TTF1-negative malignancies; undifferentiated non-small cell malignancies
with “null” phenotype (i.e. lacking TTF1, napsin A, p40, synaptophysin, chromogranin, and
CD56 expression) were recorded as LCC. Furthermore, the diagnostic criteria employed for
subtyping tumors with neuroendocrine morphology included the number of mitoses per 2
mm?, the presence of necrosis, and Ki67 proliferation index [1]. The medical records were sub-
sequently reviewed to obtain patients’ data, including age at diagnosis, gender, smoking his-
tory, and survival data. Follow-up data were available for 444 patients until 2015 with a mean
follow-up time of 31 months (range 1-144). Clinicopathologic features of the cases included in
the study are summarized in Table 1 and detailed in S1 Table. Among 502 cases included in the
study, 476 primary lung tumors (either surgical resections or core biopsies) were amenable for
multiple sampling and therefore used to construct 15 FFPE tissue microarrays (TMA); the
remaining cases were studied on conventional full-face sections. All samples were anonymized
prior to processing.

Tissue microarrays construction

Using a semi-automatic arrayer (Alphelys Minicore2, Plaisir, France), 1-mm and 3-mm

cores were randomly generated based on the amount of tumor tissue available as previously
described [25]. Each TMA block contained up to 180 tumor cores with a total number of 2190
spots of neoplastic tissue. For each case, a mean of 4.7 tumor tissue cores (range 2 to 5 cores),
including the tumor invasive front, was sampled and one spot of matched non-neoplastic lung
tissue for each case was incorporated in the TMAs when available.

PLOS ONE | DOI:10.1371/journal.pone.0144923 December 16,2015 3/16



el e
@ ) PLOS ‘ ONE p16 Patterns of Expression in Lung Tumors

Table 1. Clinicopathologic features of the primary lung tumors included in this study.

ADC n =277 SCCn=84 LCCn=22 TCn=47 ACn=12 LCNEC n=28 SCLCn=32 Total n = 502

Male 166 68 19 10 7 21 19 310
Female 111 16 3 37 5 7 13 192
Smoker 191/249 77 20 0/2 - 717 6/8 301
Not smoker 58/249 7 2 2/2 - 0/7 2/8 71

Grade 1 21 1 - 47 - - - 69
Grade 2 144 43 - - 12 - - 199
Grade 3 112 40 - - - - - 152
Grade 4 - - 22 - - 28 32 82
pT1 124 25 4 - - 4/8 3/3 160
pT2 117 46 13 - - 4/8 0/3 180
pT3 29 12 4 - - 0/8 0/3 45
pT4 7 1 1 - - 0/8 0/3 9

pN- 182 55 9 44 10 11/21 4/9 315
pN+ 95 29 13 3 2 10/21 5/9 157

ADC: adenocarcinoma; SCC: squamous cell carcinoma; LCC: large cell carcinoma; TC typical carcinoid; AC: atypical carcinoid; LCNEC: large cell
neuroendocrine carcinoma; SCLC: small cell carcinoma.

doi:10.1371/journal.pone.0144923.t001

Immunohistochemical analysis

Consecutive 4-microns-thick sections were cut from each FFPE block and subjected to immu-
nohistochemical staining for p16™** (clone DO-7, ID#790-2912, Ventana Medical Systems,
Inc., Tucson, AZ) and Ki67 (clone 30-9, ID#790-4286, Ventana Medical Systems, Inc., Tuc-
son, AZ). All non-small cell lung carcinomas included in the TMAs were also tested for EGFR
status using mutation-specific antibodies for the exon 19 deletion E746-A750 (clone 6B6,
ID#9747, Cell Signaling Technologies, MA, USA) and for the exon 21 mutation L858R (clone
43B2, ID#3197, Cell Signaling Technologies, MA, USA). All antibodies were employed accord-
ing to manufacturers’ instructions as described [26]. Briefly, the sections were subjected to anti-
gen retrieval with Cell Conditioning Solution 1 (CC1, Ventana Medical Systems, Mountain
View, CA) and subsequently incubated overnight at 4°C with the primary antibody, washed in
0.1% Tween20/1 x PBS, and then incubated with HRP-conjugated secondary antibodies. Stain-
ing was visualized with peroxidase-sensitive Sigmafast 3,3’-diaminobenzidine tablets (DAB;
Sigma- Aldrich, St. Louis, MO); sections were counterstained with Mayer’s hematoxylin solu-
tion (Amber Scientific, Midvale, WA) and mounted in DPX (BDH, Poole, England).
Immunostaining for p16"** was evaluated independently by two pathologists (NF and
SF), and nuclear as well as cytoplasmic staining was considered a positive reaction, as described
by Klaes et al. [10]. The pattern of p16™*#
tive scale for each single tissue core, as follows: negative (less than 1% of positive neoplastic
cells), sporadic (isolated positive cells accounting for less than 5% of all neoplastic cells), focal
(small clusters of positive cells accounting for less than 25% of all neoplastic cells) and diffuse

(more than 25% of positive neoplastic cells) [10]. This system has shown higher levels of repro-
Ink4A

positivity was therefore scored on a semi-quantita-

ducibility and accurateness for p16 scoring in gynecologic malignancies, compared to the
semi-quantitative German score [27]. Ki67 was scored independently by three pathologists
(NF, ADG and SF) as the percentage of cells with nuclear staining in at least 1000 neoplastic
cells randomly selected over 10 high-power (magnification, 40X) fields [28]. The expression of

biomarkers for EGFR mutations was evaluated as reported elsewhere [29], following the
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recommendations of the College of American Pathologists, International Association for the
Study of Lung Cancer, and Association for Molecular Pathology [30]. For each immunohisto-
chemical analysis, discordant results were resolved on a multi-headed microscope.

DNA extraction, PCR amplification, and Sanger sequencing

The presence of somatic alterations in EGFR exons 19 and 21 was validated by Sanger sequenc-
ing analysis in all cases displaying equivocal immunohistochemical stains, as recommended
[29, 30]. For this analysis, genomic DNA of each tumor and matched normal tissue was col-
lected from the corresponding FFPE blocks and extracted using the DNeasy™ Blood & Tissue
Kit (Qiagen, Valencia, CA), according to the manufacturer’s instructions. Primers set to
amplify all coding regions of exon 19 (chromosomal position: chr.7: 55,174,722-55,174,820)
and exon 21 (chromosomal position: chr.7: 55,191,719-55,191,874) of the EGFR gene were
employed as described [31]. PCR amplification of 60 ng of genomic DNA was performed using
the AmpliTaq 360 master mix (Life Technologies, Grand Island, NY). PCR fragments were
purified and sequenced on an ABI3730 capillary sequencer as described [32]. Sequences of the
forward and reverse strands were analyzed using SeqScape (version 2.5, Applied Biosystems,
Carlsbad, CA).

Fluorescence in situ hybridization (FISH)

The presence of the most common inversion event occurring on the short arm of chromosome
2, resulting in the fusion of ALK with the echinoderm microtubule-associated protein-like 4
(EML4) gene loci, was investigated in all non-small cell lung carcinomas included in the study
by means of fluorescence in situ hybridization (FISH) [1, 30]. This analysis was performed
with a two-color probe mix consisting of BACs for 5’ ALK and 3’ EML4 using validated proto-
cols established at Istituto Nazionale Tumori, Naples, Italy [33]. At least 60 non-overlapping,
interphase nuclei of morphologically unequivocal neoplastic cells were analyzed.

Statistical analysis

Differences in p16™** expression across tumor types were investigated using the X test

(MedCalc Software, Acacialaan, Ostend, Belgium). In order to assess the correlation between
histotype and p16™** overexpression, a Cox regression analysis was performed assessing first
the p16™** status of each case in a dual fashion (negative/positive). A second proportional-
hazards regression analysis taking into account the various spectra of p16™ 4
subsequently performed. For the purpose of this work, carcinoids, either typical or atypical,
LCNEC, and SCLC were identified as neuroendocrine tumors, whereas ADC, SCC, and LCC
were defined non-neuroendocrine carcinomas; survival analysis was performed separately for
these two broad groups. Correlation of the protein’s patterns of expression to patients’ overall
and disease-free survival was assessed using the Cox proportional-hazards regression model;
survival curves were built according to the Kaplan-Meier method (MedCalc software). Patients
who died from causes other than lung cancer were excluded for survival analysis. Quantitative
analyses were performed using multiple the Cox proportional hazards regression in order to
assess the independence of p16™44
0.05 were considered statistically significant. Furthermore, to assess the correlation between
proliferative indices and p16"™** overexpression, a differential Ki67 index (AKi67) between
p16™**_negative and p16™**-positive cases was calculated for each histologic subtype, using

a combinatorial analysis scheme [35]. This absolute value allows the detection of the variation
Ink4A

expression was

as a prognostic factor [34]. Probability values (p) less than

in the average proliferation indices of each histotype according to p16 status.
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Results

Taken together, the tumors overexpressing pl6Ink4A were 200 (39.8%), including 49 (9.8%)
cases with only sporadic immunoreactive cells, 63 (12.5%) showing a focal staining pattern,
and 88 (17.5%) that were diffusely positive (Fig 1, Table 2). Matched non-neoplastic lung tissue
was universally negative and served as internal negative control.

Primary lung tumors exhibit intra-tumor homogeneous p16"**

expression

Intra-tumor heterogeneity analysis of p16™*#

overexpression was performed for the subgroup
of neoplasms incorporated in the TMAs that displayed any pattern of positivity (n = 177).
Among them, 171 (96.6%) tumors showed immunoreactive neoplastic cells in each tumor
core, whereas heterogeneous p16™K44 expression across tumor cores was restricted to 6 (3.4%)
cases, namely 5 ADCs and 1 SCC, as detailed in Table 3. Of note, the p16™K44 expression pat-

tern was homogeneous across all cores of the 66 tumors displaying diffuse positivity, suggesting

Fig 1. Representative micrographs of p16'<** expression patterns in primary lung tumors. For each case, the first core on the left side represents the
matched non-neoplastic lung tissue, whereas the following four cores depict different topographic areas of the tumor, including tumor invasive front (original
magnification, 5x). The histologic detail of the immunohistochemical analysis for each case can be appreciated in the insets (original magnification, 20x). A.
Small cell carcinoma displaying diffuse p16'™** immunostain; B. Moderately differentiated (G2) adenocarcinoma showing focal p16'™** expression; C.

6Ink4A 6Ink4A.

Typical carcinoid with sporadic p1 expression pattern; D. Poorly differentiated (G3) squamous cell carcinoma negative for p1

doi:10.1371/journal.pone.0144923.g001
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Table 2. Inmunohistochemical p16"<** status of the primary lung tumors included in this study.

ADC
SCC
LCC
TC

AC
LCNEC
SCLC

Negative (%)

166 (59.9)
66 (78.6)
19 (86.4)
40 (85.1)
7 (58.3)
4 (14.3)

302

p16'%4A overexpression

Sporadic (%) Focal (%) Diffuse (%)

31 (11.2) 47 (17.0) 33 (11.9)
3(3.6) 6 (7.1) 9 (10.7)
- 1 (4.6) 2 (10.0)

7 (14.9) - -

3(25.0) 2(16.7) -
3(10.7) 7 (25.0) 14 (50.0)
2(6.3) - 30 (93.7)

49 63 88

ADC: adenocarcinoma; SCC: squamous cell carcinoma; LCC: large cell carcinoma; TC typical carcinoid; AC: atypical carcinoid; LCNEC: large cell
neuroendocrine carcinoma; SCLC: small cell carcinoma.

doi:10.1371/journal.pone.0144923.t002

Ink4A

that the analysis of a small area of the tumor is representative of the p16 of the entire lesion

in the vast majority of lung malignancies.

6'"k*A expression in neuroendocrine lung tumors

p1
The frequency of neuroendocrine carcinomas expressing p16™** ranged from 14.9% to 100%
(Table 2, Fig 2). In particular, only a subset of 7 (14.9%) TCs showed sporadic staining pattern,
as exemplified in Fig 1, while 40 (85.1%) tumors were entirely negative. Moreover, 5 (41.7%)
AC displayed sporadic or focal p16™** positivity. Taken together, no diffuse expression of the
p16™K44 protein was detected in the carcinoid subgroup, either typical or atypical. Conversely,
14 (50%) LNECs and 30 (93.7%) SCLCs showed a strong and diffuse overexpression of
p16™ 4 in all cancer cells (Fig 1), whereas 10 (35.7%) LNECs and 2 (6.3%) SCLCs, displayed
sporadic or focal staining patterns. Overall, all SCLCs included in this study displayed immu-
nohistochemical reactivity for p161“k4A, whereas in a subset of LCNECs (n = 4, 14.3%) no
Ink4A Ink4A_pOSi_
tive tumor cells populations in higher-grade neuroendocrine malignancies (p <0.05, Anova)
(Fig 2).

In agreement with the results reported above, the correlation between p16
Ki67 index revealed a significantly higher tumor proliferation index in those cases expressing

expression of p16 was detected. Therefore, we observed progressive higher p16

Ink4A gtatus and

Table 3. Intra-tumor heterogeneity analysis of the cases with p16'™*A overexpression incorporated in
the tissue microarrays.

Number of cases Tumor cores Cores with p16'™*A overexpression (%)
32 5 5 (100)
70 4 4 (100)
63 3 3 (100)
6 2 2 (100)
1 5 4 (80)
2 4 3 (75)
1 3 2 (66)
2 5 3 (60)
177

doi:10.1371/journal.pone.0144923.t003

PLOS ONE | DOI:10.1371/journal.pone.0144923 December 16,2015

7/16



@‘PLOS | ONE

p16 Patterns of Expression in Lung Tumors

Negative
M Sporadic
H Focal
m Diffuse
AC

0 10 20

40 50 60 70 80 90 100

Fig 2. Analysis of p1 6'"k*A gverexpression in neuroendocrine lung tumors reveals an increase in the proportion of positive neoplastic cells within
each tumor histotype moving from lower to higher grade malignancies. Each bar represents a histotype, as indicated on the left; the specific patterns of

p1 6Ink4A

immunoexpression are color-coded on the basis of the legend on the right. TC: typical carcinoid; AC: atypical carcinoid; LCNEC: large cell

neuroendocrine carcinoma; SCLC: small cell carcinoma.

doi:10.1371/journal.pone.0144923.9002

p16™ 4 in at least a subset of neoplastic cells, with a progressive lower AKi67 values for TCs,
ACs, and LNECs, respectively (Fig 3). A similar association was found for the two SCLCs with
sporadic p16™*** staining pattern compared to the SCLCs with strong and diffuse positivity
(92.5% versus 94.4%). No significant correlation was identified between p16Ink4A status and
other well-known clinicopathologic parameters such as age, smoke status, stage, and lymph
node status (p >0.05).

p16™*** overexpression was significantly associated with a shorter survival time in lung
neuroendocrine tumors (HR = 0.08, 95% CI, 0.03 to 0.2, p <0.0001) (Fig 4A). Taking into
account the various patterns of p16Ink4A expression, a shorter time to recurrence (HR = 0.0826,
95% CI, 0.03 to 0.2, p <0.0001) and a decreased overall survival time (HR = 2.48, 95% CI, 1.8
to 3.4, p <0.0001) were observed in neuroendocrine malignancies overexpressing p16™<4,
irrespective of staining patterns (S1 Fig). These results were expected, since progressive higher
p16™ 44 expression was observed in the aggressive subtypes of neuroendocrine malignancies.
However, univariate analyses including each histotype and the p16™<4
p16™ 4 expression is an independent indicator of poor prognosis in neuroendocrine lung
tumors (p ranging 0.001 to 0.01).

status confirmed that
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Neuroendocrine tumors
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Large cell carcinoma

Squamous cell carcinoma
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—Typical carcinoid
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Fig 3. Representation of the differential Ki67 values between p1

Histotype

6'"*4A_negative and p16"**A-positive lung tumors. The highest differences in Ki67

indices according to p16'™*A expression can be observed in the poorly differentiated malignancies (i.e. small cell carcinomas and large cell carcinomas), with
opposite fashions between neuroendocrine and non-neuroendocrine tumors.

doi:10.1371/journal.pone.0144923.9003

6Ink4A

p1 expression in non-neuroendocrine lung malignancies
Ink4A .

Opverall, the non-neuroendocrine lung carcinomas with p16 immunoreactivity ranged
from 13.6% to 40.1% (Table 2). Among them, 166 (59.9%) ADCs were p16lnk4A—negative

and 31 (11.2%) ADCs expressed p16™** in less than 5% of the neoplastic cells, whereas 47
(17.0%) tumors showed focal immunoreactivity, as exemplified in Fig 1; for this group, the dif-
fuse pattern of p16I“k4A staining was observed in 33 (11.9%) cases. Nine (10.7%) SCCs dis-
played sporadic or focal p16"™** expression and the same number (10.7%) were diffusely
immunoreactive, whereas most of the SCCs analyzed (78.6%) were completely negative (Fig 1).
Among LCCs, 1 (4.6%) case displayed a focal staining pattern, 2 (10.0%) cases were diffusely
immunoreactive, whereas 19 (86.4%) cases did not express p16™*4
crine neoplasms, a significant decrease in the overall p16™** expression was observed for the

. In contrast to neuroendo-
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Fig 4. Survival analysis according to p16"™** immunohistochemical expression in lung neoplasms. Kaplan-Meier plots reveal that p16™<*
overexpression is significantly associated with shorter disease-free periods in neuroendocrine tumors (A) and with longer survival times in non-
neuroendocrine tumors (B). In particular, even a focal positivity can adversely affect the prognosis of neuroendocrine tumors (A); on the other hand, taking
into account tumor stage as a covariate, sporadic and focal positivity cluster together into an intermediate-risk category in non-neuroendocrine malignancies
(B), whereas in adenocarcinomas the only focal and diffuse staining patterns are significantly associated with better outcome (C). The survival curves are
outlined on the basis of the specific patterns of p16'™** immunoexpression, as represented on the right.

doi:10.1371/journal.pone.0144923.9004

non-neuroendocrine carcinomas, moving from well differentiated to poorly and undifferenti-
ated entities (p <0.05, Anova) (S2 Fig).

In addition, decreased Ki67 indices were observed in p16
carcinomas, as confirmed by the presence of inverted AKi67 values compared to neuroendo-
crine tumors (Fig 3). Correlation of p16™<*4
such as age, smoke status, stage, and lymph node status failed to reveal any statistical
significance.

Interestingly, in patients with non-neuroendocrine lung malignancies, diffuse or focal
p16™ A _expression was a favorable prognostic factor (HR = 0.08, 95% CI, 0.03 to 0.2,

p =0.0123 by Cox proportional-hazards regression analysis). This association was also evident

Ink4A ... .
42 positive non-neuroendocrine

status with other clinicopathologic parameters

taking into account the tumor pathologic stage as a covariate in the Cox proportional-hazards
regression analysis (p <0.05), where the survival analysis showed a triple-fashion plot (Fig 4B).
Specifically, patients with non-neuroendocrine tumors displaying strong and diffuse p16™**
overexpression had a considerable better outcome compared to p16™<*#
endocrine carcinomas, while patients with tumors showing sporadic and focal staining patterns

-negative non-neuro-

clustered together in an intermediate-risk group. These data were also confirmed separately for

either SCCs (HR = 0.079, 95% CI, 0.03 to 0.211, p <0.001) or ADCs, showing decreased overall

Ink4A

survival times in patients with tumors displaying patterns of p16 expression ranging from

negative to sporadic (p = 0.0123) (Fig 4C). At the molecular level, all lung carcinomas showing

Ink4A

diffuse overexpression of p16 and harboring genetic alterations involving EGFR and ALK

had an excellent outcome, as represented in S2 Table.

Discussion

In this study, we have characterized the specific spectra of plekaa

of neuroendocrine and non-neuroendocrine lung tumors using a three-tiered semi-quantita-

expression in a large series

tive score. Our findings provide strong circumstantial evidences to suggest that, despite the

well-known histologic and molecular intra-tumor heterogeneity of lung malignancies, the
expression of p16™44 is homogeneous across each individual neoplastic entity, allowing the

analysis of a small area of the tumor, such as a core biopsy, as representative of p16"™4A status
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of the entire lesion. Moreover, our observations corroborate the notion that the tumor suppres-
sor protein p16™** plays a dichotomous role in the lung, being a high-risk feature in neuroen-
docrine tumors and a marker of good prognosis in non-neuroendocrine carcinomas. Finally,
we have described a subset of lung carcinomas harboring EGFR and ALK mutations and over-
expressing p16™** that shows better clinical outcome compared to p161"k4A—wild—type
tumors.

Spatial heterogeneity analysis of p16 expression in neuroendocrine and non-neuroen-
docrine tumors, revealed that p16™** immunoreactivity is homogeneous across different
areas of lung tumors, with the same recurring pattern of expression. Since its discovery, the
subcellular localization of p16™*** has been a matter of great controversy [36]. Hence,
although it is intuitive that p16"™** acts as a cell cycle inhibitor in the nucleus, there are func-
tional evidences to suggest that the cytoplasmic immunohistochemical expression represent
the phenotypic evidence of protein inactivation similar to that observed in other tumor sup-
pressor genes [36, 37]. However, the operational implications of the assessment of defined
p16™ 4 expression patterns have not been taken into account in previous studies on lung can-
cer [4, 20, 22]. In particular, we reasoned that a dualistic immunohistochemical scoring system
could be not representative of the actual p16™*** status of each individual case, nor sufficiently
reproducible. Indeed, it is probable that a considerable proportion of tumors (i.e. p16™**-spo-
radic and p16™**-focal lung neoplasms) has been clustered differently in previous works,
determining a substantial heterogeneity in the reported results and therefore leading to a nihil-
istic and skeptical vision of p16™** as a trustable biomarker in the lung. For this reason, we
decided to score the p16'™** immunohistochemical nuclear and/or cytoplasmic expression
using a semi-quantitative scale, as previously reported for gynecologic malignancies [10].
Hence, we observed that 17.5% of the tumors were strongly and diffusely immunoreactive for
p16™*4, whereas a submodal positivity was restricted to 22.3% tumors. It should be noted that
p16™ 4 staining pattern does not necessarily mirror the underlying status of CDKN2A; hence,
negative immunostaining for p16™* can be seen in some tumors that lack any detectable
copy number anomaly in chromosome 9, as assessed by comparative genomic hybridization
[38]. Our observations have potential clinical implications, as the assessment of a specific pat-
tern of p16™*4
logical aggressiveness of each individual lung neoplasm.

The assessment of p16™ 4 immunoreactivity in the different histotypes of lung tumor
using a semi-quantitative scoring system showed a dichotomous scenario involving neuroen-
docrine and non-neuroendocrine entities. Our data provide further credence to the notion that

these two broad and heterogeneous group of tumors are indeed genetically, and clinically, dis-
Ink4A

Ink4A

expression in a small area of the tumor could provide information on the bio-

tinct diseases harboring distinct of mechanisms of p16
homozygous deletion, somatic mutations), as previously reported [18, 19, 39]. In particular,
the number of cases overexpressing p16™** even in a submodal proportion of tumor cells,
progressively increased from lower- to higher-grade neuroendocrine lung tumors, with per-
centages varying from 14.9% in TC to 100% in SCLC. Furthermore, the specific fraction of can-
cer cells immunoreactive for p16™** increased among higher grade neuroendocrine tumor.
Our findings confirm that p16™ **/retinoblastoma (RB) pathway is consistently compromised
in LCNEC and SCLC, and less frequently compromised in AC [19]. However, in contrast with
previous observations, we observed that in a subset of TC, p16™*** display an aberrant pattern
in a proportion of tumor cells (i.e. sporadic staining pattern in TCs and sporadic to focal stain-
ing pattern in ACs), suggesting that the immunohistochemical assessment of this tumor sup-
pressor protein should be performed and interpreted carefully in the lung, recording every
single positive cell. Intriguingly, p16™* seems to play an opposite role in lung non-neuroen-
docrine carcinomas, with the percentage of cases displaying the entire spectrum of p16™<4#

alterations (i.e. methylation, hemi/
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positivity significantly higher in well/moderately differentiated tumors (41.3%) compared to
poorly differentiated and undifferentiated malignancies (26.1%).These results confirm that
CDKN2A deregulation through distinct mechanisms, including rare point mutations, promo-
tor methylation and frequent homozygous deletions, is a relatively frequent event occurring in
non-small cell lung cancer [18]. A mechanicistic explanation of the clear-cut dichotomous role
of p16"™*# that we observed in lung neoplasms could be provided by recent molecular studies
[40]. In particular, our data corroborate previous molecular and phylogenetic findings that
could not identify a clonal relationship between neuroendocrine and non-neuroendocrine lung
tumors [39, 41]. Hence, the presence of completely different repertoires of somatic genetic
alterations between neuroendocrine and non-neuroendocrine tumors of the lung suggests that
these two group of neoplasms are, actually, distinct diseases [42, 43]. Furthermore, specific
genetic and epigenetic mechanisms are involved in CDKN2A instability, according to malig-
nancies originating from distinct anatomical sites [15]. Previous studies demonstrated that
promoter silencing of p16™*4
tion point in the G1 phase of the cell cycle and favor cellular transformation in the lung [19,
40]. Moreover, it has been speculated that the p16™*** alteration in lung cancer is a rather
early event that may accelerate tumor aggressiveness through inactivation of both the RB and
p53 pathways and may link to a poor disease outcome [16, 18, 19, 44]. To this end, large multi-
centric prospective and functional studies focusing on CDKN2A alterations in lung malignan-

through methylation could lead to loss of control of the restric-

cies, including a representative number of rare entities, are warranted. Our observations are

Ink4A .
B2 status mirrors the

consistent with the notion that, while in neuroendocrine tumors p16
biologic features of higher-grade neoplasms, the expression of this protein in lung non-neuro-
endocrine malignancies is related to earlier step of tumorigenesis. Based on our results, the
assessment of p16™™44
lung tumors.

The correlation analysis between p16

status, even in a biopsy sample, could improve the characterization of
Ink4A expression and the proliferative index confirmed
the dualistic direction of p16™** immunoreactivity in lung neoplasms. In fact, each neuroen-
docrine histotype displaying p16™** overexpression had higher tumor proliferative indices,
while p16"™*~_positive non-neuroendocrine malignancies showed lower Ki67 rates. These
data suggest that the routinary assessment of both p16™4*
information on the specific behavior of each individual histologic subtype of lung malignan-
cies, allowing a fruitful patient’s management.

The contrasting direction of p16™*** effect in lung tumors is particularly noticeable in its
prognostic value. Despite the great heterogeneity in the previously reported results on the prog-

nostic significance of p16™** in lung malignancies, our analyses demonstrate that p16™ 4

and Ki67 could provide significant

status, if assessed using an accurate semi-quantitative system at the immunohistochemical
level, is an independent prognostic factor in lung tumors, being related to poorer prognosis in
neuroendocrine entities, and to a more favorable outcome in non-neuroendocrine malignan-
cies. As a matter of circumstance, tumors showing sporadic and focal staining patterns clus-
tered together in an intermediate-risk group in both families of lung tumors. This observation
is not trivial, given the evidence that the presence in a small biopsy of a submodal neoplastic
population harboring p16™** immunohistochemical overexpression could indicate a worse
outcome.

To our knowledge, this is the first study aiming to explore the correlation between p16™*4
protein expression and mutations in potentially targetable genes. In the small set of cases har-
boring molecular aberrations in EGFR and ALK included in this study, the null or heteroge-
neous p16"™** immunohistochemical expression conferred a poor prognosis, suggesting that
the assessment of p16'™** protein status might help to tailor the prognostic evaluation of

EGFR or ALK aberrant lung cancers.
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This study has several limitations. First, given the rarity of ACs, LNECs, and LCCs, we
could analyze only a relatively small number of cases. It should be noted, however, that to the
best of our knowledge this study represents the first comprehensive analysis of lung neoplasms
that provides preliminary data on the prognostic significance of defined patterns of p16™**
expression in ACs, LNECs, and LCCs. Second, additional markers mirroring the CDKN2A
molecular pathways, including cyclin D1 and RB proteins, were not investigated due to the
study design focused on the exploration of p16"™** routinary testing using a specific scoring
system. Our work, however, should be considered as hypothesis generating and validations in
wider independent cohorts, with additional and comprehensive molecular data, are warranted.

Despite these limitations, our results suggest that each individual neoplasm of the lung
exhibit intra-tumor homogeneous specific patterns of p16™*4* expression. This tumor sup-
pressor protein plays a contrasting role, being an independent poor prognostic factor in neuro-
endocrine lung tumors and an independent good prognostic factor in non-neuroendocrine
malignancies. In conclusion, p16™** semi-quantitative immunohistochemical analysis is a
reliable, reproducible, and cost-effective testing that can potentially be employed to improve
the characterization of lung neoplasms, allowing a more accurate patient’s management. Large
clinical prospective studies coupled with immunohistochemical and molecular analyses are
warranted to delineate the ramifications of our findings for both pathologist and oncologists.
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S1 Fig. Kaplan-Meier curves of lung neuroendocrine tumors for overall survival according
to the different patterns of p16™** expression.
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$2 Fig. p16"™*** patterns of expression in non-neuroendocrine lung tumors according to
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S1 Table. Clinicopathologic features of the cases included in this study.
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$2 Table. Clinicopathologic features, molecular characteristics and clinical outcome of
patients with somatic genetic aberrations included in this study. Highlighted in bold the
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