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Abstract: In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signal-
ing and all cells contain specific systems that guard redox homeostasis. These systems contain both
enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide
synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin
reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes
contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced
silencing complexes and play important roles in inhibiting translation of their targeted messenger
RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes
responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation
of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however,
sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in
the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would
be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and
discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.

Keywords: reactive oxygen and nitrogen species; miRNAs; ROS/RNS neutralization; ROS scaveng-
ing enzymes; ROS producing enzymes; ROS/miRNA mutual regulation

1. Introduction

MicroRNAs (miRNAs) are a class of short, single-stranded non-coding RNAs that
repress gene expression at the post-transcriptional level. MiRNAs associate with one of
the Argonaute proteins to form an RNA-induced silencing complex (RISC) that binds
mainly to the 3′untranslated regions (UTRs) of their target messenger RNAs (mRNAs)
to inhibit their translation or induce their degradation [1,2]. MiRNAs target mRNAs by
complementary base-pairing, and their region crucial for this miRNA-mRNA interaction is
the “seed” sequence, namely a heptamer sequence mostly situated at positions 2–7 from
the miRNA’s 5′-end. The majority of protein coding genes is thought to be under control
of miRNAs [3,4] and miRNAs are involved in virtually all biological processes including
proliferation, differentiation, and programed cell death. In addition, miRNAs have been
causally linked to many pathological conditions including diabetes [5], cardiovascular
disease [6], autoimmune disorders, and cancer.

Redox status is defined as the potential to donate or receive electrons for biochemical
processes and cells achieve a balance between oxidants, including free radicals, and an-
tioxidants. Cells maintain redox balance through generation and elimination of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) [7,8]. ROS may be generated
by exogenous or endogenous sources; exogenous sources encompass ionizing and non-
ionizing radiation, drugs, pollutants, food, ultrasound, xenobiotics, and toxins [7,9,10],
and endogenous ROS sources are cellular organelles with high oxygen consumption such
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as mitochondria, peroxisomes, and endoplasmic reticulum [11]. RNS include nitric oxide
(NO), peroxynitrite (ONOO−), and nitrogen dioxide (NO2). The main representatives of
cellular ROS are superoxide radical (O2

•−), hydroxyl radical (•OH), singlet oxygen (1O2),
and hydrogen peroxide (H2O2) which are formed in significant amounts as toxic byprod-
ucts in the reactions of the mitochondrial respiratory chain [11]. Significant amounts of
O2
•−, H2O2, •OH and NO can be also produced in the respiratory pathway of peroxisomes,

where electrons from different metabolites reduce O2 and energy is released in the form
of heat [12]. The major metabolic process producing H2O2 in peroxisomes is β–oxidation
of fatty acids and the central role of peroxisomes is to reduce H2O2 [11,12]. MiRNAs
can target and influence the level of enzymes responsible for production and scavenging
of ROS. In this review we summarize the cellular systems that regulate production and
scavenging of ROS and RNS and describe the role of miRNAs as modulators of antioxidant
effects. We focus on miRNAs that directly target and regulate enzymes responsible for
production and neutralization of ROS and RNS and the possible role of these miRNAs
in cellular redox homeostasis, and also on the influence of ROS on miRNA levels and on
mutual regulation of ROS and miRNAs.

2. ROS/RNS Production and Neutralization in Cells

Enzymes producing and reducing ROS/RNS are important participants in systems
which maintain a physiological intracellular redox environment, and an example of such a
system which neutralizes superoxide is presented in Figure 1.

Figure 1. ROS/RNS production and neutralization. Cellular superoxide (O2
•−) and nitric oxide

(NO) and produced and further converted to peroxynitrite (ONOO-) by reaction of NO with O2
•−,

or to H2O2 by superoxide dismutase (SOD). H2O2 can be further neutralized to H2O by catalase
(CAT), glutathione peroxidase (GPX) and peroxiredoxins (PRDX) which are reduced by thioredoxins
(TXN). TXN is reduced by thioredoxin reductase (TXNRD) and glutathione (GSH) is reduced by
glutathione-disulfide reductase (GSR).

NADPH oxidases (NOX) are enzymes which by design generate ROS and therefore
regulate numerous redox-dependent signaling pathways which influence cell differenti-
ation, proliferation, apoptosis, and embryonic development [13]. Especially, NOX2 and
NOX4 are recognized for their role in ROS generation; NOX2 produces O2

•− whereas
NOX4-expressing cells contain detectable levels of H2O2 rather than O2

•− [14]. Cells may
produce O2

•− not only by enzymes from the NOX family [10] but in some circumstances
by nitric oxide synthases (NOS) [15], a group of three isoenzymes: neuronal (NOS1), in-
ducible (NOS2) and endothelial NOS (NOS3) [16]. The active NOS proteins consist of a
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reductase domain and an oxidase domain, coupled together by the calcium-dependent
enzyme calmodulin [17]. An important property of NOS is their ability to switch between
production of superoxide radical or nitric oxide which depends strictly on availability of
the cofactor tetrahydrobiopterin (BH4) and its oxidized form dihydrobiopterin (BH2) [18].
The substrate for production of nitric oxide (and L-citrulline) by NOS is L-arginine, whose
level is regulated by enzymes of the urea cycle [17,19].

To counteract increases in ROS caused by environmental factors, cells use a variety of an-
tioxidants which create anti-oxidative systems. Antioxidants are special molecules which can
convert and neutralize ROS and regulate their levels by various pathways [9], and the main
elements of such systems are small molecules which easily exchange electrons and whose
oxidized and reduced states create redox pairs. Examples are glutathione/glutathione disul-
fide (GSH/GSSG), oxidized/reduced nicotinamide adenine dinucleotide (NAD+/NADH),
and nicotinamide adenine dinucleotide phosphate (NADP+/NADPH) [20,21]. To keep the
proper concentrations of these molecules in their antioxidant form, cells contain enzymes
which are able to reduce them. The ratio of oxidized to reduced form of glutathione is often
used as an indicator of the redox state of the cell [20].

Superoxide radical is converted to H2O2 by superoxide dismutase (SOD) [22,23].
Nitric oxide competes for superoxide with SOD, and superoxide together with nitric oxide
can form peroxynitrite, which inhibits SOD. SOD is an element of an antioxidant system
protecting cells from harmful effects of the free radical O2

•− [22] by converting O2
•−

to H2O2 and oxygen. O2
•− can be neutralized by three isoforms of SOD, by CuZnSOD

(SOD1) in the cytosol, by MnSOD (SOD2) in mitochondria, and by extracellular SOD
(SOD3) in the extracellular space [22]. Hydrogen peroxide (H2O2) is believed to be the
most toxic ROS; it can pass freely through membranes and may induce direct breakage of
the phosphodiester backbone of DNA [24]. H2O2 can be converted to OH in the presence
of copper and iron [25,26] or may be neutralized to H2O by catalase (CAT), an antioxidant
present in almost all aerobic organisms [27], by interaction with glutathione peroxidase
(GPX) which converts glutathione to its oxidized GSSG form [20,28], and by enzymes
of the peroxiredoxin family (PRDX) which, by reducing H2O2, become oxidized [29,30].
Catalase is one of the oldest antioxidant enzymes, usually classified into three types: typical
catalases present in aerobically respiring organisms, catalase-peroxidases present in in
fungi, archebacteria and bacteria, and manganese catalases present exclusively in bacteria.
Typical catalases are divided into three subgroups, and catalase from the third group is
present in archebacteria, fungi, protists, plants, and animals; human catalase belongs to this
group [31]. Catalase is present mainly in peroxisomes of most cells (especially liver cells)
and in the cytoplasm (erythrocytes), it is absent in mitochondria although reported to be
present in mitochondria of rat heart [31,32]. In addition to neutralization of H2O2, catalase
decomposes peroxynitrite and oxidizes nitric oxide to nitrite [31,32]. Peroxiredoxins,
or more precisely thioredoxin peroxidases, are widely spread thiol-specific antioxidant
enzymes which constitute up to 1% of total proteins in some organisms [29] and serve as
antioxidants to H2O2 and ONOO-, and can reduce even more than 90% of cellular peroxides.
There are six members of the peroxiredoxin family, PRDX1, PRDX2, and PRDX6 localized
in the cytosol, PRDX3 localized in mitochondria, PRDX4 localized in the extracellular space,
and PRDX5 in mitochondria and peroxisomes [30]. We showed previously that for H2O2
neutralization different types of cells may activate different pathways, using the most
effective pathway through catalase, peroxiredoxins, or glutathione peroxidase [33,34].

To keep the whole system functioning, oxidized antioxidant molecules must be re-
duced once again and this is the role of glutathione reductases (GSR) [20] and thioredoxins
(TXN) [35]. Thioredoxins are small redox proteins which are reduced depending on
NADPH by thioredoxin reductase. They serve as donors of electrons and reduce cysteine
groups on proteins. Thioredoxin together with thioredoxin reductase constitutes a very im-
portant element of the peroxiredoxin and glutathione peroxidase antioxidant systems [35].
Peroxiredoxins, thioredoxins, and glutathione contain cysteines with thiol groups that exist
in the reduced (SH) or oxidized (S-S) form. Peroxiredoxins become oxidized when reducing
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H2O2, and then are reduced by thioredoxins which become oxidized. To keep the system
working, oxidized thioredoxins are reduced by thioredoxin reductases (TXNRD), essential
elements of the thioredoxin system, to restore their enzymatic activity [36]. The electrons
needed for these reduction reactions originate from reduction reactions permanently ongo-
ing during metabolic reactions [30,36]. Additional regulators of these systems are nitric
oxide synthase interacting protein (NOSIP) which interacts with NOS and limits NO pro-
duction [37], and thioredoxin interacting protein (TXNIP) which modulates the action of
the thioredoxin-thioredoxin reductase system and inhibits the antioxidative function of
thioredoxin, resulting in accumulation of ROS and cellular stress [35].

3. Roles of ROS and RNS in Cellular Processes

ROS are important regulators of many cell functions including proliferation and
cell death [38,39]; low levels usually promote cell growth whereas higher concentrations
lead to death or senescence [40–42]. For example, low doses of O2

•− stimulate prolif-
eration in leukemia and vascular smooth muscle cells (VSMCs) [43,44]. H2O2 itself in
low concentrations can promote growth of fibroblasts but increased concentrations cause
apoptosis [45,46]. A growth-stimulating effect of H2O2 was also observed in yeast and in
bacteria [47,48].

Cell survival can be affected through modification of redox-sensitive signaling proteins
connected to survival through signal transduction pathways such as MAPK, PI3K/Akt,
or p53, through transcription such as NF-κB, Ap-1, or Nrf-2, or through execution such as
caspases, Bcl-2, or cytochrome c [49]. Among interesting is the transcription factor Nrf-2, re-
sponsible for regulating expression of many redox-related enzymes including those related
to glutathione synthesis and regeneration (GCLC, GCLM, GSS), SOD1, CAT, and also many
redox cycling enzymes (e.g., TXN, PRDX) [50]. Biogenesis of miRNA is affected by cellular
redox status so changes in Nrf-2 activity may impact miRNA levels, but Nrf-2 expression
and activity is regulated by miRNAs which indicates that there is an intricate codependent
relationship among Nrf-2, ROS and miRNAs [51]. Some miRNAs, like miR-27a, miR-
142-5p, miR-144, and miR-153 downregulate Nrf-2 protein levels but directly targeting
Nrf-2 mRNA, but other miRNAs, e.g., miR-200a, target Nrf-2 inhibitor (Keap1) and lead to
increased expression of Nrf-2 [51]. The influence of ROS on cell viability, proliferation and
apoptosis was also noted in the studies of Kitamoto et al., which show that inhibition of
NOX2 and subsequently of ROS promote apoptosis, whereas ROS production by NOX2
increase cell growth in osteosarcomas [52]. Thioredoxin overexpression was found to
increase cancer cell growth and inhibit apoptosis [53]. Proliferation can be also affected
through redox regulation of chromatin remodeling, which affects death/survival signals
at the transcriptional level. Postranscriptional modifications such as phosphorylation of
death/survival signaling proteins can be also mediated by redox changes [49]. ROS levels
which define cellular redox state affect the oxidation of cysteines in proteins which control
progression through the cell cycle [54]. Changes in ROS/RNS levels induce changes in
redox status which can influence reactions of oxidation, nitrosylation, and nitration of
cellular proteins [55]. For example, an increase in oxidative state may cause activation of
cytochrome c and then of caspases which leads to apoptosis [49]. H2O2-mediated oxidation
of cysteines in Cdc25C, PTEN, and LMW-PTP leads to formation of inter-cysteine disulfide
bonds and results in inactivation of these phosphatases, which in turn affects cell cycle
progression through G2/M and cell survival and growth [56]. S-nitrosylation, a modifi-
cation of proteins by NO that depends on the cellular localization of NOS, directly alters
the activity of NF-κB, an enzyme that regulates activation of genes related to inflamma-
tory responses, apoptosis, cell adhesion, differentiation, and proliferation [57]. Similarly,
nitration of tyrosine by ONOO− is also related to cellular localization of NOS, and affects
the activity and promotes degradation of proteins such as MnSOD, P53 (tumor suppressor
protein), and IκBα (NF-κB inhibitor protein) [58].
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4. Role of miRNAs in Regulation of ROS/RNS-Producing Enzymes

The mRNAs for enzymes involved in production and neutralization of ROS and
RNS presented in Figure 1 contain sequences which are targeted by multiple miRNAs.
Figure 2 shows those miRNAs which target transcripts for enzymes connected to ROS/RNS
production, such as NOX and NOS, and to conversion from O2

•− to H2O2 such as SOD.
The influence of miRNAs on the targeted enzymes has been confirmed experimentally, as
illustrated below in examples focusing on miRNAs which influence proliferation and/or
apoptosis modulated by ROS/RNS levels.

Figure 2. The multiple miRNAs which target enzymes responsible for production (NOX and NOS) and neutralization of
superoxide (O2

•−) and nitric oxide (NO), together with superoxide dismutase (SOD) which converts O2
•− to H2O2.

4.1. NADPH Oxidases

Several miRNAs (miR-34a, miR-320, and miR-652) affect ROS production by target-
ing NOX transcripts. Overexpression of miR-320 in ischemic cerebral neurons reduces
NOX2 levels and indirectly increases SOD, CAT, and GPX levels and NOX2 overexpression
counteracts these effects; miR-320-mediated NOX2 inhibition causes reduced ROS levels,
resulting in induced proliferation and inhibited apoptosis [59]. A second miRNA that im-
pairs ROS production by inhibiting NOX2 expression is miR-652. Overexpressed miR-652
protects brain tissues of rats with middle cerebral artery occlusion (MCAO) from apoptosis,
as shown by decreased caspase-3 activity [60]. Accordingly, NOX2 was identified as a posi-
tive regulatory target of miR-34a in A172 glioma cells, where its overexpression induced
apoptosis and decrease cell viability through enhanced NOX2 and ROS production [61].

NOX4 is targeted by miR-23b, miR-99a, miR-137, miR-182-5p, miR-423-5p, and miR-
590-3p [62–65]. MiR-23b can protect GABAergic neurons from cell death and its increase
induced TXNL1 and GPX3 gene expression [62]. Overexpression of miR-423-5p in mouse
podocyte cells inhibited ROS generation, enhanced cell viability, and suppressed apop-
tosis [63]. By targeting NOX4, miR-99a reduced NOX4 levels and also migration and
invasion in lung adenocarcinoma and inhibited xenograft growth [64]. In prostate cancer
cells overexpression of miR-137 inhibited NOX4, suppressed proliferation, and promoted
apoptosis [65]. Overexpression of miR-182-5p increases viability and proliferation and re-
duces apoptosis in H2O2-treated human lens epithelial cells through regulating NOX4 and
p38 MAPK signaling and can suppress H2O2-induced oxidative stress through restoring
SOD and GPX activity [66]. Downregulation of miR-590-3p increased pyroptosis through
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its targets NLRP1 and NOX4 and activation of the NOX4/ROS/TXNIP/NLRP3 pathway in
human retinal microvascular endothelial cells, and NOX4 overexpression, caused increased
production of TXNIP [67].

Additionally, transcripts for NOX enzymes are targeted by several miRNAs, yet no
connection to apoptosis or cell growth is observed. NOX-targeting miRNAs include miR-
9-5p in fibroblasts [68], miR-17 in human microglial cells [14], miR-21a-3p in a mouse
endothelial cell tumor model [69], miR-25 in bone marrow mesenchymal stem cells [70]
and primary cardiomyocytes [71], miR-99a in LO2 hepatocytes [72], miR-106b, miR-148b
and miR-204 in macrophages [73], miR-146a in human aortic endothelial cells [74], and
miR-337-3p in tendon-derived stem cells [75].

4.2. Nitric Oxide Synthases

NOS expression can be regulated by different sets of miRNAs. NOS3 expression
is down-regulated by miR-155 in VSMCs resulting in accelerated migration and prolif-
eration, in human leukemia monocytes, and in human umbilical vein endothelial cells
(HUVECs) where miR-155 has a pro-apoptotic effect [76–79]. MiR-335 targets the 3′-UTR
of NOS3 mRNA in trophoblast cells and prostate cancer, and may significantly decrease
the ability to migrate of these tumor cells [80,81]. MiR-543 and miR-584 in trophoblast
cells and miR-335 in prostate cancer cells down-regulate NOS3 expression and reduce
their migratory capability [80,81]. The effects of miR-24, which targets NOS3 mRNA, vary
depending on the cell line [82]; in endothelial cells it is related to decreased proliferation
and increased apoptosis, but in contrast in mouse cardiac fibroblasts and cardiomyocytes it
leads to lower apoptosis [82]. In endothelial cells miR-200c targets NOS3 and many other
enzymes, including PRDX2, which results in lowered NO production and decreased H2O2
neutralization leading to apoptosis [83]. In HUVECs, miR-31-5p targets NOS3 mRNA,
which results in decreased proliferation and migration of endothelial cells under inflam-
matory conditions [84]. NOS3 is also targeted by other miRNAs including miR-195 and
miR-582 in human microvascular endothelial cells [85], miR-15b, miR-16 and miR-30b [86]
and miR-200b [87] in HUVECs, miR-214-3p in human renal epithelial cells [88], but their
effect on cell survival has not been reported. No effect on cell survival was seen when
NOS1 was inhibited by miR-31 in myoblasts [84] or atrial myocytes [89], by miR-34c or
miR-708 in myoblasts [90], by miR-146a in Caucasian prostate adenocarcinoma or human
glioblastoma astrocytoma [91,92], or when NOS2 was inhibited by miR-939 in primary
human hepatocytes [93], by miR-29a/b/c in skeletal muscle cells [94], or by miR-26a-5p in
human osteoarthritis chondrocytes [95]. NOSIP can inhibit the enzymatic activity of NOSs,
and is down-regulated by miR-372 in human neural stem cells [96].

Data collected for different miRNAs targeting NOX and NOS suggest that these two
enzymes may regulate cell survival through generation of ROS/RNS and exhibit opposite
effects connected with both pro-survival and pro-apoptotic signals. In Tables 1–3 the
term ‘pro-survival’ includes increase of proliferation and decrease of apoptosis and ‘pro-
apoptotic’ the opposite. Reduction of NOX by miRNAs and subsequently lower levels
of ROS, inhibited apoptosis and increased proliferation (white rows); however, for lung
adenocarcinoma and prostate cancer (grey rows) the effect was opposite. NOX reduction
by miRNAs induced apoptosis and inhibited proliferation and tumor growth. The data in
Table 1 (grey rows) concerns mainly cancers, however this response is not related only to
cancer, and NOX4 protected vascular function in VSMCs [97].

Reduction of NOS by the same miRNA can lead to vastly different survival in different
cell types: VSMCs, cardiomyocytes and cardiac fibroblasts express pro-survival behavior
when their NOS3 expression is reduced by miRNAs, while in HUVECs the response to the
same miRNAs is opposite. This may be related to the ability of NOS’s to switch between
production of NO and O2

•−, which is sensitive to a cell’s redox environment, and thus
inhibition of NOS by the same miRNA may lead to production of different types of ROS in
different cell types.
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Table 1. Cellular effects of an increased level of miRNAs which target transcripts for enzymes producing ROS and RNS.
MiRNAs in grey rows show an opposite effect on cell survival to those in white rows.

Targeted Transcript and miRNAs Cellular Effect Cell Types References
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5. MiRNAs Participating in Regulation of H2O2 Level

Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 3)
and thus influence the levels of H2O2 in cells. Below we give examples of experiments
which focus on miRNAs influencing proliferation and/or apoptosis.

Figure 3. MiRNAs targeting enzymes responsible for neutralizing H2O2. CAT, catalase; GPX, glutathione peroxidase; PRDX,
peroxiredoxin; TXN, thioredoxin; TXNRD, thioredoxin reductase; TXNIP, thioredoxin interacting protein.

5.1. Regulation of Superoxide Dismutases by miRNAs

MnSOD (SOD2) is targeted by several miRNAs including miR-17-3p, miR-23a, miR-
146a, miR-212, miR-222, miR-335, miR-382-5p, and miR-575 [98–106]. In prostate cancer
cells miR-17-3p targets MnSOD, GPX2, and TXNRD2 leading to ROS accumulation [98].
Upregulation of miR-17-3p sensitized these cells to ionizing radiation via MnSOD, TXNRD2
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and GPX [99]. Similarly, enhanced cell death occurs upon miR-17-3p-mediated inhibition of
MnSOD and TXNRD2 in human retinal pigment epithelial cells (ARPE-19) [100]. Inhibition
of MnSOD by miR-23a lead to apoptosis in cardiomyocytes [101] and by miR-575 in villi
cells [102]. Inhibition of miR-146a reverses the decrease of viability in H2O2-treated rat
adrenal gland PC12 cells. Overexpression of miR-212 inhibits migration and invasion
in vitro and formation of intrahepatic and pulmonary metastases in vivo in colorectal
cancer cells through targeting MnSOD [103]. MiR-335 inhibition significantly reduces
ROS levels and its overexpression leads to senescence in mesangial cells. Such behavior
can be connected to both miR-335 which targets SOD2 and to miR-34a which targets
TXNRD2 [107]. Augmented oxidative stress in mesangial cells was observed when miR-377
is overexpressed [108].

In contrast to the enhanced apoptosis described above after SOD2 inhibition by
miR-222, resulted in inhibition of apoptosis in oral tongue squamous cell carcinoma was
observed and cell invasion was decreased, possibly through regulation of MMP1 expres-
sion [104]. Similarly, SOD2 was likewise identified as a target of miR-222 in cardiomy-
ocytes [105]. In line with this, a decrease in SOD2 and further ROS accumulation was
reported after overexpression of miR-382-5p in primary myelofibrosis CD34+ cells, linked
to deregulation of the TGF-β1/miR-382-5p/SOD2 pathway [106]. ROS overproduction
contributed to enhanced oxidative stress and inflammation. MiR-382-5p overexpression
increased proliferation of CD34+ cells while its inhibition reduced oxidative stress and
decreased cell proliferation of CD34+ cells [106].

Another miRNA which markedly influences superoxide and hydrogen peroxide
metabolism cells is miR-21, which targets SOD3 and through TNFα indirectly attenuates
levels of SOD2 in human bronchial epithelial. Levels of H2O2 were lower than those of
O2
•− after introduction of miR-21 than in control, non-treated cells, for both irradiated and

unirradiated cells. MiR-21 overexpression caused a significant increase in colony formation
compared both to control cells with a normal level of miR-21 and to unirradiated cells with
overexpressed miR-21 [109].

Additionally, SOD enzymes are targeted by several miRNAs, although neither cell
growth nor apoptosis are affected; miR-24, miR-125a-3p and miR-872 in Sertoli cells [110]
and miR-206 in primary mouse tracheal epithelial cells [111].

Table 2. Effects of increased levels of miRNAs which target transcripts of SOD enzymes. MiRNAs in grey rows have an
opposite effect on cell survival to those in white rows.

Targeted Transcript
and miRNAs Cellular Effect Cell Types References

SOD2

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 22 
 

 

switch between production of NO and O2.-, which is sensitive to a cell’s redox environ-
ment, and thus inhibition of NOS by the same miRNA may lead to production of different 
types of ROS in different cell types. 

Table 1. Cellular effects of an increased level of miRNAs which target transcripts for enzymes producing ROS and RNS. 
MiRNAs in grey rows show an opposite effect on cell survival to those in white rows. 

 
Targeted transcript and miRNAs Cellular Effect Cell Types References 

NOX2 
 
 
 
 
 
 
 
 
 
 
 

┣ 

 

 

 

 

 miR-320, miR-652 

Pro-survival Cerebral neurons, brain tissues of rats [59,60] 

NOX4┣ mir-23b, miR-182-5p, miR-
423-5p, miR-590-3p Pro-survival 

Mouse spinal cord, human lens epithelial cells, 
mouse podocytes, human retinal microvascular 

endothelial cells 
[62,63,66,67] 

NOX4┣ miR-99a, 
miR-137 

Pro-apoptotic Lung adenocarcinoma, prostate cancer [64,65] 

NOS3┣ miR-24, 
miR-155 

Pro-survival VSMCs, cardiomyocytes, cardiac fibroblasts [76,82,84] 

NOS3┣ miR-24, miR-31-5p, miR-
155, 

miR-200c, miR-335, 
miR-543, miR-584 

Pro-apoptotic 
HUVECs, prostate cancer, trophoblasts, human 

microvascular endothelial cells 
[77,78,80–84] 

NOSIP┣ miR-372 Pro-apoptotic Human neural stem cells [96] 

5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-17-3p, miR-23a,
mir-146a, miR-212, miR-575

Pro-apoptotic
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cardiomyocytes, colorectal cancer

[98–103,112]
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5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-222,
miR-382-5p

Pro-survival Oral tongue squamous cell carcinoma,
primary myelofibrosis CD34+ cells [104,106]

SOD3
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5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-21 Pro-survival Human bronchial epithelial cells [109]

Excessed levels of ROS cause cell death or senescence, and the superoxide dismutases
can affect cell survival (Table 2) However, it seems that these effects are cell-type specific.

5.2. Regulation of Catalase, Glutathione Peroxidases, Peroxiredoxins and Thioredoxin System
Enzymes by miRNAs

Catalase transcripts are targeted by miR-30b and miR-551[113,114]. The level of miR-
30b was shown to increase after H2O2 treatment and to bind to the 3′UTR of catalase
mRNA causing decrease of protein levels in ARPE-19 cells [113,114]. Catalase expression
is also inhibited by miR-551b in human lung cancer cells and the miR-551b/CAT pathway
can be involved in acquired apoptosis resistance and chemoresistance through interaction
with MUC1 [115].



Int. J. Mol. Sci. 2021, 22, 6022 9 of 21

Three of the eight members of the GPX family have been identified as targeted by
miRNAs. The transcript of GPX1 is targeted by miR-181a and can reduce H2O2-induced
apoptosis and ROS production when inhibited in cardiomyocytes [116]. GPX1 is also
linked to impaired oxidant response in endothelial cells and associated with miR-185
upregulation by which is directly targeted [117]. MiR-214, targets GSR whose inhibition
leads to induction of oxidative stress in liver cells [118]. In addition to SOD2, miR-17-3p
also targets GPX2 in prostate cancer cells [98,99]. GPX3 is targeted and downregulated
by miR-196a which is overexpressed in non-small-cell lung carcinoma (NSCLC) cancers,
leading to attenuation of tumorigenicity and cancer cell growth through upregulation of
GPX3. Development of NSCLC cells may be promoted by activation of the JNK pathway
through downregulation of GPX3 [119].

The PRDX family members can be targeted by multiple miRNAs. PRDX1 is a direct
target of miR-510 and miR-596. Overexpression of miR-510 leads to increased cell growth,
migration, invasion and colony formation in breast cancer cells, possibly through activation
of the Akt signaling pathway. Treatment of breast cancer cells expressing miR-510 with
H2O2 led to increased cell death [120]. Overexpression of miR-596a can suppress cell
proliferation, migration, and invasion in gastric cancer [121].

PRDX2 can be inhibited by miR-122 and miR200b/c. MiR-122a overexpression inhibits
cell growth and induces apoptosis in hepatocellular carcinoma through direct inhibition
of PRDX2 [122]. MiR-200c is involved in radiosensitivity of lung cancer cells by direct
regulation of oxidative stress; cells overexpressing miR-200c are more sensitive to radiation
and show significantly increased ROS levels and p21 expression. PRDX2 promotes p21
upregulation in H460 lung cancer cells [123]. PRDX2 is also targeted by miR-200b, which
suppress growth, invasion and metastasis in colorectal cancer and is connected to enhanced
chemotherapeutic resistance through disruption of the c-Myc/miR-200b-3p/PRDX2 regu-
latory loop [124].

PRDX3 is a direct target of miR-23b, miR-26a-5p, and of miR-383. Inhibition of both
miR-23b [125–127] in prostate cancer and leukemia and miR-26a-5p in leukemia [116]
can scavenge excessive levels of ROS by increase of PRDX3 gene expression. MiR-383
overexpression decreased cell growth and increased apoptosis through negative regulation
of PRDX3 in medulloblastoma [127].

PRDX6 can be regulated by miR-24-3p, miR-214, miR-199a, and miR-371-3p. MiR-
24-3p inhibited cell growth, migration, and invasion and promoted apoptosis in gastric
cancer cells and overexpressed PRDX6 reversed this effect [128]. Overexpression of miR-
199a-3p enhanced proliferation of leukemic cells [129]. MiR-214, which targets PRDX6,
was elevated after ionizing radiation and PRDX6 knockdown increased apoptosis after
radiation in rat skin [130]. PRDX6 is also targeted by miR-371-3p, whose overexpression in
a PC9 xenograft mouse model moderately reduced growth rate [131].

TXN1 was targeted by miR-525-3p and this miRNA appeared to be an important
radiosensitivity regulator in EA, HeLa, RPE, and U2-OS cells exposed to ionizing radiation.
Unexpectedly, the increase of miR-525-3p promoted survival of these cells after irradia-
tion [132]. MiR-27a/b targets TXN2, whose knockdown can inhibit efficient cell growth in
cells infected with adenovirus [133].

One of the miRNAs which target TXNRD1 transcripts is miR-23a/b which is involved
in skeletal muscle differentiation, and TXNRD1 depletion reduces myoblast growth [134].
Overexpression of miR-124 repressed TXNRD1 and decreased the surviving fraction of
radiation-resistant lung cancer cells. Downregulation of miR-124 mediated radiation
resistance through targeting TXNRD1 [135] whose 3′-UTR is also targeted by miR-125a-5p,
and this downregulation improves TXNRD1’s antioxidant function in endothelial cells
and H2O2 treatment can inhibit miR-125a [136]. Overexpression of miR-125a-5p in head
and neck cancer decreased the surviving fraction after irradiation [137]. Regulation of the
TXNRD1 gene can be also influenced by miR-125b-5p in hepatocellular carcinoma, where
the level of miR-125b-5p is reduced; miR-125b-5p inhibited cell proliferation, migration,
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and invasion [138]. MiR-500-5p in breast cancer, influence oxidative stress response and
cell survival through targeting the TXNRD1 and NFE2L2 genes [139].

TXNRD2 is targeted by MnSOD-targeting miRNAs including miR-17-3p (described in
the Chapter on SOD) [98–100]. MiR-34a mimics induce a premature senescence phenotype
in young mesangial cells [107]. Thounaojam et al. showed that miR-34 can target TXNRD2
transcripts but not those of SOD2, and miR-34a promotes senescence of human retinal
microvascular endothelial cells (HuRECs) [140].

Upregulation of the TXNIP gene can increase ROS production and can be targeted by
miR-17 in myocardial cells of diabetic mice. The high glucose level in diabetes decreases
miR-17 levels and induces apoptosis [141]. MiR-20a is highly expressed in rheumatoid
arthritis [142] and miR-20b in HUVECs [143], and they subsequently silence TXNIP. These
miRNAs can enhance cell viability and inhibit senescence [142,143]. In BV2 microglial cells
miR-152 overexpression caused a decrease in neuronal cell death [144]. Luciferase reporter
assays confirmed that miR-128 targets TXNIP transcripts in pancreatic beta cells [145]. A
miR-135a mimic reduced levels of apoptosis in myocardial cells of diabetic mice [146] and
a similar effect was observed with miR-148a in alcoholic liver disease [147]; alcohol can
decrease miR-148a expression in hepatocytes and subsequently TXNIP is overexpressed. It
can induce hepatocyte pyroptosis [147]. MCF7 cells transfected with pre-miR-373 showed
an increase of invasiveness and metastasis but not of proliferation [148]. MiR-224, another
miRNA identified as targeting TXNIP, promotes pancreatic cancer cell proliferation and mi-
gration, elevating levels of HIF1α by targeting TXNIP independently of TXN and ROS [149].
MiR224/452 is involved in melanoma progression through suppression of TXNIP, and its
overexpression causes enhancement of migration and invasion. miR-224/452-mediated
downregulation of TXNIP is required for E2F1-induced EMT and invasion [150]. In addi-
tion, miR-411-5p overexpression in NSCLC cells positively influences cell proliferation and
migration and decreases apoptosis through targeting both TXNIP and SPRY4 mRNAs [151].

Table 3. Effects of increased levels of miRNAs which target transcripts of H2O2-regulating enzymes. miRNAs in grey rows
show opposite effects on cell survival to those in white rows.

Targeted Transcript and Increased miRNAs Cellular Effect Cell Types Reference
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miR-17-3p Pro-apoptotic Prostate cancer [98,99]
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 miR-320, miR-652 

Pro-survival Cerebral neurons, brain tissues of rats [59,60] 

NOX4┣ mir-23b, miR-182-5p, miR-
423-5p, miR-590-3p Pro-survival 

Mouse spinal cord, human lens epithelial cells, 
mouse podocytes, human retinal microvascular 

endothelial cells 
[62,63,66,67] 

NOX4┣ miR-99a, 
miR-137 

Pro-apoptotic Lung adenocarcinoma, prostate cancer [64,65] 

NOS3┣ miR-24, 
miR-155 

Pro-survival VSMCs, cardiomyocytes, cardiac fibroblasts [76,82,84] 

NOS3┣ miR-24, miR-31-5p, miR-
155, 

miR-200c, miR-335, 
miR-543, miR-584 

Pro-apoptotic 
HUVECs, prostate cancer, trophoblasts, human 

microvascular endothelial cells 
[77,78,80–84] 

NOSIP┣ miR-372 Pro-apoptotic Human neural stem cells [96] 

5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-596 Pro-apoptotic Gastric cancer [121]

PRDX2
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Pro-survival Cerebral neurons, brain tissues of rats [59,60] 
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[62,63,66,67] 

NOX4┣ miR-99a, 
miR-137 

Pro-apoptotic Lung adenocarcinoma, prostate cancer [64,65] 

NOS3┣ miR-24, 
miR-155 

Pro-survival VSMCs, cardiomyocytes, cardiac fibroblasts [76,82,84] 

NOS3┣ miR-24, miR-31-5p, miR-
155, 

miR-200c, miR-335, 
miR-543, miR-584 

Pro-apoptotic 
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microvascular endothelial cells 
[77,78,80–84] 
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5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-122a, miR-200b, miR-200c Pro-apoptotic Hepatocellular carcinoma, colorectal cancer,
lung cancer [122–124]

PRDX3
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[62,63,66,67] 

NOX4┣ miR-99a, 
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Pro-apoptotic Lung adenocarcinoma, prostate cancer [64,65] 
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Pro-survival VSMCs, cardiomyocytes, cardiac fibroblasts [76,82,84] 
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miR-543, miR-584 

Pro-apoptotic 
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microvascular endothelial cells 
[77,78,80–84] 
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5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-383 Pro-apoptotic Medulloblastoma [127]

PRDX6
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5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-199a-3p Pro-survival Leukemia [129]

PRDX6
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[62,63,66,67] 

NOX4┣ miR-99a, 
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Pro-apoptotic Lung adenocarcinoma, prostate cancer [64,65] 

NOS3┣ miR-24, 
miR-155 

Pro-survival VSMCs, cardiomyocytes, cardiac fibroblasts [76,82,84] 

NOS3┣ miR-24, miR-31-5p, miR-
155, 

miR-200c, miR-335, 
miR-543, miR-584 

Pro-apoptotic 
HUVECs, prostate cancer, trophoblasts, human 

microvascular endothelial cells 
[77,78,80–84] 

NOSIP┣ miR-372 Pro-apoptotic Human neural stem cells [96] 

5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-24-3p, miR-371 Pro-apoptotic Gastric cancer
PC9 xenograft mouse model [128,131]

TXN1
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[62,63,66,67] 

NOX4┣ miR-99a, 
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NOS3┣ miR-24, miR-31-5p, miR-
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miR-200c, miR-335, 
miR-543, miR-584 

Pro-apoptotic 
HUVECs, prostate cancer, trophoblasts, human 

microvascular endothelial cells 
[77,78,80–84] 

NOSIP┣ miR-372 Pro-apoptotic Human neural stem cells [96] 

5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-525-3p Pro-survival EA, HeLa, RPE, U2-OS [132]

TXNRD1
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microvascular endothelial cells 
[77,78,80–84] 

NOSIP┣ miR-372 Pro-apoptotic Human neural stem cells [96] 

5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-23a/b, miR124,
miR-125a/b-5p

Pro-apoptotic
Skeletal muscle, lung cancer, head and neck

cancer, hepatocellular carcinoma, human
pigment epithelial cells, prostate cancer

[98–100,134,135,137,138]

TXNRD2
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[62,63,66,67] 
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NOS3┣ miR-24, miR-31-5p, miR-
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miR-543, miR-584 

Pro-apoptotic 
HUVECs, prostate cancer, trophoblasts, human 

microvascular endothelial cells 
[77,78,80–84] 
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5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-17-3p Pro-apoptotic Mesangial cells [107]

TXNIP
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5. MiRNAs Participating in Regulation of H2O2 Level 
Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-20b, miR-135a, miR-152,
miR-224, miR-224/452, miR-373, miR-411-5p

Pro-survival HUVECs, microglial BV2 cells, pancreatic
cancer, melanoma, breast cancer, NSCLC [143,144,146,148–151]

** TXNIP
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Enzymes responsible for H2O2 neutralization are targeted by many miRNAs (Figure 

3) and thus influence the levels of H2O2 in cells. Below we give examples of experiments 
which focus on miRNAs influencing proliferation and/or apoptosis. 

miR-17
miR-148a

Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147]

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected.
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Inhibition of antioxidant enzymes increases ROS levels and intuitively should neg-
atively influence cells and cause their death. Changes of GPXs, PRDXs and thioredoxin
system gene transcripts by miRNA regulation leads to changes in cellular ROS and can
affect cell survival (Table 3). In some cells such as NSCLC, breast cancer, or leukemia cells
a decrease of antioxidant enzymes does not lead to apoptosis but has rather a pro-survival
effect, perhaps reflecting differences in the optimal level of ROS required for specific cellular
processes in different cell types.

6. Mutual Regulation of Elements of the Redox System
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and
Their Targets

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively
stable oxidant, has been used to study the different effects of increased ROS levels. In
cells exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes
responsible for ROS/RNS production and neutralization were altered; however, the re-
sponse to H2O2 could be different in different types of cells and miRNAs could be either
down- or up-regulated after H2O2 treatment depending on H2O2 dose. For example,
in ARPE-19 cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at
concentrations up to 200 µM, but downregulated at higher concentrations [153] whereas in
rat cardiomyocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2
and upregulated above this concentration [116]. Similar dose-dependent effects were also
observed for miRNAs targeting transcripts of other redox regulating enzymes including
NOX, NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized
in Table 4.

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems.

miRNA and Targeted Transcripts H2O2 Effect on
miRNA Level H2O2 Dose Cell Type Ref.

miR-17-3p
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SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
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SOD2, GPX2, TXNRD2
Up

Down
0–100 µM
200 µM ARPE-19 cells [100]

miR-21
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Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

SOD2, TXNRD1
Up

Down
100–200 µM
300–500 µM ARPE-19 cells [153]

miR-24
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

NOS3, SOD1, PRDX6 Up 400 µM Human lens epithelial cells [157]

miR-30b
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

NOS3, CAT Up 200 µM ARPE-19 cells [113]

miR-122
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

PRDX2 Down 600 µM ARPE-19 cells [158]

miR-135a
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

TXNIP Up 0–1 mM Rat cardiomyoblasts [159]

miR-146a
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

NOX4, NOS1, SOD2 Up 0–200 µM Rat PC12 cell from adrenal gland [112,160]

miR-155
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

NOS3 Up 0–500 µM VSMCs [161]

miR-181a
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

GPX1
Down

Up
0–100 µM

200–600 µM Rat cardiomyocytes H9c2 [116]

miR-200c
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

NOS3, PRDX2
Up 400 µM Normal human liver LO2 cells [162]

Up 200 µM HUVECs [83]

miR-214
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

NOS3, PRDX6, GSR
Up 0–100 µM/L Cardiomyocytes [154]

Up 0–600 µM/L Skeletal myoblasts [155]

miR-500a
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TXNRD2┣ miR-17-3p Pro-apoptotic  Mesangial cells [107]  
TXNIP┣ miR-20b, miR-135a, miR-
152, miR-224, miR-224/452, miR-373, 

miR-411-5p 
Pro-survival 

HUVECs, microglial BV2 cells, pancreatic 
cancer, melanoma, breast cancer, NSCLC 

[143,144,146,148–151] 

** TXNIP┣ miR-17 
miR-148a Pro-apoptotic Myocardial cells of diabetic mice, hepatocytes [141,147] 

** miR-17 and miR-148a levels were decreased, and thus a pro-apoptotic effect is expected. 

6. Mutual Regulation of Elements of the Redox System 
6.1. Changes of Cellular H2O2 Levels Are Accompanied by Changes in Levels of miRNAs and 
Their Targets 

Exposure of cells to different oxidative stressors such as ionizing radiation, H2O2, or 
etoposide induces different cellular responses [152] and in many studies H2O2, a relatively 
stable oxidant, has been used to study the different effects of increased ROS levels. In cells 
exposed to H2O2, the levels of multiple miRNAs that target transcripts of enzymes respon-
sible for ROS/RNS production and neutralization were altered; however, the response to 
H2O2 could be different in different types of cells and miRNAs could be either down- or 
up-regulated after H2O2 treatment depending on H2O2 dose. For example, in ARPE-19 
cells miR-23a which targets SOD2 and TXNRD1 is upregulated by H2O2 at concentrations 
up to 200 µM, but downregulated at higher concentrations [153] whereas in rat cardiomy-
ocytes miR-181a which targets GPX1 is downregulated below 100µM H2O2 and upregu-
lated above this concentration [116]. Similar dose-dependent effects were also observed 
for miRNAs targeting transcripts of other redox regulating enzymes including NOX, 
NOS, CAT, GPX, GSR, PRDX, TXN and TXNRD [83,116,154,155] as summarized in Table 
4. 

Table 4. H2O2-induced changes of levels of miRNAs which regulate enzymes of redox systems. 

miRNA and Targeted Transcripts 
H2O2 Effect on 
miRNA Level H2O2 Dose Cell Type Ref. 

miR-17-3p  
 
 
 
 
 
 
 
 
 

┫ 

 

 

 

 

 

 

 

 

 

SOD2, GPX2, TXNRD2 

Up 
Down 

0–100 µM 
200 µM 

ARPE-19 cells [100] 

miR-21 ┫SOD3 Up 0–200 µM VSMCs [156] 
miR-23a ┫SOD2, TXNRD1 

 
Up 

Down 
100–200 µM 
300–500 µM 

ARPE-19 cells [153] 

miR-24 ┫NOS3, SOD1, PRDX6 Up  400 µM Human lens epithelial cells [157] 
miR-30b ┫NOS3, CAT Up  200 µM ARPE-19 cells [113] 

TXNRD1 Up 0–10 µM Breast cancer MCF-7 cells [139]
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The increased levels of miRNAs which down-regulate the expression of antioxidant
enzymes, observed after exposure to an oxidant, are rather counterintuitive. However,
H2O2 plays a role of a signaling molecule and the observed changes may be elements
of the establishment of H2O2 levels specific for the cell type and conditions. Inhibition
of SOD would attenuate conversion of superoxide to H2O2, and in this way cells may
prevent excessive H2O2 levels and enhance other, dependent on superoxide, pathways of
the redox control system. Opposite to this inhibition of H2O2 neutralizers would enhance
the H2O2 signaling.

MiRNAs can be either down- or up-regulated after exposure to H2O2 depending on
the H2O2 concentration. Therefore, miRNA levels depend on ROS concentrations in cells.
ROS and miRNAs therefore create a kind of vicious circle or better a triangle where miRNAs
affect ROS levels through ROS/RNS enzymes while ROS (H2O2) affect miRNAs levels; they
are strictly connected and mutually influence each other. Together they create a system
of feedback loops which may administrate cell responses to environmental conditions
(Figure 4).

Figure 4. Mutual regulation of miRNAs and ROS through regulation of redox enzymes.

6.2. Unexpected Effects of Changes in Levels of ROS Producers and Neutralizers

One can find many examples where changes in the levels of ROS-producing enzymes,
achieved by different methods in specific cell types, are accompanied by unexpected
changes of the levels or activities of proteins participating in ROS neutralization. Table 4
shows examples of such non-intuitive responses of cells to an increase of ROS by increasing
levels of miRNAs which target mRNAs for antioxidant enzymes.

In some cell types the levels of NOX are negatively correlated with the levels of ROS
scavengers such as CAT, SOD, GPX and TXNL1 [59,62] and positively correlated with
TXNIP levels (which increases ROS levels through inhibition of TXN) [67]. In experiments
performed with mice spinal cord in which a decrease in NOX4 level (followed by a decrease
of ROS) was induced, the increase in expression levels of the antioxidants GPX3 and TXNL1
was also observed [62]. Similarly, miR-320 overexpression and the subsequent NOX2
decrease was accompanied with increased CAT, SOD and GPX contents in ischemic mice
cerebral neurons [59]. In human retinal micro-vascular endothelial cells the increase of
NOX4 level obtained by a decrease of miR-590-3p level was accompanied by an increase of
TXNIP which is an inhibitor of thioredoxins [67]. In the cells of rat brains, knockdown of
NOX4 was accompanied by enhancement of GPX and SOD levels [163]. In airway smooth
muscle cells, MnSOD expression was inhibited after increased expression of NOX4 [164].
In HUVECs loss of NOX4 reduced eNOS expression and NO production [97]. There are
further examples of mutual NOX and NOS influences. In VSMCs NOX2 overexpression
and increased ROS production led to a significant increase of NOS protein, and MnSOD
protein level was also increased [165]. A contrary effect was seen in studies of Gregg et al.
where CAT and SOD were downregulated after inhibition of NOX4 [166] and in work of
Jeong et al. where SOD and GPX were decreased after NOX4 knockdown [167].

6.3. The Same miRNAs May Regulate the Expression of Both ROS-Producing and
ROS-Neutralizing Enzymes

The data reviewed here show that responses of ROS/RNS systems in cells are at least
in part regulated by miRNAs. Surprisingly, the same miRNA may target mRNAs for
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proteins which have opposite effects. Figure 5 summarizes miRNAs which target mRNAs
coding for enzymes producing and neutralizing ROS. SOD enzymes are treated separately
because they neutralize superoxide but at the same time produce H2O2 which is an oxidant.
While most miRNAs target only ROS producers, ROS neutralizers, or SODs, some target
both mRNAs for enzymes producing and neutralizing ROS, and one miRNA which targets
all three types of redox enzyme.

Figure 5. miRNAs which target different parts of the redox control system (ROS-producing, ROS-
neutralizing, and SOD enzymes).

MiR-17-3p can target SOD2, TXNRD2 and GPX2 and miR-23a SOD2 and TXNRD1
transcripts affecting elements of conversion and neutralization of H2O2. MiR-23b can target
NOX4, TXNRD1 and PRDX3; miR-26a NOS2 and PRDX3; miR-30b NOS3 and CAT; miR-
200c NOS3 and PRDX2; miR-214 NOS3, PRDX6 and GSR transcripts affecting producing
and neutralizing steps of the redox system. MiR-146a targets NOX4, NOS1 and SOD2
and miR-335 targets NOS3 and SOD2 transcripts which affect superoxide production and
conversion. One miRNA (miR-24) affects all three elements of the ROS/RNS system, NOS3,
SOD1, and PRDX6 transcripts.

Changes of cellular concentrations of miRNAs which may simultaneously downreg-
ulate expression of ROS producers and neutralizers must be connected to circuits which
specifically regulate death and survival in particular conditions. Depending on the ROS
level, regulation may be organized in positive or negative feedback loops and thus cells
adjust their redox environment to achieve optimal levels for specific cellular processes.

7. Role of miRNAs as Regulators of Redox Balance in Cancer Development

It is well known that redox balance is impaired and that ROS levels are persistently
high in cancer cells. These increased levels may result in activation of oncogenes and
oncogenic signals [168], and some cancer cell lines can produce constitutively high levels
of ROS which result in their increased proliferation [43]. To cope with excess levels of ROS,
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cancer cells have developed systems by which they adapt through activation of antioxidant
pathways and development of efficient mechanisms for neutralization of ROS An increased
level of antioxidants in cells may promote tumor growth and metastasis; a small increase
enhances metastasis of melanoma or progression of lung cancer in mice [169,170]. Each
cell type has its own specific optimal levels of ROS which allow to regulate proliferation
and other processes. This can be obtained through adjustment of the levels of enzymes
responsible for production or neutralization of ROS and may be connected to miRNA
levels; for example, miR-99a and miR-137 which target ROS producers such as NOX
are downregulated in adenocarcinoma [55] and prostate cancer [65], respectively and
miR-212 which targets SOD2 is decreased in colorectal cancer, causing elevation of SOD2
levels [103]. Enzymes which are responsible for H2O2 neutralization can be either down-
or upregulated by miRNAs. MiR-510 and miR-596 target PRDX1, and miR-510 is elevated
in breast cancer [120] whereas miR-596 is downregulated in gastric cancers [121]. PRDX3
levels are elevated in prostate cancer and reduced by miR-23b [126]. Changes of PRDX3 are
also observed in medulloblastoma where miR-383 is underexpressed [127]. These varying
effects show that miRNAs may be responsible for pathological states in cells through
influencing redox systems and that adjustment of ROS levels is achieved in different ways
in different cell types.

The multiple examples of miRNAs which can directly target genes connected to redox
equilibrium indicate that miRNAs are important modulators of redox balance. Apparently
paradoxical phenomena sometimes occur and remain to be understood, such as when
oxidative stress induces an increase in the levels of miRNAs which target and suppress
expression of genes coding for enzymes which neutralize ROS, or when the same miRNA
targets genes coding for enzymes with opposing functions in redox regulation. Taken
together, the studies reviewed here indicate the existence of very sensitive, strictly regulated,
and conserved regulation mechanisms which allow cells to survive when exposed to
chronic oxidative stress.
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