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Abstract: Surface roughening is an important material surface treatment technique, and it is particu-
larly useful for use in secondary electron yield (SEY) suppression on metal surfaces. Porous structures
produced via roughening on coatings have been confirmed to reduce SEY, but the regulation strategy
and the influence of process parameters both remain unclear in the practical fabrication of effective
porous structures. In this paper, the effect of the surface morphology of porous coatings on the SEY
of aluminum alloy substrates was studied. Surface characterization and SEY measurements were
carried out for samples with a specific process technique on their surfaces. An exponential fitting
model of the correlation between surface roughness and the peak values of SEY curves, δm, was
summarized. Furthermore, an implementation strategy to enable low surface SEY was achieved from
the analysis of the effect of process parameters on surface morphology formation. This work will
aid our understanding of the effect of the irregular surface morphology of porous coatings on SEY,
thereby revealing low-cost access to the realization of an easy-to-scale process that enables low SEY.

Keywords: secondary electron yield (SEY); surface morphology; porous coatings; wet etching

1. Introduction

Secondary electron yield (SEY) is a yardstick used to weigh the magnitude of secondary
electron emission (SEE) due to incident electron bombardment, and high SEY may lead to
the multipactor effect, which causes serious problems such as reduced reliability, power
loss and even the failure of aerospace microwave devices [1–5]. This undesired effect is a
deleterious electron avalanche [6,7] that can be suppressed by the surface treatment, which
reduces SEY in practical engineering. This necessitates a fundamental understanding of the
various factors that affect SEY and the approaches used to change these factors via surface
treatment. In this work, understanding the effect of surface morphology on surface SEY by
changing parameters in the treatment process is of key importance.

Surface treatment on metals has long been researched, mainly including Alodine
coatings [8,9], inert metal coatings, surface amorphous carbonation [10–17] and rough-
ening [18–25]. In the field of rough surfaces, some aspects, such as calculations and
mechanisms, have been well-defined [26,27] while experimental studies continue to pros-
per. Montero et al. [16] introduced the roughness effect when studying the SEE properties
of graphene nanoplatelets. Surface roughness evolution, which induced low SEY in carbon-
coated Ag/Al substrates, was also investigated [28]. In recent years, Nistor V. et al. [29]
were the first to propose a microstructured gold/silver coatings scheme, and it was shown
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that the obtained stable porous structure could inhibit the SEY, reducing it to about 1.0,
in which the thickness of the gold plates was 2 µm. This was the first design of a method
that used a combination of metal coating and roughening; however, the appearance of the
gold/silver alloy was later thought to be harmful to device performance by D.D. Wu et al.
modified the microstructured gold/silver coatings scheme by adding TiO2 between the
gold and silver [30]. Furthermore, Montero I. et al. [31] achieved low SEY by applying
rough silver coatings to RF filters prone to multipactor discharge. In the studies discussed
above, all of the roughness was provided by the porosity of etched Ag. The porous silver
structure scheme was considered to be the most promising process, but previous studies
have not revealed a substantive basis for the implementation of parameters or a regulative
strategy for low SEY. Experimental reports regarding the effect of different schemes of the
process parameters on SEY for porous gold/silver coatings are still scarce.

Therefore, the research presented here takes this further. The goal of this work was to
explore the cascading effects of process parameters, the surface morphology of the resultant
porous coatings and their surface SEY in turn. More specifically, we were interested in
determining how different process parameters affected the etching degree to make the char-
acteristics of surface morphology differ and how these morphology characteristics affected
the surface SEY. Therefore, in this work, we used a combined process scheme of coating
and wet etching to prepare the porous coating. We characterized the surface morphology
of the porous coating on samples under different process parameter schemes and measured
the corresponding SEY curves as the function of primary electron energy to deduce what
type of surface morphology can suppress SEY and what parameter schemes produce this
morphology. In this work, we provided an insight into the effect of process parameters and
the surface morphologies of porous coatings on SEY. This provided abundant data, as well
as a complete description of surface roughness on porous coatings, which aid in gaining a
low-cost process strategy to achieve low SEY.

2. Materials and Methods

In this experimental preparation, the aluminum alloy 6061, which is one of the most
widely used aluminum alloys in aerospace devices, was chosen as a substrate for the
samples. It was machined into pieces with diameters of 20 mm × 15 mm × 1 mm, and a
three-step process of plating (Ni/Ag)–wet chemical etching–nanoscale gold coating was
then performed to obtain porous coating on the surfaces of these samples. As shown in
Figure 1, firstly, a 10 µm nickel layer and a 30 µm silver layer were coated via electroplating,
in which the silver layer was etched to achieve high aspect ratio surface roughness and
electrical conductivity, while the nickel layer was added between the silver layer and the
substrate to increase the adhesion. After that, these prepared samples were wet etched in a
mixed acid solution of diluted nitric acid (65 wt% HNO3), hydrofluoric acid (48 wt% HF)
and deionized water (18 MΩ) with the composition ratio of 1:0.288:2.712 in a high-density
polyethylene container. In this step, the etching temperature was changed from 15 ◦C to
40 ◦C using a water bath, and the etching lasted from 90 to 300 s. The control variable
method was used when changing the parameters of the etching conditions, which were
etching temperature and duration, to study the effects of different surface morphologies on
SEY because the etching intensity manipulated by these parameters affected the surface
morphology. All of the parameter schemes for the etching process were labeled using
the tags presented in Table 1. After etching was complete, the samples were placed in
an ultrasonic bath and underwent nitrogen drying, and at the end of the ultrasonic bath,
the disappearance of the white resultant attached to the surface was observed. Finally,
gold coatings with different thicknesses of 100 nm and 500 nm were deposited within the
±50 nm error range via magnetron sputtering. It was decided that the gold coatings would
have nanoscale thicknesses to balance the benefits and risks of gold/silver alloy in order
to prevent the porous silver surface from being oxidized. The DC power was set to 50 W,
and the working pressure was set to 0.45 Pa. In Figure 1, the cross-sectional structure of the
final multilayer samples is presented in an enlarged view.
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Figure 1. Schematic diagram of the sample structural evolution throughout the whole process.

Table 1. The labels for the schemes of experimental process parameters.

Parameters 15 ◦C 20 ◦C 25 ◦C 30 ◦C 35 ◦C 40 ◦C

90 s A1 B1 C1 D1 E1 F1
120 s A2 B2 C2 D2 E2 F2
150 s A3 B3 C3 D3 E3 F3
210 s A4 B4 C4 D4 E4 F4
300 s A5 B5 C5 D5 E5 F5

Moreover, in this work, the surface morphology was observed using a scanning elec-
tron microscope (SEM) (Gemini SEM 500, ZEISS, Jena, Germany), and the surface rough-
ness was measured using a three-dimensional color laser scanning microscope (VK9700K,
KEYENCE, Osaka, Japan). The secondary electron yield measurement was carried out using
a homemade SEY system, which can be adapted for the SEY measurement of insulators [32].

3. Results
3.1. The Characterization of Surface Morphology

The observation of samples’ surfaces from SEM images provides microscopic details
of porous coatings with which the characteristics of surface morphology can be analyzed.
Figure 2 presents the evolution of samples’ surface morphologies in the process using the
parameter scheme D4. The surface of the sample with nickel and silver layers in Figure 2a
appeared to be plate-like and smooth before wet etching. In Figure 2b, the microstructures
produced via etching made the surface rugged and porous. After gold sputtering, the edges
and corners of the porous microstructures become gentle and rounded into sphere-like,
granular clusters, as shown in Figure 2c. However, this characteristic of granular morphol-
ogy was not universal in all of the schemes. Figure 3 shows the porous microstructures
before and after gold coating was obtained using different schemes, and these schemes led
to a tremendous difference in surface morphology. The microstructure produced using the
A3 scheme before gold coating had islands and a flat top, while the structures produced
using the D4 scheme appeared to have porous granular morphologies with uniformity.
The resulting porous structures from different schemes were different in terms of porosity
and particle size, which was reflected in the difference in morphology before gold coating
between the E2 scheme and the D5 scheme. After gold coating, wrapping and filling with
the gold layer made the characteristics of surface morphology more obvious. However,
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the application of a 500 nm gold layer on the porous structures of the D5 scheme made it
become granular, and fine structures disappeared. With a further increase in the thickness
of the gold layer, the discrepancy in the surface morphology due to this thickness could
potentially affect the surface SEY that corresponded to different schemes.
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Figure 3. The SEM images of porous structures on samples using different schemes before and after
the 100 nm/500 nm gold coating.

In order to quantitatively describe the difference between these morphological features,
a parameter pc, called the characteristic pore size of a porous structure, was defined as the
average distance between adjacent visible particles in a sampling area on porous surface
structures. It could be calculated using Equation (1) according to SEM images, where n is
the number of pores and pi represents the size of each individual pore which is usually on
the micron scale. i circulates from 1 to n to calculate the average size of n pores in an image,
and the result is accurate to one decimal place. Thus, the pc values for the SEY images
corresponding to different schemes could be calculated, as shown in Table 2.

pc =
1
n

n

∑
i=1

pi (1)

Table 2. The pc and average Ra values of the samples treated with different parameter schemes.

Schemes Label D2-100n * E2-100n D3-100n E3-100n D4-100n E4-100n

Pc (µm) 0.9 1.3 1.2 1.2 1.0 1.1
Ra (µm) 0.3876 0.7075 0.4712 0.4733 1.0046 0.4170

* -100n represents 100 nm-thick gold coating.

While pc reflects the real appearance of porous structures, it cannot be obtained using
large-scale measurements. Therefore, the values of the absolute average relative to the
base height of 3D surface profiles, Ra, were used to characterize surface roughness. The
value of Ra was obtained by extracting surface height information measured using a
color laser scanning microscope (LSM), and it was calculated according to Formula (2).
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Ra provided the average difference between peaks and valleys. It was more appropriate
for use in the macroscopic evaluation of surface morphology, while pc was advantageous
to use in the analysis of local microporous structures. An example of gaining Ra from a
surface profile is shown in Figure 4, which outlines the process of extracting and processing
profile information. This underpins the average Ra values of some representative schemes
presented in Table 2. It should be noted that Ra reflected the arithmetic average of the
absolute values of the deviation from the points on the actual profile to its profile centerline
within a selected area. Additionally, the Ra values for schemes in Table 2 were averages of
the Ra measurements of several substrates with this scheme. The Ra measurement of one
substrate was also an average of five sampling areas on a same substrate, which eliminated
the effect of a random defect in one sampling area.

Ra =
1
n

n

∑
i=1
|yi − y| (2)
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3.2. The Measurements of Secondary Electron Yield

The SEY measurement system is outlined in Figure 5. The electron beam irradiated
the target sample surface with primary energy from 30 eV to 3000 eV, which could be
adjusted by the output of a DC power. The emitted SEs were entirely collected by the
collector biased with a positive potential of 40 V. The secondary electrons current Is and the
target current It could be measured using the continuously irradiated method, and then
the primary electron current Ip was obtained as Ip = Is + It. The SEY value δ could finally
be calculated using:

δ =
Is

Ip
=

Is

Is + It
(3)
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Figure 6 presents the SEY results of substrates before and after the surface treatment
with some different process schemes. Notably, the SEY result for each scheme is an average
of the SEY measurements of five samples, and the measured value of each sample is also an
average of the results of several sampling areas selected on it. It was found that the δm, the
average value of the maximum SEY as a function of the primary electron energy, decreased
a lot after the treatment. The δm for substrates decreased from 2.2 (with the error of 0.4) to
1.1 (within ±0.03) ~1.2 with the D4 scheme for the 100 nm gold batch (D4-100n) and the
D4 scheme for the 500 nm gold one (D4-500n), in which the best SEY suppression reached
54% in the D4-100n scheme. For more evidence to indicate the great differences in the final
δm values caused by process schemes, the δm results corresponding to ten schemes with
100 nm-thick gold coatings are shown in Table 3. More results of δm for schemes in Table 1
are shown in Appendix A Tables A1 and A2.
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Table 3. The δm values of the substrates treated with different schemes of process parameters.

Scheme δm Scheme δm Scheme δm Scheme δm

D2-100n * 1.39 E2-100n 1.34 D2-500n * 2.10 E2-500n 1.44
D3-100n 1.40 E3-100n 1.36 D3-500n 1.95 E3-500n 1.48
D4-100n 1.17 E4-100n 1.35 D4-500n 1.26 E4-500n 1.56
D5-100n 1.47 E5-100n 1.41 D5-500n 1.50 E5-500n 2.03

* -100n and -500n represent 100 nm- and 500 nm-thick gold coatings, respectively.

4. Discussion

In this paper, a preliminary exploration of the effect of surface morphology on the SEY
of metal surfaces was carried out. Based on an analysis of surface characterization and SEY
measurements, the common surface characteristics for low SEY were found to be granular
clusters with pc values around 1.0 µm as well as large surface Ra values (at least above
0.6 µm). Furthermore, we obtained a model for the relationship between δm and Ra by
fitting the values for samples with 100 nm gold coatings, as shown in Figure 7. The model
was given by Equation (4) with δ0 = 1.45± 0.07, b = 0.18 ± 0.20 µm−1 and c = −0.37 ± 0.16.
The adjusted R2 for this fitting model was 0.9954, indicating a good description of the trend
of this correlation. For robust validation, more Ra data from additional experiments were
put into this fitting model, and the corresponding predicted δm values that were obtained
are presented in Table 4. The deviations were within 5% when compared with measured
values. Moreover, the statistical Ra data for different schemes are highlighted by colorful
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blocks, and we clearly notice that the δm value decreased dramatically with the increase in
Ra. This agrees with the well-known SE capturing effect via microstructures.

δm(Ra) = δ0 exp
(

bRa + cR2
a

)
(4)
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Table 4. The additional experimental data of Ra and their corresponding SEY values.

Ra (µm) Predicted SEY Values Measured SEY Values The Relative Deviation

0.97 1.21 1.22 0.82%
1.06 1.15 1.20 4.17%
1.15 1.08 1.13 4.42%

This fitting model allows for further extrapolations to be made and can be used to
predict the subtle correlation between the roughness and SEY of porous coatings on metal
substrates, and it also helps one to understand what kind of surface morphology can
suppress the SEY in this technological process.

Furthermore, from the perspective of practical engineering, we paid more attention to
the process schemes that can produce morphologies conducive to suppressing SEY. From
Figure 7, it can be seen that the D4 scheme seemed to produce the best embodiment of
this morphology. The impacts of the etching parameters—duration and temperature—on
δm are presented in Figure 8 before and after 100 nm gold coating. From this figure, we
can see that more potential schemes can be provided to achieve low SEY when etching
temperatures are 25~35 ◦C. Additionally, it shows that a slight reaction cannot produce a
morphology with low SEY when the values of the etching parameters are extremely small.
The 100 nm gold coating was shown to narrow the distribution range of δm caused by the
disparity of morphologies through a comparison before and after gold coating.

The effect of the parameters in the process scheme on the surface morphology lay
in the intensity and degree of wet etching as well as the filling degree for pores via gold
sputtering, which was a synthetical outcome of the morphology regulation by all parame-
ters. A variation in every single parameter had a limited impact on SEY. Figure 9 presents
some correspondence between the etching parameter schemes, the Ra values of resultant
morphologies and corresponding SEY suppression percentages for a 100 nm-thick gold
coating. From this figure, we can see that when Ra has a large value in the upper plane,
the corresponding percentage of SEY suppression in the lower plane is also high. This
figure directly displays the correlation between Ra and δm. More significantly, it provides
a basis for further research into parameter schemes that can produce surface morphologies
that enable low SEY. Our attention can be focused on the parameter region corresponding
to large Ra values. This region is roughly concentrated in the center due to the need for
a proper etching temperature and duration to attain a large Ra to suppress SEY. A low
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etching temperature and a short etching duration could make the etching degree too weak
to reach an appropriate Ra while a temperature that is too high and a duration that is too
long leads to excessive etching and the disappearance of the rough structures that were
formed. More schemes within this region that were not discussed in this paper remain to
be explored.
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5. Conclusions

In summary, in this paper, we began by presenting an experimental study of the
cascading correlation between process parameters, surface morphology and SEY, and then
the effect of the surface morphology of porous coatings on the SEY of metal surfaces was
analyzed. The optimal process parameters of porous coatings for SEY suppression were
summarized for applications in high-power, space-borne devices. This contributes to the
creation of a process strategy that could be used to achieve low SEY.

In addition, an empirical model of the relationship between the average deviation
value, Ra, of the surface profile and surface SEY was created, which can be used as a
baseline for the prediction of low SEY. This model can be used to guide surface treatment
strategies to obtain an optimal surface morphology that enables lower SEY.
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Appendix A

Table A1. A full list of the final δm values of the substrates that were treated with different schemes
shown in Table 1 before 100 nm-thick gold coating.

Scheme δm Scheme δm Scheme δm

A1-100n * 1.95 B1-100n 1.98 C1-100n 1.50
A2-100n 1.94 B2-100n 1.96 C2-100n 1.42
A3-100n 1.52 B3-100n 1.43 C3-100n 1.28
A4-100n 1.47 B4-100n 1.50 C4-100n 1.35
A5-100n 1.47 B5-100n 1.40 C5-100n 1.36
D1-100n 1.39 E1-100n 1.44 F1-100n 1.51
D2-100n 1.39 E2-100n 1.34 F2-100n 1.38
D3-100n 1.40 E3-100n 1.36 F3-100n 1.35
D4-100n 1.17 E4-100n 1.35 F4-100n 1.45
D5-100n 1.47 E5-100n 1.41 F5-100n 1.95

* -100n represents the 100 nm-thick gold coating.

Table A2. A full list of the final δm values of the substrates that were treated with different schemes
shown in Table 1 before 500 nm-thick gold coating.

Scheme δm Scheme δm Scheme δm

A1-500n * 2.14 B1-500n 2.00 C1-500n 2.07
A2-500n 2.01 B2-500n 2.00 C2-500n 2.02
A3-500n 1.96 B3-500n 2.00 C3-500n 1.98
A4-500n 2.08 B4-500n 2.06 C4-500n 1.47
A5-500n 2.03 B5-500n 2.04 C5-500n 1.96
D1-500n 2.02 E1-500n 2.06 F1-500n 2.00
D2-500n 2.10 E2-500n 1.44 F2-500n 1.95
D3-500n 1.95 E3-500n 1.48 F3-500n 2.04
D4-500n 1.26 E4-500n 1.56 F4-500n 2.00
D5-500n 1.50 E5-500n 2.03 F5-500n 2.07

* -500n represents the 500 nm-thick gold coating.
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