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ABSTRACT RNA-seq has proven to be a powerful tool to unravel various aspects of the transcriptome,
especially the quantification of alternative splicing (AS) that leads to isoform diversity. The honey bee (Apis
mellifera) is an important model organism for studying the molecular underpinnings of behavioral plasticity
and social behavior, and recent RNA-seq studies of honey bees have revealed AS patterns and their reg-
ulation by DNA methylation. However, tissue-specific AS patterns have not been fully explored. In this
paper, we characterized AS patterns in two different honey bee tissue types, and also explored their
conservation and regulation. We used the RNA-seq data from brain and fat body to improve the existing
models of honey bee genes and identified tissue-specific AS patterns. We found that AS genes show high
conservation between honey bee and Drosophila melanogaster. We also confirmed and extended previous
findings of a correlation between gene body DNA methylation and AS patterns, providing further support
for the role of DNA methylation in regulating AS. In addition, our analysis suggests distinct functional roles
for tissue-specific alternatively spliced genes. Taken together, our work provides new insights into the
conservation and dynamics of AS patterns across different tissue types.
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Due to the development of high-throughput sequencing technologies,
RNA sequencing (RNA-seq) has become the most widely used method
to study transcriptomes (Wang et al. 2009). Amajor advantage of RNA-
seq, as compared to microarray analysis, is that RNA-seq can detect
both novel transcripts and existing annotations (Roberts et al. 2011;
Sudmant et al. 2015; eGTEx Project 2017; Reyes and Huber 2018), in
addition to higher accuracy in quantifying expression levels of tran-
scripts (Fu et al. 2009). One application of RNA-seq that has dramat-
ically enhanced our knowledge of the complexity of the transcriptome

is the detection of alternative splicing (AS) events, which give rise to
different isoforms and are key to understanding protein diversity
(Guttman et al. 2010; Trapnell et al. 2010; Li et al. 2011).

The honey bee (Apis mellifera) is an important model organism
to understand the gene regulatory mechanisms involved in behavior
(Honeybee Genome Sequencing Consortium 2006; Menzel 2012;
Zayed and Robinson 2012). Previous studies have used microarrays
and RNA-seq to characterize honey bee transcriptomes and study
differentially expressed genes in the brain and other tissues
(Whitfield et al. 2003; Ament et al. 2012). In a recent study,
RNA-seq data (Li-Byarlay et al. 2013) was utilized to investigate
the effects of gene body methylation on gene splicing. Knock down
of DNMT3 (DNA methyl-transferase 3) using RNA interference
caused widespread and diverse changes in AS in fat body tissue.
An RNAi-induced ca. 21% decrease in gene body methylation
resulted mostly in changes in Exon Skipping (ES) and Intron Re-
tention (IR) (Li-Byarlay et al. 2013). However, tissue-specific AS
patterns in honey bees have not been systematically characterized
and quantified.

Here we utilize published RNA-seq datasets to quantify and
compare AS events in honey bee brain and fat body. Splice junctions
in fat body and brain transcriptome data were obtained with
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TrueSight (Li et al. 2013). TrueSight integrates the mapping quality
of RNA-seq reads together with the coding potential of genomic
sequence to predict novel splice junctions, which is particularly use-
ful for annotating gene models and AS patterns in non-model
organisms.

To perform the AS analysis, we first used TrueSight to improve
the existing annotation of the honey bee genome (version Amel
4.5), which was generated using the prediction tools GLEAN and
MAKER2 (Elsik et al. 2014), and then we performed quantitative
AS pattern analysis. We found that most characteristics of AS
patterns in fat body and brain transcriptomes were quite consis-
tent with what has been previously observed in the fruit fly Dro-
sophila melanogaster, with high cross-species conservation in
terms of alternatively spliced genes. Our data also support pre-
vious findings of gene body methylation regulating AS patterns
in honey bee (Li-Byarlay et al. 2013). Additionally, we found
tissue specific differences in the functional enrichment of AS
genes in brain and fat body. Taken together, our analysis pro-
vides new insights into the conservation and dynamics of AS in
honey bees.

MATERIALS AND METHODS

Data used in the study
Publicly available RNA-seq data for honey bee fat body and brain
were obtained from Li-Byarlay et al. (2013) and Rittschof et al.
(2014), respectively. TrueSight was run on all samples individually.
Raw reads were mapped to Amel 4.5 genome first using Bowtie
(version 0.12.8) and then TrueSight to produce an alignment file,
then a gapped alignment file, and splice junctions were inferred
from the gapped alignments. The junction files obtained from True-
Sight were further processed with the help of Amel 4.5 gene anno-
tations to generate various splicing patterns and some new gene
models using novel splice junctions. This is further explained in
the following section.

Modifying Amel 4.5 Gene models

Detecting splicing patterns: Splice junctions (SJs) inferred from in-
dependent TrueSight runs were clustered together. SJs with scores
greater than 0.5 were retained as TrueSight SJs and were further used
to improve Gene models. Exon skipping events were confirmed when
novel splice siteswith both splice sites knownwere identified amongSJs.
To detect an AEB event, splice junctions with only 1 known splice site
wereused. The original junction linking two exons (a� b; c� d) isb� c.
If there is a junction with one known splice site: b9 � c, such that
b92 b, 200; b9. a, exon a � b would have alternative boundary
a � b9: Strand specificity is taken into consideration for detecting
AEB events. An IR event is confirmed by two criteria: (i) each base of
the intron has.5x coverage from TrueSight RNA-seq alignments in
our dataset; (ii) IR inclusion ratio (described under definitions)
should be at least three times higher than the average honey bee
intron inclusion ratio, which is 0.017. The first criterion guarantees
the IR detectable by RNA-seq, and the second criterion will screen
out potential false IRs caused by RNA-seq artifacts mapped onto
intron regions.

Identifying novel exons: Reliable “transcribed islands” were obtained
by filtering best alignments from TrueSight. Boundaries for transcribed
islands were obtained by following certain criteria and only those is-
lands were retained that did not overlap with the existing Amel 4.5
model exons. New exons and splice junctionswere added after inferring

AS exons in already annotated splice junctions as well as from the
chosen transcribed islands using a separate algorithm. The detailed
procedure for gene models modification is provided in Supplementary
Methods.

Definitions used in analyzing alternative splicing

IR inclusion ratio: For a retained intron (in IR)with coordinates p � q
and two adjacent exons, a � p; q � d, the inclusion ratio is calculated
as follows:

IR inclusion ratio ¼ 2 ·Covðp; qÞ
Covða; pÞ þ Covðq; dÞ

where, Covðx; yÞ ¼
Py

i¼x
number of readsmapped onto i

y2 x .

CE inclusion ratio: For a CE with coordinates p � q and two adja-
cent constitutive exons, a � b; c � d, CE inclusion ratio is calcu-
lated by:

CE inclusion ratio

¼ ðNðb � pÞ þ Nðq � cÞÞ=2
ðNðb � pÞ þ Nðq � cÞÞ=2þ Nðb � cÞ

where, Nðx � yÞ ¼ number of reads mapped onto junction x � y.

CpG (o/e): CpG (o/e) is a computational metric measuring the DNA
methylation on an evolutionary time scale; it is assumed that
methylated cytosines are hypermutable and low CpG (o/e) value
implies depletion of CpG dinucleotides during evolution and po-
tential hyper-methylation (Gardiner-Garden and Frommer 1987).
On the other hand, high CpG (o/e) would indicate a presence of
hypo-methylation.

The CpG (o/e) is defined as:

CpG ðo=eÞ¼ PCpG
PC ·PG

where, PCpG, PC , and PG measure the frequencies of observing CpG
dinucleotides, C nucleotides, and G nucleotides, respectively.

AEB splicing ratio: Let us assume that for three continuous exons
(a � b; p � q; c � d) in the forward strand, exon p � q has alterna-
tive acceptor splice site p9 and alternative donor splice site q9. AEB
splicing ratio for acceptor sites describes the expression ratio of tran-
scripts using minor (less frequently used) acceptor sites to transcripts
using major (more frequently used) ones, is:

minðNðb � pÞ;Nðb � p9ÞÞ
maxðNðb � pÞ;Nðb � p9ÞÞ

AEB splicing ratio for the donor sites describes the expression ratio
of transcripts using minor donor sites to transcripts using major
ones, is:

minðNðq � cÞ;Nðq9 � cÞÞ
maxðNðq � cÞ;Nðq9 � cÞÞ

where Nðx � yÞ ¼ number of reads mapped onto junction x � y.

AEB inclusion ratio: AEB inclusion ratio measures the inclusion
ratio of alternative exon boundaries. For the same three exons
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listed in the last section, the AEB inclusion ratio of region
minðp; p9Þ � maxðp; p9Þ is:

Nðb � min p; p9ð ÞÞ
Nðb � pÞ þ Nðb � p9Þ

For region min q; q9ð Þ � maxðq; q9Þ:

Nðmax q; q9ð Þ � cÞ
Nðq � cÞ þ Nðq9 � cÞ

ATE splicing ratio: The ATE splicing ratio measures the expression
ratio ofminor ATEs overmajor ones. Note that we only consider AFEs/
ALEs directly linking to the same acceptor/donor site of a constitutive
exon in this analysis. The calculation is similar to the formulas for AEB
splicing ratio, using minor junction mappings over major junction
mappings.

Splice site strength: To calculate strength of donor and acceptor splice
sites, an algorithm based on Maximum Entropy Principle (MEP) for
modeling of short sequencemotifs was used (Yeo and Burge 2004). The
algorithms calculates how likely it is for a given region to be a true splice
site based on the nucleotides surrounding the splice site. Hence, the
higher the strength the more likely that region is involved in splicing.

Gene annotations and pathway analysis
We derived Gene Ontology assignments for honey bee using protein
family annotations for Drosophila from the database PANTHER (Mi
et al. 2013b). Only those Gene Ontology assignments were chosen that
have a p-value of 0.05 or lower for a statistical over-representation test
in PANTHER (Mi et al. 2013a). Only KEGG pathways in Drosophila
were chosen to perform pathway analysis of honey bee genes having fly
orthologs (Ogata et al. 1999).

Data availability
Additional file 1 consists of additional figures of AS pattern analysis in
Brain aswell as a table showing a comparison ofAS results in TrueSight,
TopHat2, and MapSplice. Additional file 2 contains the improved
honeybee gene model after prediction of alternative splicing patterns
using TrueSight. Additional file 3 contains all the AS patterns identified
by TrueSight along with specific analysis results in terms of Drosophila
orthology, methylation patterns, and functional categories of AS genes.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.7477232.

RESULTS

Identification of novel exons to improve gene models
TrueSight was used to identify existing and novel splice junctions in
honeybeeRNA-seq reads fromfat bodyandbrain transcriptomes.Table
S1 shows the performance of TrueSight in comparison with two well-
known splice junction detection algorithms that also utilize reads
spanning more than one junction, MapSplice (2.2.1) (Wang et al.
2010) and TopHat2 (v2.1.1) (Kim et al. 2013). Sensitivity and specificity
were calculated for these three splice junction detection tools. Sensitiv-
ity is the fraction of ‘known introns’ to the largest number of ‘known
introns’ discovered by one of the three methods and hence provides an
estimate of the most exhaustive method (Li et al. 2013). Specificity is
calculated by dividing the number of ‘both novel’ junctions over the
‘total’ number of splice junctions reported (Li et al. 2013). TrueSight

showed slightly lower sensitivity but achieved the highest specificity
in terms of identifying introns with both ends annotated, and so was
used for this reason in this study. We identified 2,871 novel exons in
total as a result of novel splice junctions (SJ) obtained from TrueSight.
30 of the newly identified exons were cassette exons (an exon that can
be included or skipped in a transcript giving rise to transcript vari-
ants) and 864 of the newly added exons were novel terminal exons.
These improved gene models gave rise to 1,880 more SJs in the honey
bee genome, leading to a total of 71,203 SJs. The newly added junc-
tions were added to the reference genome for tissue-specific AS pat-
tern analysis. We also identified 989 novel multi-exon transcripts in
intergenic regions in the Amel 4.5 gene models. This analysis signif-
icantly improved the existing gene model for more accurate and
comprehensive AS pattern analysis in the honey bee. The new anno-
tations are presented as a GFF3 annotation file (table S2) for viewing
in the genome browsers.

Characterization of alternative splicing events
We report on four major types of AS (Nilsen and Graveley 2010): (i)
Intron retention (IR), in which an intron may be retained as part of a
mature transcript or spliced out; (ii) exon skipping, in which a cassette
exon (CE) may be included or skipped in a transcript; (iii) alternative
use of splice sites (donor/acceptor), leading to alternative exon bound-
aries (AEB); and (iv) alternative terminal exons (ATE), in which alter-
native first exons (AFE) or alternative last exons (ALE) are used. Table I
shows detailed numbers for each category. Table S3 lists all AS events
obtained in fat body and brain based on TrueSight results and Fig S1-2
shows overlap of genes having more than one kind of AS event in fat
body and brain respectively.

Cassette exons: Out of 84,637 honey bee exons and 15,314 genes,
TrueSight detected 1,520 (1.8%) CEs in fat body from 1,139 genes and
1,525 (1.8%) CEs in brain from 1,067 genes (Table 1). CEs could be
detected at multiples of three lengths which reflect themaintenance of a
series of consecutive nonoverlapping triplet codons during splicing
events to preserve the reading frame. 24% of the CEs (273 CEs in brain
and 366 in fat body) hadmultiples-of-three lengths. The average length
of CEs was 178 bp in brain and 175 bp in fat body, smaller than the
average length of all honey bee exons (320 bp). This is consistent with
the previously observed result that cassette exons occur more often in
smaller exons than larger ones, in both humans and Drosophila
(Koralewski and Krutovsky 2011).

Intron retention: Out of 69,323 honey bee introns in 13,407 multi-
exon genes, we identified 11,103 (16%) IRs in 3,466 genes in fat body
and 8,486 (12.2%) IRs in 2,886 genes in brain.Wedefine an intron as a
retained intron if each base of the intron has.5x coverage from our
RNA-seq alignments. The average size of IRs was 716 bp in fat body
and 1,174 bp in brain, smaller than that of the average honey bee
introns (1,390 bp). This result is similar to IRs observed in Drosoph-
ila (Khodor et al. 2011).

Alternative exon boundaries and alternative terminal exons: True-
Sight detected 2,486 (2.9%) alternative 59 sites in 1,679 genes in fat
body and 2,182 (2.6%) alternative 59 sites in 1,531 genes in brain.
There were 4,073 (4.8%) alternative 39 sites in 2,244 genes in fat
body and 3,671 (4.3%) alternative 39 sites in 2,102 genes in brain. In
the fat body, ca. 4% of the genes in the honey bee genome have AFEs
and 3.5% genes have ALEs; in brain the values are 2% and 3%,
respectively. AEB seems to be the most common splicing pattern
in honey bee and is consistent with observations made inDrosophila
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(Daines et al. 2011). 14 AFEs in fat body and 12 AFEs in brain have
3 bp displacements. 3 bp displacements in alternatively spliced tran-
scripts involve addition or removal of 3 bps in the transcript start
site or the end, which could alter gene functions. This was also
observed in AFEs in Drosophila, which was generated through AS
and alternative promoter usage with a few having the capacity to
alter protein coding (Hanke and Storti 1988).

Quantitative analysis of splice sites for different
AS patterns
The strength of splice sites was assessed in CE and IR events by
computing their donor and acceptor splice site scores. Acceptor and
donor site scores were then plotted for different inclusion ratio
categories in CEs and IRs. Here, inclusion ratio of an exon, for CE
events, denotes the proportion of exons that span the exon skipping
region based on the number of RNA-Seq reads mapped to that exon
region. For IR events, inclusion ratio is calculated for introns. CEs
with large inclusion ratios (.0.8) have stronger acceptor and donor

sites than lower inclusion ratios (Figure 1A-D). IRs with large in-
clusion ratios on the other hand had weaker average splice site
scores compared to lower inclusion ratio categories (Figure 1E-F).
This observation is consistent with what was previously found in
Drosophila (Khodor et al. 2011).

32% of AEB splice sites in fat body and 30.9% of AEB splice sites in
brain were enriched in multiple of 3bp displacements, which usually
preserve the reading frame of mRNAs. The alternative donor sites
showed a dominance of 3 bp and 5 bp gap. This was found in both
brain and fat body transcriptomes (Figure 2). Additionally, by compar-
ing the motifs of 3/4/5 bp displaced AEB of both donor and acceptor
sites, we found conservation patterns in frequencies of nucleotides at
two proximal AS sites (Figure S3, Figure S4).

It has been previously observed that expression ratios of isoforms
are largely determined by competitiveness of nearby alternative
splice sites (Xia et al. 2006; Yu et al. 2008). When comparing the
relative splice site scores (major vs. minor) for both alternative
donor and acceptor sites, we found that the expression ratio of the

n Table 1 Different types of Alternative Splicing in honey bee transcriptomes of two tissues

Tissue Fat Body Brain

AS event Number
Exons

involved �

Total number of
honey bee genes
undergoing AS Number

Exons
involved �

Total number of
honey bee genes
undergoing AS

Intron Retention (IR) 11103 22204 3466 (22.6%) 8486 16972 2886 (18.8%)
Cassette Exon (CE) 1520 1520 1139 (7.4%) 1525 1525 1067 (7%)
Alternative Donor Site 2846 2245 1679 (11%) 2182 2008 1531 (10%)
Alternative Acceptor Site 4073 3624 2244 (14.7%) 3971 3322 2102 (13.7%)
Alternative First Exon 689 584 584 (3.8%) 308 281 281 (1.8%)
Alternative Last Exon 589 530 530 (3.5%) 545 402 402 (2.6%)

Alternative Exon Boundaries (AEB) includes Alternative Donor Site and Alternative Acceptor Site. Alternative Terminal Exons (ATE) includes Alternative First Exon and
Alternative Last Exon. (� For retained introns, two flanking exons are counted as ‘involved’ exons.)

Figure 1 (A-D) Relationship between
inclusion ratio and Donor/Acceptor
site scores in cassette exons in honey
bee fat body and brain. (E-F) Rela-
tionship between inclusion ratio and
average splice site score in retained
introns in fat body and brain. P-values
from the Mann-Whitney-Wilcoxon
tests for the two inclusion ratio cate-
gories: A = 0.0004476, B = 2.762e-06,
C = 2.179e-06, D = 5.736e-05, E =
0.002843, F = 0.1034.
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two isoforms (minor/major) goes up when the major splice site
score goes down. This trend is clearer in fat body than brain but
is observed in both (Figure 3A-B, Figure S5). Similar trends are also
found in AFEs and ALEs (Figure 3C-D, Figure S5).

Cross-species conservation of AS genes between honey
bee and Drosophila
More than 50% of AS genes (2,372 in fat body and 2,252 in brain) in
honey bee have orthologs in Drosophila (Fig S6) and more than 50% of
these genes (1,538 in fat body and 1,530 in brain) show AS inDrosoph-
ila as well (Table S4) (Brown et al. 2014). From all AS exon events,
448 orthologous genes had the same number of AS events in both
Drosophila and honey bee, which is about 30% of the orthologous AS
genes in Drosophila. We could not specifically conclude if these AS
events are generally orthologous events or give rise to the same protein
isoforms. Some of these genes are enriched for neuron development,
sexual reproduction, and some basic cellular processes (Table S5). In-
terestingly, on visualizing the aligned reads in brain in the IGV genome
browser (Thorvaldsdóttir et al. 2013), we found that the Dscam gene
ortholog in honey bee (GB44159) undergoes alternative splicing as well
and specifically shows an IR and an AEB in brain with high confidence
(Figure 4). Previously, it has been shown that AbsCAM a Dscam family
member in honey bee undergoes age specific alternative splicing in
influencing neuronal wiring during development (Funada et al.
2007). This could provide potential insight into the conservation of

the gene Dscam in neuronal development in terms of AS and how
the AS forms could possibly affect the connectome in different castes.

Connection between DNA methylation and
alternative splicing
Gene body methylation has been previously shown to play impor-
tant roles in regulating AS (Flores et al. 2012; Li-Byarlay et al.
2013). We analyzed the correlation between methylation and
splicing in terms of CpG observed-to-expected ratio (o/e) values
for all AS exons. CpG (o/e) is a metric measuring the extent of
DNA methylation (see Methods); a small or large CpG (o/e) value
indicates hyper-methylation or hypo-methylation. To study the
relationship between methylation levels in AEB regions and the
inclusion ratio, the median of relative CpG (o/e) values for AEB
regions was plotted for AEB inclusion ratio categories in fat body
(Figure 5A) and brain (Figure 5B). Here the relative CpG score is
the absolute value of the difference between CpG (o/e) of AEB
exons. The relative CpG score was used here because this would
denote the change in CpG score of the exon due to presence or
absence of the AEB region. The lower the inclusion ratio of the
AEB exon, the lower was the relative CpG score, which indicates
that alternative exon boundaries that are not included often tend
to be hyper-methylated. For CE and IR events, the median CpG
score of the exons or introns having a certain inclusion ratio
threshold was used as a metric to denote methylation levels. When
comparing the median CpG (o/e) values for certain cassette exon
(CE) inclusion ratio categories, we observed that CpG (o/e) values
were lower (or higher) with CEs having higher (or lower) inclusion
ratios in fat body (Figure 5C) and brain (Figure 5D). Therefore,
more frequently included CEs might suggest higher methylation
levels than rarely included CEs, in both tissues.

ThemedianCpG(o/e) level in retainedAS intronswas0.5 in fat body
and 0.8 in brain, respectively. This is significantly lower than the CpG
(o/e) in the set of all honey bee introns (1.06) (two-tailed t-test p-value,
e-10), indicating highermethylation levels in retained introns. Knocking
down DNA methyl transferase 3 (dnmt3) (Li-Byarlay et al. 2013) was
shown to cause diverse and widespread changes in alternative splicing.
CE events specifically showed increased exon skipping with decreased
DNAmethylation. Our results here support earlier evidence indicating
that AS patterns are influenced by DNA methylation and provide new
insights on the relationship between DNA methylation and all other
splicing patterns (Flores et al. 2012; Li-Byarlay et al. 2013).

Gene body methylation regulates tissue-
specific splicing
Wenext usedpublishedBisulfite sequencing (BS-seq) data in fat body
(Li-Byarlay et al. 2013) to analyze the role of DNA methylation in
tissue-specific splicing. We found that 3,830 (20%) AS events in fat
body belonged to un-methylated regions, i.e., CG pairs in these
regions did not have methylated Cs and had an average CG score
of 0.92 (Table S6). 2766 (15%) AS events in fat body on the other
hand belonged to methylated regions, i.e., CG pairs in these regions
had methylated Cs and had an average CG score of 0.55. Moreover,
491 (12.1%) AS genes having Drosophila orthologs with AS belong
to unmethylated regions whereas 361 (8.9%) AS genes with Dro-
sophila orthologs with AS belong to methylated regions. Although
there is high conservation of AS genes between Drosophila and
honey bee, DNA methylation is not the main mechanism regulating
AS in Drosophila (Urieli-Shoval et al. 1982; Lyko et al. 2000; Kunert
et al. 2003). This observation suggests that changes in methylation
levels within the gene body could be one of the possible regulatory

Figure 2 Distances of alternative 59/39 splice sites to the nearest splice
sites are plotted for both donor and acceptor sites. A: Number of AEB
sites for fat body, B: Number of AEB sites for brain. 4 bp and 3 bp gap
dominates the alternative acceptor sites. The alternative donor sites
show a dominance of 3 bp and 5 bp gap.
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mechanisms for tissue-specific splicing in honey bee, unlikeDrosophila.
BS-seq data corresponding to RNASeq data in brain that was used in
this study was unavailable. Hence, we could not draw specific conclu-
sions on methylation levels in Brain specific AS events.

Functional analysis of alternatively spliced genes
GeneOntology analysis revealed that commongenes that undergoAS in
both tissue types are specifically enriched in housekeeping functions
related to cell differentiation, regulation of signaling and response to
stimulus (Table S7). More than 50% of these common genes have AS
events that are tissue specific (Table S7). Common AS genes that have
tissue-specific AS events were involved in some biological pathways

based on previous literature and these pathways have been mentioned
below (Foret et al. 2009). There were more than 20 genes with tissue-
specific AS events in both tissues in specific KEGG pathway categories
responsible for metabolism, i.e., insulin/TOR signaling, oxidative phos-
phorylation (Table S7). There were 31 genes in fat body and 28 genes in
brain that are involved in the spliceosome pathway (Table S7). These
results highlight the possibility that splicing is widespread in genes that
have housekeeping functions and that isoforms could be generated for
these general functions in a tissue-specific manner. These results are
also consistent with the previous results about AS genes in honey bee,
i.e., ubiquitously expressed genes often lead to production of tissue-
specific isoforms (Foret et al. 2012).

Figure 3 (A-B) Impact of relative splice site score
(major - minor) on AEB splicing ratio (minor/major) in
honey bee fat body. (C-D) Impact of relative splice site
score (major - minor) on ATE splicing ratio (minor/major)
in fat body. P-values from the Mann-Whitney-Wilcoxon
tests between the first and the last splicing ratio
categories: A = 2.2e-16, B = 2.2e-16, C = 8.189e-14,
D = 2.2e-16.

Figure 4 Alternatively spliced transcripts identified in A. melifera for the Dscam gene. Aligned reads are shown here in IGV genome browser
(Thorvaldsdóttir et al. 2013). First track provides a zoomed in view of GB44159 (Dscam) gene in the honeybee (Amel 4.5) genome between exon
6 and 7 that has the AS event. Track 2 and 3 indicate the region corresponding to intron retention event and alternative left exon boundary
respectively. Track 4 shows the splice junction spanning the AS events. Track 5 shows RNA-seq reads in honeybee brain mapped to this region.
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Among the various tissue-specific functional categories, AS genes
specific to fat body and brain are predominantly enriched in protein
metabolism and neuron development, respectively (Table S8). We
also observed 33 genes in brain that include some TFs and TF targets
in the brain transcriptional regulatory network (Table S8). The fact
that some TFs in this network undergo alternative splicing in brain
may provide new perspectives to the gene regulatory mechanisms in
different tissue types.

DISCUSSION
Our analyses of RNA-seq datasets from two different tissue types
enabled us to identify tissue-specificASpatterns in the honey bee. IRs
and AEBs dominate among all splicing patterns identified by True-
Sight. Previous research has shown an expansion of protein families
encoded by certain genes in honey bees due to alternative exons, and
these genes are known to play a key role in neurological disorders,
sexual differentiation, and reproduction (Beye et al. 2003; Jones et al.
2006; Jarosch et al. 2011). This is consistent with our observations of
the frequency of AEBs. Consistent with these studies, Cassette exons
and retained introns in fat body and brain are smaller in length than
the average size of honey bee exons and introns. This observation is
consistent with the trends in Drosophila (Khodor et al. 2011;
Koralewski and Krutovsky 2011). Most invertebrates have much
smaller introns as compared to vertebrates, which results in IR
events due to a failure in recognizing splice sites (Talerico and
Berget 1994). Although the intron sizes in invertebrates are smaller
than those observed in vertebrates, a similar trend was also observed
for IRs in vertebrates (Gelfman et al. 2012).

We reported correlations between the extent of AS and param-
eters characterizing AS patterns, namely splice site strength, exon-
intron structure, and methylation patterns for every AS event.
Analyzing the strength of splice sites for splicing patterns shows
that CEs with large inclusion ratios (.0.8) have stronger acceptor
sites and donor sites. One explanation is that CEs with strong donor
and acceptor sites would splice the flanking introns thus are

included more frequently in the transcript. IRs with higher inclu-
sion ratios had weaker splice sites. According to the intron defini-
tion model, which is prevalent in invertebrates, the strong donor or
acceptor sites flanking an intron would be recognized to splice in-
trons out in most transcripts (Talerico and Berget 1994).

Most AEB splice sites are enriched in multiples of three displace-
ments, which preserve the reading frame of the mRNAs. The
conserved patterns of 3 bp displacements might give us new per-
spective on the predominant splicing patterns that contribute to
protein diversity for many uncharacterized genes in the honey bee
genome, asAEBs are themost common formofAS events observed in
this species. In addition, the connection between gene body DNA
methylation and AS patterns, especially tissue specific AS patterns,
further confirms the role of methylation in AS regulation and the
distinct gene regulatory functions of those AS genes (Li-Byarlay et al.
2013; Foret et al. 2012).

High throughput RNA-seq data were analyzed with TrueSight to
reveal various splicing patterns observed in brain and fat body. This
provides us with information on splicing-specific regulation of honey
beegenes inbrain and fatbody, aswell as possiblemethylationdrivenAS
not observed in Drosophila in spite of cross species conservation. Al-
though our analysis of AS patterns was limited to only one fat body and
one brain RNA-seq study, this nevertheless provides preliminary ob-
servations that could be useful for unraveling unknown gene regulatory
mechanisms through AS. Future species-specific transcriptomic ap-
proaches could build upon the current set of AS dataset provided in
this study. Understanding the mechanisms of these AS patterns
in honey bee, a model organism representing behavioral plasticity,
may eventually shed light on the molecular regulation of behavioral
phenotypes.
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Figure 5 (A-B) Relationship between relative CG scores
(difference in CG scores of alternative exon boundaries)
and AEB inclusion ratio. (C-D) Relationship between CG
score of cassette exon and their inclusion ratio. P-values
from the Mann-Whitney-Wilcoxon tests for the first and
the last inclusion ratio categories: A = 2.2e16, B =
1.427e-08, C = 0.01494, D = 0.2811.
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