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Abstract: The obesity epidemic has contributed to an escalating prevalence of metabolic diseases
in children. Overnutrition leads to increased tryptophan uptake and availability. An association
between the induction of the tryptophan catabolic pathway via indoleamine 2,3-dioxygenase (IDO)
activity and obesity-related inflammation has been observed. This study aimed to investigate the
impact of pediatric obesity on tryptophan metabolism and the potential relationship with metabolic
disease. In this prospective cohort study, plasma kynurenine, tryptophan, and serotonin levels were
measured by ELISA, and IDO activity was estimated by calculating the kynurenine/tryptophan
ratio in a clinically characterized population with severe obesity (BMI ≥ 97th percentile) aged 9
to 19 (n = 125). IDO activity and its product kynurenine correlated with BMI z-score and body
fat mass, whereas concentrations of serotonin, the alternative tryptophan metabolite, negatively
correlated with these measures of adiposity. Kynurenine and tryptophan, but not serotonin levels,
were associated with disturbed glucose metabolism. Tryptophan concentrations negatively correlated
with adiponectin and were significantly higher in prediabetes and metabolically unhealthy obesity.
In conclusion, BMI and body fat mass were associated with increased tryptophan catabolism via the
kynurenine pathway and decreased serotonin production in children and adolescents with severe
obesity. The resulting elevated kynurenine levels may contribute to metabolic disease in obesity.

Keywords: childhood; aromatic amino acids; inflammation; prediabetes; metabolically healthy
obesity; indoleamine 2,3-dioxygenase

1. Introduction

The dramatic increase in pediatric obesity foreshadows the substantial burden of non-
communicable disease that will strain the health care and social systems in the future [1–4].
Comorbidities associated with obesity include cardiovascular diseases, insulin resistance,
type 2 diabetes, hypertension, and dyslipidemia [5–7].

Though obesity and the development of non-communicable diseases are closely as-
sociated [8,9], a higher BMI is not necessarily indicative of worse metabolic health. The
underlying pathomechanisms, particularly considering divergent obese phenotypes, re-
main enigmatic. Understanding the various mechanisms of how obesity affects metabolic
health is essential to ultimately developing effective prevention and treatment strategies,
particularly in youth [10,11].

A chronic low-grade inflammatory state is a well-known trait in obesity [12,13] and
a common denominator of obesity-related diseases [12,14–16]. Additionally, metabolites
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like amino acids represent factors that interact with pathways involved in metabolic home-
ostasis [15–17]. In this respect, the tryptophan catabolic pathways seem to be of particular
relevance since they are regulated by nutritional and inflammatory signals and linked to
caloric intake regulation and metabolic control [18–20]. The essential amino acid trypto-
phan cannot be endogenously produced, and is thus provided exclusively through diet.
Overnutrition itself leads to increased tryptophan intake and availability [21,22]. Under nor-
mal physiological conditions, about 90% of tryptophan is metabolized via the kynurenine
pathway in the liver via tryptophan-2,3-dioxygenase; the residual tryptophan is largely
used for serotonin synthesis. The kynurenine pathway can alternatively be extrahepati-
cally initiated by indoleamine 2,3-dioxygenase (IDO) expressed in peripheral tissues and
induced by hallmarks of obesity such as inflammatory signals (i.e., TNFα, IL-6] as well as
oxidative stress [19,23–28].

Few reports have explored the relationship of the tryptophan catabolic pathway with
metabolic aspects. It is known that key enzymes are expressed also in adipose tissue and
are regulated by nutritional signals [18,20,29]. Increased adipose tissue IDO expression and
activity were observed in visceral obesity [30,31] and, accordingly, excessive tryptophan
catabolism mediated by IDO activity was reported in obesity [30–33], while a high-fat diet
proved to raise kynurenine levels in animal studies [29,34,35]. IDO activity and kynurenine
may be directly linked to insulin resistance [36–41] and kynurenine itself may trigger
obesity [29,35] and associated metabolic disease [35,38,42,43]. Hence, IDO and kynurenine
may represent potential treatment targets [20,35].

Adiponectin is an anti-inflammatory and insulin-sensitizing adipokine that is well
known to play a central role in glucose and lipid homeostasis, and plasma levels are
typically low in obese individuals [44]. However, an association between adiponectin and
the tryptophan pathway has not been described yet.

Altogether, the literature suggests a connection between the tryptophan-kynurenine
pathway and obesity-associated metabolic disease. However, most of these data derive
from experimental research in animals, and little is known about its relevance in pediatric
cohorts. Thus, research on the role of the kynurenine-tryptophan pathway in pediatric
obesity and metabolic health remains insufficient. It is of particular interest to identify
markers and mechanisms that determine the metabolic health state of pediatric patients
already suffering from severe obesity who constitute a high-risk population that should
be targeted with prevention and treatment strategies. Therefore, the purpose of this
explorative study was to assess the role of the tryptophan-kynurenine-pathway in pediatric
obesity and to characterize its relationship with obesity-associated metabolic comorbidities
within a cohort of pediatric patients with severe obesity.

2. Materials and Methods
2.1. Patients

Patients attending the outpatient clinic for obesity and lipid metabolic disorders at the
Department of Pediatrics and Adolescent Medicine at the Medical University of Vienna
with a BMI above the 97th percentile (referred to as “severe obesity” [45] throughout this
manuscript) were prospectively enrolled in this explorative study. All patients between
nine and 19 years old were eligible for this study. Exclusion criteria were secondary causes
of obesity, e.g., endocrine disorders, genetic, syndromic, and drug-induced obesity; drug-
associated elevation of liver enzymes and other causes of liver injury (e.g., Wilson’s disease,
hepatitis infection). Of 138 eligible patients, 125 were included. Thirteen patients were
excluded because of noncompliance with the study protocol.

All study participants underwent a physical examination. Medical history, clinical
and laboratory data were collected for all study participants. Tanner stage of puberty
was included in routine physician assessment. Anthropometric measures were taken
by standardized methods by the same two nurses throughout this study. Body mass
index (BMI kg/m2) and the respective percentiles were calculated. Serum and plasma
samples were obtained in an overnight fasting state and, for non-routine parameters,
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frozen at −80 ◦C until analysis. The homeostasis model of insulin resistance (HOMA-IR)
was calculated according to Matthews et al.: fasting insulin (µU/mL) × fasting glucose
(mg/dL)/405 [46]. Prediabetes was defined as fasting glucose ≥ 100 mg/dL. Metabolically
healthy obesity (MHO) was distinguished from metabolically unhealthy obesity (MUO)
according to the consensus-based definition by Damanhoury et al.: HDL-C > 40 mg/dL,
triglycerides ≤ 150 mg/dL, systolic and diastolic blood pressure ≤ 90th percentile, fasting
glucose ≤ 100 mg/dL [10]. Diet was routinely evaluated in the outpatient clinic. All
patients had a normal diet without any specific dietary restrictions and did not take any
supplements.

2.2. Laboratory Parameters

Kynurenine and tryptophan plasma concentrations were measured by ELISA (Im-
muSmol, Pessac, France). IDO activity was defined as the kynurenine to tryptophan ratio
according to the manufacturer’s instructions.

2.3. Statistics

Data are presented as means ± standard deviations (SD) unless otherwise indicated.
Continuous variables were assessed by Pearson correlation and Student’s t-test, if normally
distributed. Parameters with skewed distributions were appropriately log-transformed
prior to the analyses; if normal distribution was not achieved, respective non-parametric
statistics were used.

A two-sided p-value under 0.05 was considered statistically significant. The confidence
interval was set at 95%. Since this study is of explorative character, we did not adjust for
multiple testing.

All statistical analyses were performed using IBM SPSS Statistics for Windows, version
25 (IBM Corp., Armonk, NY, USA).

3. Results

One hundred twenty-five patients with a mean age of 13 ± 3 years were included in
the study. Thirteen patients had prediabetes, and 80 were metabolically unhealthy. Detailed
characteristics of the study population are shown in Table 1 and details concerning the
distribution among MHO criteria are shown in Supplementary Table S1.

Table 1. Patient characteristics.

Mean (n = 125) SD

Sex (n) m:81 f: 44
Age (years) 13 3
BMI z-score 2.8 0.5

BIA body fat [%] 41.5 7.3
HOMA-IR 6.3 5.20

Insulin [µU/mL] 28.9 20.2
C-Peptide 3.7 2.01

Fasting glucose [mg/dL] 86.0 21.0
Triglycerides [mg/dL] 134.0 90.0
Cholesterol [mg/dL] 168.0 30.0

HDL-C [mg/dL] 43.0 12.0
TNFα [pg/mL] 1.2 0.4
CRP [mg/dL] 0.7 0.6

Adiponectin [µg/mL] 6.5 2.7

3.1. Relationship between the Tryptophan Pathway and Body Composition/BMI

While tryptophan levels were independent of BMI z-score and body fat percentage,
BMI z-score and body fat mass positively correlated with kynurenine concentrations and
IDO activity and negatively correlated with serotonin concentrations (Table 2, Figure 1).
These correlations remained significant after correction for age and pubertal stage. The
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inflammatory markers CRP and IL-6 did not correlate with any metabolites of the trypto-
phan catabolic pathway, while tryptophan negatively correlated with the central adipokine
adiponectin (Table 2). This correlation, however, did not remain significant after correction
for age and pubertal stage.

Figure 1. Correlations of IDO activity, kynurenine and serotonin with BMI z-score and body fat
percentage (BIA body fat). Respective values are plotted as indicated in the diagram axes.

To further explore this relationship, metabolite concentrations were evaluated in
extreme quartiles of BMI z-score and body fat mass. When comparing the lowest and
highest BMI z-score quartile, IDO (p < 0.01) was significantly higher and serotonin (p = 0.03)
lower in the highest BMI z-score quartile. Kynurenine was significantly higher in the
highest BMI z-score (p = 0.02), and body fat mass quartile (p = 0.04) compared to the lowest.
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Table 2. Correlations of tryptophan, kynurenine, and serotonin with metabolic parameters.

Tryptophan
[µg/mL]

Kynurenine
[ng/mL] A

Serotonin
[ng/mL] IDO A

BMI z-score −0.06 0.23 ** −0.26 ** 0.22 *
BIA body fat [%] 0.01 0.29 ** −0.33 ** 0.23 *

HOMA-IR A 0.26 ** 0.20 * −0.16 0.02
Insulin [µU/mL] A 0.27 ** 0.21 * −0.15 0.02

C-Peptide A −0.33 ** −0.26 ** −0.15 0.01
Fasting glucose [mg/dL] 0.02 0.11 −0.16 0.05
Triglycerides [mg/dL] A 0.09 −0.01 −0.13 −0.07

Cholesterol [mg/dL] 0.13 −0.16 0.06 −0.19 *
TNFα [pg/mL] 0.01 0.12 −0.15 0.10
CRP [mg/dL] A −0.04 0.15 −0.03 0.08

Adiponectin [µg/mL] A −0.21 *,B,C −0.13 0.15 0.05
A Skewed distribution, thus spearman correlation was calculated; for normally distributed variables, the Pearson
correlation was calculated. * p < 0.05, ** p < 0.01, p > 0.05 if adjusted for B age, C pubertal stage.

3.2. Metabolic Disease and the Tryptophan Catabolic Pathway

Both tryptophan and kynurenine, but not serotonin, correlated with insulin resistance
as assessed by HOMA-IR, insulin and c-peptide, and also when adjusting for age and
pubertal stage (Table 2). In addition, tryptophan was significantly higher in children
with prediabetes (p = 0.04) and metabolically unhealthy children (p = 0.04) compared to
respective controls (Figure 2).

Figure 2. Tryptophan levels of different metabolic conditions. (A), metabolically unhealthy (MUO)
vs. healthy obesity (MHO; p = 0.04). (B), prediabetes vs. normoglycemic controls (p = 0.04). Diagrams
show means ± standard error. * p < 0.05.

4. Discussion

The individual risk for the development of metabolic diseases in obesity remains
largely unpredictable. Mechanisms causing obesity-associated diseases include chronic
low-grade inflammation and its interactions with metabolic pathways as a central as-
pect [16,47–49]. IDO, the key enzyme of the tryptophan-kynurenine catabolic pathway, is
expressed in adipose tissue and is induced by inflammation, a central feature in increased
fat mass and a well-known aspect in the pathogenesis of obesity-related diseases [24,33,50].
Thus, tryptophan and its metabolization to serotonin and kynurenine may link obesity,
inflammation, and the metabolic state.

Our explorative study shows that within a high-risk population of pediatric patients
with severe obesity, BMI z-score and body fat mass are associated with a shift in tryp-
tophan catabolism, leading to increased breakdown towards the kynurenine pathway



Nutrients 2022, 14, 286 6 of 10

and decreased catabolism along the serotonin pathway. Elevated tryptophan [33,51], IDO
activity [30–33], and kynurenine [33,36,51,52], as well as lower serotonin levels [50] in
obesity have been described before; however, the possible impact of this imbalance on
metabolic health remains unclear. In our cohort, higher BMI z-score and body fat mass
were positively associated with kynurenine and negatively with serotonin levels, while,
notably, tryptophan was not affected despite increased IDO activity. Thus, it appears that
in this cohort with severe obesity, tryptophan catabolism, not tryptophan levels themselves,
was affected by the extent of obesity.

The shift from serotonin to kynurenine synthesis observed in our study is already
well-known as the “serotonin hypothesis,” which proposes this shift as a vicious cycle in
the etiology of depression. We now show that this known dysregulation in tryptophan
catabolism may also be a factor in metabolic diseases [53,54].

As a result of this cross-sectional analysis, tryptophan concentrations appear to be
independent of the grade of adiposity but still correlate with metabolic disease markers like
HOMA-IR, insulin, and c-peptide, as did kynurenine concentrations. These correlations are
in line with reports on adult populations showing associations of HOMA-IR with kynure-
nine [36–41] and tryptophan [40,41,55]. Additionally, tryptophan was higher in children
with prediabetes and metabolically unhealthy children in our cohort. These findings are
consistent with results from adults [27,32,56–58]. However, one of the few reports that
included a pediatric cohort could not confirm the associations of increased kynurenine
levels and IDO activity with obesity and metabolic syndrome in juveniles [59]. These
conflicting results highlight the need for further investigations, particularly in pediatric
cohorts, and evaluations on the impact of age. Reportedly, age has an impact on kynurenine
levels [51], which led to the hypothesis that changes in tryptophan breakdown occur over
time [18].

The causal relationship of our observations remains under investigation. Nevertheless,
a shift towards kynurenine is most likely detrimental, as kynurenine modulates transcrip-
tion factors that affect BMI regulation and central control of food intake via interactions
with N-methyl-D-aspartate (NMDA) receptors of glutamate [18]. Furthermore, deleterious
effects on metabolic health could also be induced by kynurenine via the aryl hydrocarbon
receptor (AHR). Induction of the AHR has been linked to obesity and hyperglycemia in
mice. Furthermore, previous studies have proposed a causal connection between IDO
activation, which leads to increased kynurenine levels, and obesity-related comorbidi-
ties [29,35]. Moreover, the tryptophan-kynurenine pathway via IDO might also play a role
in cardiovascular disease, which warrants further research, particularly in cohorts with
obesity [1,60–62].

On the other hand, lower serotonin levels may exert several beneficial effects on lipid
and glucose metabolism [63]. Though we could not observe any correlations of serotonin
levels with any metabolic parameter, the observed downregulation of peripheral serotonin
concentrations with increased fat mass and BMI may be a regulatory response to increased
obesity-induced stress.

Of note, tryptophan levels were independent of BMI in our cohort with severe obesity
but associated with worse metabolic health. Elevated tryptophan levels are a known feature
in obesity [33,51], but the underlying mechanisms are poorly understood. Overnutrition
itself leads to excess tryptophan intake and availability [21,22], which might explain the
stable tryptophan plasma levels despite the increased activity of catabolism in our cohort.

One limitation of our study is that we did not systematically assess diet. Further
research including controlled diets is warranted to corroborate the findings of our study.

We found a novel association between the tryptophan pathway and adiponectin.
This crucial adipokine correlated significantly with tryptophan levels in our cohort. Thus,
adiponectin might represent a possible link between adipose tissue inflammation and
metabolic changes in obesity, although this correlation was not independent of age and
pubertal stage. Previous studies hinted that adiponectin might regulate the kynurenine
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pathway in mice subjected to a high-fat diet [34], and another linked increased IDO to lower
adiponectin levels [64]. Further studies are needed to corroborate these novel findings.

5. Conclusions

Tryptophan catabolism is shifted towards the kynurenine pathway and reduced sero-
tonin production with increasing obesity in pediatric patients. IDO activity could be a key
factor linking obesity-associated inflammation and metabolic disease. Details of this impor-
tant association between obesity, inflammation, and other metabolic pathways involved in
lipid and glucose metabolism remain to be elucidated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14020286/s1, Table S1: Distribution of the study cohort among
MHO criteria.
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