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A commentary on

Prenatal Ethanol Exposure Persistently Alters Endocannabinoid Signaling and

Endocannabinoid-Mediated Excitatory Synaptic Plasticity in Ventral Tegmental Area

Dopamine Neurons

by Hausknecht, K., Shen, Y.-L., Wang, R.-X., Haj-Dahmane, S., and Shen R.-Y. (2017). J. Neurosci.
37, 5798–5808. doi: 10.1523/JNEUROSCI.3894-16.2017

The endocannabinoid (eCB) system (ECS) plays a prominent role in regulating brain reward
function and modulating emotional homeostasis (Parsons and Hurd, 2015; Araque et al., 2017)
and stress (Volkow et al., 2017). Adverse effects on the ECS during early development have been
hypothesized to increase the likelihood of future engagement in drug use (Koob and LeMoal, 2008),
characterized by positive reinforcement (Wise and Koob, 2014). This reinforcement driving drug-
seeking behaviors is thought to result from the imbalance in glutamate homeostasis that disrupts
the mesocorticolimbic dopamine (DA) pathways (Kalivas, 2009). Among many adverse factors
during distinct developmental stages, however, the molecular underpinnings of the transition to
addiction remain largely elusive. A better understanding of synaptic plasticity underlying the ECS
associated with early adversity and addiction risk is important to guide the development of future
therapeutic interventions (Parsons and Hurd, 2015).

Plasticity of glutamatergic synapses in the ventral tegmental area (VTA) has been implicated as a
critical component of long-lasting neural maladaptation underlying addictive behaviors (Kauer and
Malenka, 2007). Prenatal ethanol (PE) exposure has shown increased addiction risk in literature
(Abel et al., 1981; Baer et al., 2003; Koob and Le Moal, 2008). Expanding this line of research,
a recent work (Hausknecht et al., 2017) discovered that PE exposure persistently impaired eCB
long-term depression (LTD) at excitatory synapses in rats.

Three mechanisms by which the eCB-LTD at VTA DA synapses can be altered are changes in
presynaptic receptor and postsynaptic receptor levels and eCB biosynthesis. These mechanisms
have been consistently implicated in neuronal maladaptation accompanying ethanol exposure in
adult rodents. For example, the presynaptic cannabinoid 1 (CB1) receptors were downregulated
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FIGURE 1 | PE-induced alterations of eCB signaling and excitatory synaptic plasticity in VTA DA neuron underlie positive reinforcement. (A) Under normal conditions,

eCB-LTD is induced by afferent stimulation, resulting in eCB synthesis. eCBs then activate CB1 receptors. (B) PE exposure persistently alters eCB signaling, impairs

eCB-LTD, downregulates CB1 receptors, and thus results in the enhanced excitability of VTA DA neurons that underlie positive reinforcement states that promote

addiction-related behaviors. Upregulation of AMPA receptors, including the polyamine-lacking receptors, and the decreased glutamate stimulation further contribute

to an occlusion effect on the eCB signaling. (C) Drug-induced adaptations can be counteracted by using mGlu receptor agonists, signaling eCB production, leading

to rescue of eCB-LTD and restoration of augmented excitatory synaptic strength in VTA DA neurons.

by chronic ethanol administration (Basavarajappa and Hungund,
1999; Xia et al., 2006; Mitrirattanakul et al., 2007; DePoy et al.,
2013; Varodayan et al., 2016). eCB-LTD in midbrain DA neurons
was mediated by reduced presynaptic glutamate release (Haj-
Dahmane and Shen, 2010). Moreover, increased eCB ligand
2-arachidonoylglycerol (2-AG) level was observed in nucleus
accumben (NAc) and hippocampus after acute and chronic
ethanol administration (Caillé et al., 2007; Mitrirattanakul et al.,
2007). Considering that the effects of acute and chronic ethanol
exposures in mature animals are relatively temporary, are these
mechanisms also at work in PE exposure, in which its effects tend
to have long-term consequences?

To assess the change in presynaptic CB1 receptor levels and
its role in the PE-induced impairment of eCB-LTD, Hausknecht
et al. (2017) used a CB1 receptor agonist to inhibit the evoked
excitatory postsynaptic currents (EPSCs) and examined the PE
effects on inhibition. They found that CB1 receptors were
reduced, and it was associated with the impaired eCB-LTD in PE
rats (Hausknecht et al., 2017, their Figure 3A). They also used a
CB1 receptor antagonist/inverse agonist to confirm the exhibited
inhibitory effect mediated by CB1 receptor activation. Their
findings showed that downregulation of CB1 receptors impaired
eCB-LTD and suggested that PE exposure might mediate the
downregulation. Interesting questions are raised. First, are the
effects of PE exposure specific to excitatory synapses in VTA?
There is a notion that chronic ethanol exposure in adult animals
alters inhibitory GABAergic synapses in striatum (Melis et al.,
2002; Adermark et al., 2011). It is unknown if PE exposure
influences the excitatory synapse selectively, or if it affects both of
the excitatory and inhibitory synapses in an equivalent manner.
Second, what are the mechanisms underlying the long-term
eCB-LTD impairment after the prenatal insult?

Dysregulation of ligand synthesis may also contribute to
the impaired LTD mechanism. Hausknecht et al. (2017) found
that, using a potent agonist of postsynaptic type 1 metabotropic
glutamate (mGlu) receptors, the LTD was induced in both PE

and control animals, and using a CB1 receptor antagonist/inverse
agonist, the induced LTD was blocked (Hausknecht et al.,
2017; their Figure 7). They further highlighted that, in PE
rats, activation of mGlu receptors rescued the eCB-LTD but
increasing glutamate level alone did not. Two key mechanisms
are raised: (1) eCB ligand synthesis in VTA DA neurons and its
release to synapses mediate eCB-LTD, consistent with previous
evidence (Parsons and Hurd, 2015; Araque et al., 2017), and
(2) the persistent effect of PE exposure on the eCB-LTD at
excitatory synapses and the downregulation of CB1 receptors
are the primary cause of the diminished eCB-LTD. Another
interesting question is then raised: what is the underlying cellular
mechanismwhen the LTD is rescued in PE animals? Because both
presynaptic glutamate stimulation and postsynaptic membrane
depolarization are necessary to induce eCB-LTD (Haj-Dahmane
and Shen, 2010), one would assume that the eCB synthesis and
CB1 receptor function are intact. However, under PE condition,
it is unclear how the LTD is rescued by mGlu receptor activation
when CB1 receptors are downregulated. Would it be because
of the variations in eCB and synthetic agonist actions and/or
changes in the receptors? In either case, it should be noted that
the CB1 agonist function, or the efficacy of CB1 receptors, may
be intervened by receptor levels, receptor internalization, and/or
uncoupling from the subunits of G proteins without changes in
protein expression.

The source of eCB signaling (e.g., tonic and phasic activities)
and its application to other drugs of dependence or other
prenatal stresses remain to be determined. Moreover, the extent
of the excitatory pathway linked to the widely-studied inhibitory
GABAergic pathway on the VTA DA neurons should be
investigated. The CB1 receptors examined by Hausknecht et al.
(2017) were at excitatory synapses, but these G protein-coupled
receptors are the most abundant at inhibitory synapses in adult
brain. The interactions between these two pathways and eCB-
LTD may yield an insight on the transition to drug addiction
in a living and dynamic environment including humans. Other
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variables, such as, choice of species, genetic makeup, eCB
clearance, drug dose used, duration of treatment, and sex
differences, could also affect the mechanism underlying the
molecular impairments and behavioral responses. Such models
are essential to comprehensively appreciate the contribution
of receptors signaling to positive-reinforcing responses and to
evaluate therapeutic potential for normalizing eCB signaling
by activating mGlu receptors and/or restoring CB1 receptor
function.

These considerations notwithstanding, the observations
of Hausknecht et al. (2017) advance our understanding
of the synaptic foundations of impaired eCB-mediated
plasticity of excitatory signaling in VTA DA neurons
associated with PE exposure. Their work (Hausknecht
et al., 2015, 2017) facilitates further investigation of other
functionally accordant aspects of VTA excitatory synaptic
plasticity (e.g., changes in spine head morphology, directional

regulation, CB1/CB2 binding ratio). Considering the

crucial role PE exposure plays in profoundly altering eCB
signaling and excitatory molecular plasticity in VTA and
increasing risk in addiction, the findings of Hausknecht
et al. (2017) raise the possibility of using mGlu receptor
agonists to rescue the eCB-LTD (Figure 1) and to ameliorate
addiction risk in PE.
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