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Abstract
Objective
We assessed preoperative structural brain networks and clinical characteristics of patients with drug-
resistant temporal lobe epilepsy (TLE) to identify correlates of postsurgical seizure recurrences.

Methods
We examined data from 51 patients with TLE who underwent anterior temporal lobe resection
(ATLR) and 29 healthy controls. For each patient, using the preoperative structural, diffusion,
and postoperative structural MRI, we generated 2 networks: presurgery network and surgically
spared network. Standardizing these networks with respect to controls, we determined the
number of abnormal nodes before surgery and expected to be spared by surgery. We in-
corporated these 2 abnormality measures and 13 commonly acquired clinical data from each
patient into a robust machine learning framework to estimate patient-specific chances of
seizures persisting after surgery.

Results
Patients with more abnormal nodes had a lower chance of complete seizure freedom at 1 year
and, even if seizure-free at 1 year, were more likely to relapse within 5 years. The number of
abnormal nodes was greater and their locations more widespread in the surgically spared
networks of patients with poor outcome than in patients with good outcome. We achieved an
area under the curve of 0.84 ± 0.06 and specificity of 0.89 ± 0.09 in predicting unsuccessful
seizure outcomes (International League Against Epilepsy [ILAE] 3–5) as opposed to complete
seizure freedom (ILAE 1) at 1 year. Moreover, the model-predicted likelihood of seizure relapse
was significantly correlated with the grade of surgical outcome at year 1 and associated with
relapses up to 5 years after surgery.

Conclusion
Node abnormality offers a personalized, noninvasive marker that can be combined with clinical
data to better estimate the chances of seizure freedom at 1 year and subsequent relapse up to 5
years after ATLR.

Classification of Evidence
This study provides Class II evidence that node abnormality predicts postsurgical seizure
recurrence.
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Epilepsy surgery is an effective treatment for bringing seizure
remission in drug-resistant focal epilepsies. However, it is
underused.1–3 One reason for the underreferral of patients is
the reservations regarding the uncertainty of its outcome.3,4 In
≈30% to 40% of individuals, seizures continue despite surgery,
and the multidisciplinary team is unable to accurately predict
this risk.5–9 Therefore, to better inform this clinical decision-
making, there is a need to predict both seizure outcomes in
the short term and the likelihood of seizure relapse in the long
term.8,10

The incomplete removal of a wider epileptogenic network is
increasingly being recognized as one of the reasons for con-
tinued seizures after surgery.11,12 Many studies, driven by the
aforementioned hypothesis, have attempted predicting sei-
zure outcomes from presurgical data.9,13–20 Most studies,
however, have investigated brain networks without in-
corporating the knowledge of the planned/performed surgery
into the analysis. Naturally, the outcome of epilepsy surgery
will depend not only on the presurgery brain network but also
on how the surgery (i.e., its location and extent) will affect the
brain network.21 Including surgical data allows the inference
of a surgically spared network, the subnetwork for which none
of the connections are altered by surgery and are therefore
expected to remain after the surgery. Thus, the presence of
epileptogenic structures in the surgically spared network, a
likely cause for seizure recurrence, needs investigation.

Studies using quantitative imaging have consistently demon-
strated that in TLE there are structural abnormalities that
involve brain structures beyond the hippocampus and the
temporal lobe.22–27 Accumulating evidence suggests that
these abnormalities configure a network of abnormal struc-
tures that may be involved in the generation of
seizures.11,28–31 Indeed, the pathophysiologic mechanisms
associated with epileptogenesis have a strong basis in aberrant
neural connectivity.32,33 Therefore, quantifying the abnor-
malities before and expected to remain after surgery may in-
form postoperative seizure outcome.

The main goal of our study was to understand how structural
network abnormalities relate to seizure outcomes after tem-
poral lobe epilepsy (TLE) surgery. We investigated the ab-
normality of the surgically spared networks because, at a
conceptual level, postoperative outcomes will likely be de-
termined by what remains after surgery. Our study addresses 3
main questions. (1) Do patients with more abnormalities in
the surgically spared network have worse postoperative sei-
zure outcomes? (2) Does surgery reduce node (region)

abnormality more in seizure-free patients than in patients who
are not seizure-free? (3) If the node abnormality measure is to
be used alongside common clinical variables of a patient,
would it generalize to make patient-specific predictions on the
chances of seizure freedom after surgery? Our study shows
that the node abnormality in the surgically spared network is
an important measure to be considered alongside other pre-
surgical clinical factors to evaluate the risk of poorer seizure
outcomes in patients with refractory TLE.

Methods
Participants
We studied 51 patients who underwent unilateral anterior
temporal lobe resection at the National Hospital of Neurol-
ogy and Neurosurgery, London, UK. Patients were followed
up after surgery and classified according to the International
League Against Epilepsy (ILAE) scale of seizure outcome at
12-month intervals.34 One year after the surgery, 34 patients
were completely seizure-free (ILAE 1), 8 patients continued
to have auras only (ILAE 2), and 9 patients were not seizure-
free (ILAE 3–5). No patient had an outcome of ILAE 6.

ILAE surgical outcomes of seizure freedom were recorded
annually at years 1 and 2 for all 51 patients, at year 3 for 45
patients, at year 4 for 37 patients, and at year 5 for 31 patients.
We considered that a patient had a seizure relapse if, at any
given year after year 1, the ILAE outcome of the patient
changed from ILAE 1 to 2 to ILAE 3 to 5. If the ILAE outcome
of a patient did not change to ILAE 3 to 5 and the follow-up
duration was <5 years, it cannot be ascertained if the patient
would have relapsed on a full 5-year follow-up. Therefore,
beyond the known follow-up period, we did not include such
patients in our analysis. On the basis of this criterion, among
the year 1 patients at ILAE 1 to 2, the number of patients who
relapsed (did not relapse) by the end of each subsequent years
was as follows: 3 (39) by year 2; 8 (29) by year 3; 11 (21) by
year 4; 13 (14) by year 5.

Notably, seizure outcome and seizure relapse are 2 different
measures. Seizure outcome at year 1 categorized all 51 pa-
tients according to their ILAE score at 1 year after surgery.
Seizure relapse categorized only those patients who were
initially free from disabling seizures, i.e., ILAE 1 or 2, but then
later at 5 years had a seizure reoccurrence. In labeling seizure
relapse, we excluded the 9 patients who had seizure re-
currence within 1 year after the surgery (i.e., ILAE 3–5 at year
1) to avoid any bias. The full patient details are provided in

Glossary
AUC = area under the curve; CI = confidence interval; dMRI = diffusion-weighted MRI; gFA = generalized fractional
anisotropy; ILAE = International League Against Epilepsy; ROI = region of interest; sMRI = structural MRI; SVM = support
vector machine; TLE = temporal lobe epilepsy.
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table S1, doi.org/10.5061/dryad.vx0k6djnv, and summarized
in table 1.

We also studied 29 healthy individuals, age and sex matched
to patient group, with no significant medical history of neu-
rologic or psychiatric problems.

Standard Protocol Approvals, Registrations,
and Patient Consents
The study was approved by the National Hospital for Neu-
rology and Neurosurgery and the Institute of Neurology Joint
Research Ethics Committee, and written informed consent
was obtained from all participants. Data were analyzed in this
study under the approval of the Newcastle University Ethics
Committee (reference 1804/2020).

MRI Acquisition, Data Processing, and
Surgery Network
For each participant, T1-weighted structural MRI (sMRI) and
diffusion-weighted MRI (dMRI) data were acquired before
surgery. Within 1 year after surgery, T1-weighted sMRI data
were acquired again for patients. As in our previous study,21

we used the postoperative sMRI to manually draw the re-
section mask in preoperative sMRI space, hence delineating
the resected tissue. We parcellated the preoperative T1 image
into 114 cortical and subcortical regions of interest (ROIs)
derived from the predefined Geodesic Information Flow atlas
and separately in 82 ROIs using the FreeSurfer Desikan-
Killiany atlas in the native space of each participant. Along
with streamlines inferred with dMRI tractography and regions
inferred with parcellation, we incorporated the information of
resected tissue to infer 2 networks: presurgery network and
surgically spared network. The presurgery streamline network
is the whole-brain network depicting the number of stream-
lines connecting predefined parcellated ROIs. The surgically
spared network is a subnetwork of the presurgery network
that is inferred after removal of the streamlines that inter-
sected the resection mask. By definition, surgery can cause
only an immediate reduction in the number of streamlines.
Therefore, we specified that the surgically spared network
contains only those network edges that are not expected to
change in streamline count after surgery (i.e., edges where
their streamlines do not pass through/into the resection
cavity). The overall concepts are illustrated in figure 1. De-
tailed imaging protocols and data processing pipeline to infer
these networks are described fully in supplementaryMethods,
doi.org/10.5061/dryad.vx0k6djnv.

Node Abnormality Computation
We computed node abnormality on networks based on the
mean generalized fractional anisotropy (gFA) property of
dMRI streamlines.35 The presurgery networks were stan-
dardized patient-specifically against controls as follows: for
each connection present between ROIs i and j in a patient, the
connection distribution was obtained from the equivalent
connection between ROIs i and j from the control networks.
The z score for that connection was calculated as the number

of SDs away from the mean, where the SD and mean were
obtained from the control distribution. Networks inferred
from deterministic tractography are sparse, so we z scored
only those connections in patients for which an equivalent
connection existed in at least 10 (≈35%) controls.36 This is
depicted in figure 2A.

After obtaining the presurgery z-scored gFA network, we
removed the connections present in the surgery-affected
network to obtain the surgically spared z-transformed gFA
network. High jzj indicates high deviation from normality.
Thus, the presurgery network maps the abnormal links pre-
sent before the surgery, and the surgically spared network
maps the abnormal links that would remain unaffected im-
mediately after the surgery. This is illustrated in figure 2, B
through D.

To study how different regions (nodes) are affected in these
networks, we computed node abnormalities (figure 2E) in the
presurgery and surgically spared networks by counting
the number of abnormal links to each node. We normalized
the number of abnormal links to a node by its degree in the
presurgical network, thus expressing node abnormality in
percentage terms.

Quantification of node abnormality load raises 2 questions.
First, what is the definition of an abnormal connection?
Second, when is a node considered abnormal? The former is
essential for the application of a threshold on the abnormality
network to count the number of abnormal links at each node.
For the latter, another threshold is needed to define beyond
what percentage level a node should be considered abnormal.
We therefore varied the z-score threshold from 2.1 to 4.5 in
increments of 0.1 and the percentage abnormality threshold
from 1% to 50% in increments of 1%. At each point on this
2-dimensional grid, we computed how many nodes were
abnormal in presurgery and surgically spared networks. We
call this the abnormality load, the total number of abnormal
nodes identified at any given pair of thresholds. This is illus-
trated in figure 2F for 6 example threshold pairs. Finally,
having quantified the abnormality load for each patient, we
assessed its discriminatory ability in predicting seizure out-
come at year 1 and seizure relapse in 5 years.

Quantifying the Change in Abnormality Load
After ATLR
To investigate the effect of surgical treatment on reduction of
abnormalities, we compared the difference in abnormality
load between presurgery and surgically spared networks. The
ROIs in the left and right hemispheres of patients were
expressed as ipsilateral or contralateral to surgery. Then, we
categorized each ROI into 6 ipsilateral and 6 contralateral
areas, i.e., temporal, subcortical, parietal, occipital, frontal, and
cingulate cortices. In each area, we determined the number of
abnormal nodes in the presurgery and surgically spared net-
works patient-specifically. Then, we averaged the number of
abnormal nodes in each area for seizure-free (ILAE 1) and not
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Table 1 Demographic and Clinical Data of Patients

Year 1 Outcomea ILAE 1 ILAE 2 ILAE 3–5 Statistical Estimates

Variables, n

Patients 34 8 9

Sex (male/female) 16/18 2/6 2/7 χ21;2 = 0.54, p1,2 = 0.46
χ21;3 + = 0.93, p1,3+ = 0.33
χ22;3 + = 0.19, p2,3+ = 0.66

Age at onset (mean ± SD), y 12.2 ± 10.3 14.2 ± 11.4 19 ± 12 p1,2 = 0.62, d1,2 = 0.19 (95% CI −0.59 to 1.26)
p1,3+= 0.04, d1,3+ = 0.64 (95% CI 0.04–1.76)
p2,3+ = 0.43, d2,3+ = 0.41 (95% CI −0.38 to 1.4)

Age at surgery (mean ± SD), y 38 ± 11.9 38.6 ± 10.3 46.5 ± 10.2 p1,2 = 0.96, d1,2 = 0.05 (95% CI −0.77 to 0.76)
p1,3+ = 0.08, d1,3+ = 0.73 (95% CI 0.05–1.44)
p2,3+ = 0.13, d2,3+ = 0.77 (95% CI −0.13 to 1.6)

Epilepsy duration (mean ± SD), y 25.8 ± 15.8 24.3 ± 17.3 27.5 ± 7.3 p1,2 = 0.74, d1,2 = −0.09 (95% CI −0.9 to 0.88)
p1,3+ = 0.54, d1,3+ = 0.11 (95% CI −0.36 to 0.6)
p2,3+ = 0.54, d2,3+ = 0.24 (95% CI −0.9 to 1.56)

Side (left/right), n 22/12 3/5 5/4 χ21;2 = 1.02, p1,2 = 0.31
χ21;3 + = 0.01, p1,3+ = 0.91
χ22;3 + = 0.06, p2,3+ = 0.79

Hippocampal sclerosis, n (%)b 24 (70.5) 6 (75) 5 (55.5) χ21;2 = 0.03, p1,2 = 0.85
χ21;3 + = 0.21, p1,3+ = 0.64
χ22;3 + = 0.11, p2,3+ = 0.74

AEDs before surgery (mean ± SD), n 6.3 ± 2.4 7.6 ± 2.9 9.2 ± 3.3 p1,2 = 0.10, d1,2 = 0.54 (95% CI −0.68 to 1.87)
p1,3+= 0.01, d1,3+ = 1.14 (95% CI 0.29–2.15)
p2,3+ = 0.46, d2,3+ = 0.52 (95% CI −0.42 to 1.29)

Preoperative MRIc (normal/abnormal), n 5/29 1/7 2/7 χ21;2 = 0.16, p1,2 = 0.69
χ21;3 + = 0.001, p1,3+ = 0.97
χ22;3 + = 0.01, p2,3+ = 0.91

History of status epilepticus, n (%) 5 (15.7) 0 (0) 3 (33.3) χ21;2 = 0.30, p1,2 = 0.58
χ21;3 + = 0.63, p1,3+ = 0.43
χ22;3 + = 1.35, p2,3+ = 0.25

Secondary generalized seizures, n (%) 28 (82.3) 6 (75) 6 (66.7) χ21;2 = 0.0005, p1,2 = 0.98
χ21;3 + = 0.32, p1,3+ = 0.57
χ22;3 + = 0.02, p2,3+ = 0.88

Depression, n 8 5 2 χ21;2 = 2.96, p1,2 = 0.09
χ21;3 + = 0.13, p1,3+ = 0.72
χ22;3 + = 1.42, p2,3+ = 0.23

Psychosis, n 2 0 0 χ21;2 = 0.05, p1,2 = 0.83
χ21;3 + = 0.02, p1,3+ = 0.88

Other psychiatric disorders, n 8 3 4 χ21;2 = 0.13, p1,2 = 0.72
χ21;3 + = 0.68, p1,3+ = 0.41
χ22;3 + = 0.04, p2,3+ = 0.84

Relapsed by end of year 2, n (%)d 0 (0) 3 (37.5) 9 (100)

Relapsed by end of year 3, n (%) 3 (8.8) 5 (62.5) 9 (100)

Relapsed by end of year 4, n (%) 5 (14.7) 6 (75) 9 (100)

Relapsed by end of year 5, n (%) 7 (20.6) 6 (75) 9 (100)

Abbreviations: AED = antiepileptic drug; CI = confidence interval; ILAE = International League Against Epilepsy.
a Seizure outcome refers to the postoperative seizure outcome measured on the ILAE scale after surgery at year 1. ILAE 1 for complete seizure freedom at 1
year after surgery is labeled as good outcome. ILAE 3 to 5 for continued seizure at 1 year after surgery is labeled as poor outcome. ILAE 2 for no disabling
seizures, only auras, at 1 year after surgery is categorized as a separate group between the spectrum of good and poor outcomes.
b Hippocampal sclerosis from MRI was determined by segmentation of hippocampus using anatomic landmarks as described elsewhere.50
c PreoperativeMRI was deemed abnormal radiologically in the presence of hippocampal sclerosis, cavernoma, lesion, cortical dysplasia, or dysembryoplastic
neuroepithelial tumors and deemed radiologically normal for MRI-negative patients.
d Seizure relapse is a binary measure to indicate whether patients had a recurrence of seizures at any time up to 5 years after remaining seizure-free for at
least 1 year after surgery, i.e. if patients with ILAE 1 to 2 at year 1 changed to ILAE 3 to 5 during the 5-year follow-up.
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seizure-free (ILAE 3–5) groups of patients. Finally, by com-
puting the proportion of abnormal nodes in every area
(i.e., ratio of mean abnormal ROIs to the total number of
ROIs in each area) for the presurgery and surgically spared
network, we noted the change due to the surgery in all
patients.

Predictive Model Design for
Generalizability Assessment
To predict the patient-specific probability of seizure relapse
based on preoperative clinical data (table 1 and table S1, doi.
org/10.5061/dryad.vx0k6djnv) and presurgical and surgically
spared node abnormality, we applied support vector machine
(SVM) learning algorithm.37,38 The outcome values for SVMs
were the seizure outcome at year 1, with ILAE 1 labeled as
seizure-free outcome and ILAE 3 to 5 labeled as not seizure-
free outcome. We incorporated a linear kernel in SVM be-
cause this enabled a direct interpretation of weights as relative
feature importance. We performed nested-cross-validation in
which the data were split into 3 folds: training, validation, and
testing. During training, SVM learned from the data in the
training fold only; it did not see any data in the validation or
test fold. Node abnormality measures were computed afresh

for each patient in the training fold, and the most discrimi-
natory (highest area under the curve [AUC]) threshold pairs
across patients in the training fold were noted. A trained SVM
learned to weigh the 15 preoperative attributes in the order of
their relative importance to maximize the training accuracy.
We avoided overfitting by incorporating a regularization pa-
rameter in SVM. The regularization parameter was optimized
on the validation fold, after which the SVM was tested for
generalizability on the unseen data in the test fold. This is akin
to a new incoming patient (pseudoprospective), for which the
learning algorithm has been trained and optimized on
existing/past patient records.

During the training phase, the SVM draws a linear hyperplane
to separate patients who were seizure-free (ILAE 1) from
those who were not seizure-free (ILAE 3–5) at year 1. The
features of the test patient are then tested on this hyperplane,
and depending on how confidently the SVM places this pa-
tient in the not seizure-free group, a probability is assigned.
We refer to these probabilities as the likelihood of seizure
relapse because a high probability indicates a predicted pro-
pensity toward a not seizure-free outcome. By implementing a
leave-one-out scheme, we measured (1) the net

Figure 1 Estimating Patient-Specific Surgery Network

Preoperative T1-weighterd (T1w)MRI of an example patient (A) and postoperative T1wMRI (C)were used to delineate the tissue resected by surgery. Resected
tissue shown by the red resection mask in panel (B) was used with the preoperative diffusion MRI to infer brain networks. Presurgery network inferred from
the number of streamlines connecting different regions of interest in panel (D) ignores the surgery information by not taking the resection mask into
consideration. (E) Patient-specific surgery network showing the connections that were affected by the surgery. (F) Surgically spared network. dMRI = diffusion-
weighted MRI; sMRI = structural MRI.
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Figure 2 Overall Pipeline

Presurgical generalized fractional anisotropy (gFA) network architecture for each patient in panel (A) is inferred, and connections between regions of interest
are standardized against a control distribution (illustrated for an example connection in the right of panel [A]) to obtain a z score–transformed network in
panel (B). The connections affected by the surgery shown in surgery network in panel (C) are removed to obtain surgically spared network in panel (D). (E)
Concept of node abnormality for 2 example nodes. By normalizing the number of abnormal links to a nodewith its degree, the heterogeneity in the degree of
network nodes is accounted for. Anh-degreenode canbe less abnormal compared to a low-degree nodedepending on the number of abnormal connections.
(F) Different thresholds required for the computation of node abnormality are shown for surgically spared network (blue panel front) and the presurgery
network (orange panel back). The z score at which a link is considered abnormal is on the y-axis, and the cutoff at which a node is considered abnormal is
shown on the x-axis. (G and H) Abnormality loads in presurgery and surgically spared networks are incorporated into amachine learning classifier along with
the clinical predictors to predict seizure outcomes at year 1 both in terms of binary seizure-free (plus in green) vs not seizure-free (minus in red) outcome and
in terms of the probability with which each patient was classified as not seizure-free. These probabilities correlated with severity of seizure outcome (i.e.,
International League Against Epilepsy [ILAE] class) at year 1 and associated with the seizure relapse in 5 years. We called these probabilities predicted seizure
relapse likelihood. |z| = z-score
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generalizability of the learning algorithm (quantified by AUC,
accuracy, sensitivity, and specificity), (2) how correlated the
predicted probabilities of seizure relapse are with severity of
seizure outcomes (i.e., ILAE class at 1 year), and (3) the
association between actual relapse in 5 years and the predicted
probabilities of seizure relapse.

Ranking features indicated metrics that were important for
prediction performance as opposed to those that may be
confounding. Therefore, to identify the combination of most
informative features, we removed the least informative feature
and repeated the above process until a single feature
remained.38,39 More details on data splits and nested cross-
validation are provided in supplementary materials, doi.org/
10.5061/dryad.vx0k6djnv.

Statistical Analysis
To investigate whether a greater number of abnormal nodes
are associated with not seizure-free (ILAE 3–5) outcomes,
we applied the nonparametric Wilcoxon rank-sum test. A
one-tailed p value was computed with the ranksum function
in MATLAB (MathWorks, Inc, Natick, MA) incorporating
the exact method. Results are declared significant for p <
0.05. We further applied Benjamini-Hochberg false discov-
ery rate correction40 at a significance level of 5%. Effect size
between groups was computed with the Cohen d score, and
the correlation coefficients between likelihood of seizure
relapse and the severity of seizure outcome were determined
with the Spearman rank order. We computed 95% bootstrap
confidence intervals (CIs) of effect size, AUC, and median
using a bias-corrected and accelerated percentile method
from 10,000 bootstrap resamples with replacement. Our
study provides Class II evidence that node abnormality be-
fore and expected to remain after surgery predicts post-
surgical seizure recurrence.

Data Availability
To enable reproducibility, we will make available all the
anonymized presurgery and surgically spared brain networks
of 51 patients, networks of 29 controls, codes for node ab-
normality computations, and all the trained machine learning
models on the data presented. Supplementary data, text, and
figures are available at Dryad (doi.org/10.5061/dryad.
vx0k6djnv.

Results
The results are organized into 3 parts. First, we assessed
whether patients with a greater number of abnormal nodes
(i.e., a higher abnormality load) are predisposed to ILAE 3 to
5 (poorer) seizure outcome after surgery. Outcomes are ini-
tially measured at 12 months and then at later years. Second,
we investigated the effect of surgery in reducing the node
abnormality load between the seizure-free and not seizure-
free groups. Third, we determined the generalizability of node
abnormality measure, if it is to be incorporated in a clinical

setting alongside other clinical attributes, to estimate the
chances of seizure recurrence for new patients.

Abnormality Load Corresponds With Year 1
Surgical Outcome and Later-Year
Seizure Relapse
We investigated the abnormality load in surgically spared and
presurgical networks. Figure 3, A through D illustrates ab-
normal nodes in the surgically spared networks for 4 patients.
The patients in figure 3, A and B were seizure-free (ILAE 1)
and had auras (ILAE 2) at 1 year after surgery and did not
relapse subsequently; they had a relatively low node abnor-
mality load. The patient in figure 3C initially had auras only
(ILAE 2) at 1 year after surgery but later relapsed; this patient
showed a higher abnormality load. The patient in figure 3D,
with the highest abnormality load, had the worst surgical
outcome of ILAE 5 at 1 year, which persisted on follow-up. In
these 4 cases, a greater abnormality load was associated with
worse outcomes at year 1 and with seizure relapse at later
years.

Figure 3E shows the node abnormality load in surgically
spared network for the entire patient cohort. Patients who
were not seizure-free (ILAE 3+) at 1 year after surgery had a
significantly higher abnormality load than patients who were
seizure-free (p = 0.005, d = 1.11 [95% CI 0.42–2.2] between
ILAE 1 and ILAE 3–5; and p = 0.01, d = 0.61 [95% CI −0.92
to 2.05] between ILAE 2 and ILAE 3–5). Here, we chose to
analyze ILAE 2 as a separate group because clinical data
(table 1 and table S1, doi.org/10.5061/dryad.vx0k6djnv)
suggest that these patients, albeit free from disabling seizures
at year 1, have a greater propensity to relapse in later years.41

Studying only the subset of patients who were initially
seizure-free (i.e., ILAE 1–2) at 1 year (figure 3, F and G),
patients who relapsed had a higher abnormality load than the
patients who did not relapse (p = 0.04; d = 0.77 [95%
CI −0.01 to 1.31]).

Node abnormality in figure 3, computed from the surgically
spared network, was defined as the nodes with at least 10% of
abnormal (z > 2.8) connections. At this choice of thresholds,
the discrimination (AUC) between the seizure-free and not
seizure-free groups was the highest. Comparable results are
found for other threshold values (supplementary figure S1,
doi.org/10.5061/dryad.vx0k6djnv) and with an alternative
network parcellation (supplementary figure S4). Thus, the
discriminatory ability of the node abnormality load measure is
consistent across the choice of threshold or the choice of
parcellation scheme.

We found similar results in the presurgery networks. Patients
at ILAE 3 to 5 had significantly more abnormal nodes than
patients at ILAE 1. However, the size of this effect was less
pronounced than in the surgically spared networks, with rel-
atively poorer discriminatory ability (p = 0.03; d = 0.78 [95%
CI 0.04–2.1]) (see, supplementary figures S1 and S2, doi.org/
10.5061/dryad.vx0k6djnv). Therefore, our findings suggest
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that the surgically spared network, which is the surgically
informed subnetwork of the presurgery network, is more
discriminatory in identifying seizure-free from not seizure-free
patients.

Surgery-Related Effect on Reducing
Abnormality Load
How much effect does surgery have on reducing the abnor-
mality load? We investigated the differences between the
surgically spared and presurgery networks in terms of their
abnormality load and whether the projected change in ab-
normality load due to surgery was greater and more wide-
spread in one outcome group compared to another. The
proportions of abnormal nodes in different brain areas for
ILAE 1 (seizure-free) and ILAE 3 to 6 (not seizure-free)
groups are shown in figure 4, with the intermediate patients at

ILAE 2 shown in supplementary figure S5, doi.org/10.5061/
dryad.vx0k6djnv.

In terms of the spatial extent of surgery, the expected re-
duction in the proportion of abnormal nodes was more
widespread in the seizure-free group than in the not seizure-
free group. The ILAE 1 group had a significant drop in the
proportion of abnormal nodes in the surgically spared net-
work compared to the presurgical network in 4 ipsilateral
areas: temporal, subcortical, occipital, and frontal (figure 4, A
and B). In the ILAE 3 to 5 group, however, the drop in the
proportion of abnormal nodes was not significant in any of the
ipsilateral or contralateral areas (figure 4, C and D). A similar
surgery-related effect was found for node abnormality com-
puted at different threshold values (supplementary figure S3,
doi.org/10.5061/dryad.vx0k6djnv).

Figure 3 Association Between the Number of Abnormal Nodes In Surgically SparedNetworkWith Year 1 Surgical Outcome
and Relapse

(A–D) Four patients are shown with their year 1 surgical outcome and relapse information. (A) and (B) Lower abnormality load in patients with International
League Against Epilepsy (ILAE) 1 and ILAE 2 outcomes, respectively, with no relapse. (C) Patient with many abnormal nodes remaining yet having an ILAE 2
outcome at year 1 but relapsing subsequently. (D) Large number of abnormal nodes remaining in a patient who was never seizure-free in 5 years. (E)
Significantly more abnormal nodes remained in ILAE 3+ patients compared to ILAE 1 and ILAE 2 patients. Statistical estimates: ILAE 1 (n = 34) median 6 (95%
confidence interval [CI] 5–7.5); ILAE 2 (n = 8)median 3 (95%CI 2–5.5); ILAE 3+median 8 (95%CI 5–10);p(ILAE 1 vs ILAE 3+) = 0.005; d(ILAE 1 vs ILAE 3+) = 1.11 (95%
CI 0.42–2.2); p(ILAE 2 vs ILAE 3+) = 0.01; d(ILAE 2 vs ILAE 3+) = 0.61 (95%CI −0.92 to 2.04). (F) Alluvial flow diagram showing proportion of relapsed patients with
ILAE 1 or ILAE 2 at year 1. (G) In ILAE 1 to 2 patients, those who relapsed had significantly more abnormal nodes in the surgically spared network. Statistical
estimates: no relapse (n = 14) median 4.5 (95% CI 4–6); relapse (n = 13) median 8 (95% CI 5–15); p = 0.04; d = 0.77 (95% CI −0.01 to 1.31).
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In terms of reduction in the amount of abnormality load,
patients at ILAE 1 had larger proportional reductions
than patients at ILAE 3 to 5 (p = 0.01; d = 0.81 [95% CI
0.2–1.4]); however, their absolute reduction did not
differ significantly (p = 0.14; d = 0.42 [95% CI −0.25 to
0.84], see supplementary figure S5, doi.org/10.5061/
dryad.vx0k6djnv). Thus, we suggest that the TLE surgery
causes a greater and widespread reduction in abnormality
load in the seizure-free group than in the not seizure-free
group.

Personalized Prediction of 12-Month Seizure
Freedom Additionally Suggests ILAE Class and
Relapse at Later Years
We assessed the generalizability of the abnormality measure
when used alongside other clinical attributes to predict
patient-specific chances of poorer outcomes. Implementing
nested cross-validation, we built machine learning models
that classified new unseen (test) patients as belonging to
either the ILAE 1 or the ILAE 3 to 5 group at 12 months. Our
rationale for omitting patients at ILAE 2 from the training

Figure 4 Effect of Surgery in Reducing Node Abnormality Is More Widespread in the Seizure-Free Group at Year 1

(A) Proportion of abnormal nodes computed for presurgery and surgically spared networks are color-coded for 6 ipsilateral and contralateral brain areas in
the seizure-free (International League Against Epilepsy [ILAE] 1) group. (B) Bar plot shows the drop in the proportion of abnormal nodes in surgically spared
network compared to presurgery network. Error bars represent standard error of the proportion of abnormal nodes in each area. Significant reductions in
ipsilateral temporal (t = 3.19, mean 0.02 [95% confidence interval (CI) 0.01–0.04], p = 0.003), ipsilateral subcortical (t = 4.31, mean 0.04 [95% CI 0.02–0.06], p <
0.001), ipsilateral occipital (t = 2.94, mean 0.06 [95% CI 0.02–0.11], p = 0.006), and ipsilateral frontal (t = 3.21, mean 0.03 [95% CI 0.01–0.05], p = 0.002) areas are
indicated by stars. (C) Different brain areas in presurgery and surgically spared network are color-coded according to the proportion of abnormal nodes in the
not seizure-free group (ILAE 3+). (D) Corresponding bar plot shows the drop in the proportion of abnormal nodes in surgically spared network compared to
presurgery network. None of the ipsilateral or contralateral areas showed a significant reduction in the proportion of abnormal nodes.
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phase of the model was that, because they have a propensity
to develop seizures in the later years, they therefore lie on a
spectrum in between the seizure-free group and the not
seizure-free group. The model also scored each patient with
a probability of belonging to either of the classes. Notably,
the models were blinded to 3 aspects of the data: (1) all
patients at ILAE 2; (2) ILAE classification 3, 4, and 5 (the
model simply sees these as poor outcome); and (3) out-
comes at later years.

We incorporated up to 15 features in the model: 13 clinical
attributes, presurgical abnormality load, and surgically spared
abnormality load. These features describe the presurgical at-
tributes of patients, and we evaluated them on the basis of

their combined ability in accurately predicting surgical out-
comes at 1 year. However, some features may be less in-
formative than others in predicting surgical outcomes;
including less informative features causes a drop in the pre-
diction performance. Therefore, by implementing stepwise
removal of less informative features, we obtained combina-
tions of preoperative features that identified patients with
poor seizure outcome at 1 year after surgery in 100% cases
(i.e., specificity). The AUC at every step of feature elimination
is plotted in figure 5A and magnified at 1 example point
(marked with a star) in figure 5B with the corresponding
confusion matrix shown in the inset. Average prediction
performance across all stepwise feature removals was robust
(AUC 0.84 ± 0.07, accuracy 0.79 ± 0.05, specificity 0.89 ±

Figure 5 Prediction of Seizure Outcomes at Year 1

(A) Areas under the curve (AUCs) of support vector machines (SVMs) that predicted seizure-free (International League Against Epilepsy [ILAE] 1) and not seizure-
free (ILAE 3+) outcomes at 1 year after surgery are plotted in black with 95% confidence interval (CI) shaded. Blinded to the exact ILAE categories, the model
predicted 12-month likelihood of seizure relapse for each patient. The Spearman rank correlation between likelihood of seizure relapse and the severity of
surgical outcomes (ILAE class) at year 1 is plotted in green with 95% CI shaded. The lower panel of (A) shows the relative feature importance of each SVM on a
normalized scale between 0 and 1. The leftmost SVM, plotted at x = 1, incorporated all 15 features (13 clinical, node abnormality in presurgery and surgically
spared networks) to predict seizure-free (ILAE 1) and not seizure-free (ILAE 3+) outcomes at 1 year after surgery. Among all features, the relative importance of
surgically spared node abnormality was the highest, whereas the relative importance of MRI abnormality was the least. Therefore, in the next iteration at x = 2, a
new SVM was retrained using the 14 features, after removal of the MRI abnormality feature. This stepwise removal of metrics was continued until only a single
metric (surgically spared node abnormality) remained. (B) Receiver operating characteristics curve is plotted at an example combination of features that yielded
highest classification performance (AUC= 0.91 [95%CI 0.77–0.97], specificity = 1, sensitivity = 0.79, accuracy = 0.84). (C) At the same example point, the correlation
(Spearman ρ = 0.70 [95%CI 0.25–0.93], p < 0.001) between the predicted likelihood of seizure relapse and the severity of seizure outcome at year 1 is shown. The
predicted likelihood of seizure relapse was significantly different (p = 0.003, d = 0.96 [95% CI −0.29 to 2.1]) between ILAE 2 (n = 8, median 0.35 [95% CI 0.17–0.43])
and ILAE 3 to 5 patients combined (n = 9, median 0.48 [95% CI 0.44–0.61]). AED = antiepileptic drug.; HS = Hippocampal sclerosis.
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0.09, sensitivity 0.77 ± 0.06). Supplementary table 2, doi.org/
10.5061/dryad.vx0k6djnv, tabulates these prediction metrics
in classifying seizure-free and not seizure-free outcomes at ev-
ery step. The lower panel in figure 5Amaps feature importance
after each iteration of feature removal. The node abnormality in
the surgically spared network stood out as the most informative
feature; it was >1.5 SD away from the next most important
features: age at surgery and number of antiepileptic drugs taken
before surgery. Thus, including the abnormality measures to
characterize presurgical attributes of patients with intractable
TLE led to a high and robust classification performance in
predicting surgical outcomes at 1 year after surgery.

We next analyzed the scores/probabilities assigned by the
model to each patient to have a not seizure-free surgical out-
come. Larger probabilities indicated a greater predicted likeli-
hood of postoperative seizure at year 1 (i.e., the ILAE 3+
group). Because the model was trained only on binary ILAE 1
and ILAE 3–5 outcomes, it was blinded to the spectrum of
ILAE class data. We found that, despite being blinded to such
information, the predicted likelihood of seizure relapse was
positively correlated with ILAE surgical outcome scale at year 1
(figure 5C). This positive association is consistent, even for the
model trained with only the surgically spared node abnormality
feature (figure 5A). Spearman ρ values are plotted at each step-
wise removal of features in figure 5A and magnified for an
example point in figure 5C. To confirm this result, we applied
robust regression to obtain the regression slope and tested the
significance of the steepness of the regression slope using a
permutation test (1,000 permutations, p = 0.004 in supple-
mentary figure S6, doi.org/10.5061/dryad.vx0k6djnv). There-
fore, our result shows that the presurgical clinical profile of
patients, when assessed along with the abnormality measures,
can inform about the ILAE class of seizure outcomes that a
patient would expect after surgery at 1 year.

How informative are the presurgical features in predicting
seizure recurrences in the long term? We analyzed this by
checking the association between the predicted likelihood of
seizure relapse and the actual relapse data for patients who
were seizure-free (ILAE 1–2) at year 1. Patients who were not
seizure-free at year one (ILAE 3–5) were not included in the
relapse category. We found no association with seizure relapse
when the presurgical features of patients were characterized
using a combination of clinical and network abnormality
measures (supplementary figure S7, doi.org/10.5061/dryad.
vx0k6djnv). However, significant association with relapse was
present at years 3, 4, and 5 when the presurgical features of
patients were characterized using only the abnormality load in
surgically spared network (figure 6). The mechanism of long-
term seizure recurrence may be different from short-term
recurrence, and presurgical clinical attributes may be less in-
formative. The association we found between abnormality
load expected to be present in a patient after surgery and
seizure recurrence motivates more investigation.

In summary, we achieved excellent performance in predicting
seizure outcomes at 1 year when patients with intractable TLE
were assessed according to abnormality measures and clinical
attributes. This combined presurgical profiling of patient at-
tributes was also informative about the grades of seizure
outcomes (ILAE class) at year 1. Beyond the first year after
surgery, node abnormality in the surgically spared networks
also suggested an increased risk of seizure relapses in those
patients who were initially free of disabling seizures at year 1.

Discussion
We investigated the association of surgical outcomes and re-
lapse with the abnormality load computed in a whole-brain

Figure 6 Predicted Likelihood of Seizure Relapse at 1 Year Was Higher in Patients Who Had Seizure Relapse at Later Years

The predicted 12-month likelihood of seizure re-
lapse was estimated from the support vector ma-
chinemodel trainedwith only the surgically spared
nodeabnormality feature. The likelihoodof seizure
relapse for patients who were never seizure-free
(i.e., ILAE 3–5 at year 1) is shown in red. Among the
patients who were initially seizure-free (i.e., ILAE 1
or ILAE 2 at year 1), higher likelihood of seizure
relapse was predicted for those who had a sub-
sequent relapse. This is despite the model being
blinded to the outcomes at later years. Year 2 sta-
tistical estimates: no relapse (n = 39) median 0.10
(95% confidence interval [CI] 0.08–0.13); relapse
(n = 3) median 0.18 (95% CI 0–0.66); p = 0.20; d =
1.21 (95% CI −0.78 to 9.08). Year 3 statistical esti-
mates: no relapse (n = 29) median 0.11 (95% CI
0.08–0.13); relapse (n = 8) median 0.18 (95% CI
0.05–0.63); p = 0.03; d = 1.24 (95% CI −0.19 to 2.84).
Year 4 statistical estimates: no relapse (n = 21)
median 0.11 (95% CI 0.08–0.13); relapse (n = 11)
median 0.18 (95% CI 0.05–0.41); p = 0.05; d = 0.87
(95%CI−0.16 to 1.7). Year 5 statistical estimates: no
relapse (n = 14) median 0.09 (95% CI 0.08–0.13);
relapse (n = 13)median 0.18 (95%CI 0.11–0.24); p =
0.02; d = 0.79 (95% CI 0.12–1.3). nSR = No seizure
relapse; SR = Seizure relapse.
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presurgical network and surgically spared subnetwork. Pa-
tients were more likely to have a poorer seizure outcome at 1
year after surgery or a seizure relapse in 5 years if more ab-
normal nodes were present in the surgically spared network.
Investigating the spatial effect of surgery on abnormality load,
we found that the seizure-free group of patients had a more
widespread reduction of abnormal nodes. We found that the
abnormality load in presurgery and surgically spared net-
works, combined with clinical attributes of patients, general-
ized to predict not seizure-free outcome (between ILAE 1 and
ILAE 3+) at 12months after surgery with 100% specificity and
an AUC of 0.91. With this combined characterization of pa-
tient attributes, we predicted the likelihood of seizure relapse
patient-specifically, which was correlated with the ILAE class
and hence informative of the seizure outcome expected at 12
months after surgery. Finally, we showed that node abnor-
mality located in the surgically spared networks may be a
marker that identifies patients who were initially seizure-free
but would relapse after the first year of surgery and up to 5
years.

A recent study on a different dataset with different imaging
protocols investigated network abnormality as a personalized
predictor of surgical outcomes.13 In that study, presurgery
networks were constructed on the basis of the number of
streamlines connecting different regions. Similar to our study,
connections between ROIs were normalized (z transformed)
against a control distribution. The similarity between our
results suggests that (1) normalized patient networks using a
local control distribution may enable reproducibility, com-
parison, and possibly grouping of patients between sites and
(2) noninvasive personalized network biomarkers for pre-
dicting the likelihood of specific postsurgery outcomes in TLE
are possible. We further showed the benefit of incorporating
the information about the location of surgery to predict the
surgical outcome.

The current standard for individualized prediction of surgical
outcome primarily relies on clinical variables.42 However, a
recent review discussed discordant findings between different
studies; features found predictive of seizure outcome in some
studies are not predictive in others.30 Encouragingly, another
study estimated the probability of seizure freedom using
combinations of up to 27 clinical variables on a mixed cohort
of patients with TLE and extratemporal TLE.9 Our findings
indicated that combining clinical variables with brain
connectome–derived features such as abnormality load in
presurgery and surgically spared networks can improve pre-
diction of surgical outcomes in the short term. Particularly for
long-term predictions, the abnormalities in the surgically
spared networks, which are expected to remain after surgery,
may be a more reliable measure because they associate with
relapses. It is not surprising that long-term seizure relapse is
not specifically related to parameters predicting short-term
outcome well because these 2 responses may have very dif-
ferent mechanisms. Short-term failure may be caused by an
incomplete resection at the time of surgery, while long-term

relapse may be caused by changes in the networks over time
after surgery or the development of another epileptogenic
zone.43 Hence, we propose to combine our node abnormality
measure with clinical variables in a large mixed-cohort pa-
tient9 population to improve estimation of the probability of
seizure freedom/relapse after surgery. We suggest that in-
vestigating the abnormality load in the surgically spared net-
work in specific lobes may reveal a stronger relationship to
long-term seizure recurrence.

In combining multivariate data, machine learning tech-
niques delineate, rank, and fit input features of the training
set to draw a decision boundary in a high dimensional space
that maximizes prediction.13,14,20,21,44 While a binary clas-
sification of seizure-free and not seizure-free outcomes at 12
months is important, predicting long-term trajectories of
seizure freedom is also crucial to inform clinical manage-
ment decisions. In our study, the classifier not only pre-
dicted the surgical outcome at 1 year but also predicted the
likelihood of seizure relapse. This additional information
may be clinically useful for advising patients about their
chances of poor outcome after surgery beyond the first 12
months.

The outcome of epilepsy surgery will depend not only on the
brain network before the surgery but also on the location and
extent of surgery.21,45 Here, we retrospectively included the
information of surgery by drawing a resection mask and in-
ferring an expected surgically spared network. We showed
that this information improves the prediction performance
more so than just the presurgery networks, which are naive to
surgical information. A limitation of our work is that we are
only inferring the expected postoperative network rather than
deriving it from postoperative dMRI data.43,46 However, an
analysis using actual postoperative dMRI data would have
only very limited value in terms of improving the preoperative
decision-making because the outcome could be seen only
after the surgery has been performed. In contrast, our ap-
proach can be used before the actual surgery to evaluate
likelihood of success. A prospective application would involve
drawing a resection mask for an intended surgery on the sMRI
of a patient acquired before surgery.21 We envisage a software
tool with which multiple standard operations or tailored re-
sections could be drawn and their impact on abnormality load
compared. Such a tool could then be used to prospectively
guide decision-making regarding personalized resection
strategies.

With regard to the extent of surgical resection, it has been
shown that the amount of tissue resected does not necessarily
relate to improved surgical outcome.47What is included in the
resection, however, may have a significant influence on
outcome.48,49 The question arises: will a tailored resection,
designed to reduce the number of abnormal nodes, lead to a
better outcome? While more investigations are needed to
confirm this hypothesis, we found that the seizure-free patient
group had a more widespread reduction of abnormality load
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due to surgery. Simulated computer models may facilitate a
more detailed analysis to investigate alternative surgical
strategies in a personalized manner.19

Our findings must be interpreted in the context of some
caveats. Node abnormality may be representative of (1)
network reorganization in response to seizures, (2) neuro-
degenerative process due to seizures, (3) structures facilitating
seizures, or combinations of 1 through 3. In our study we
could not disentangle these aspects with respect to node ab-
normality. We did not detect any significant correlation be-
tween clinical variables and node abnormalities. Although our
sample size is reasonably large,13,14,16,20 it is not of the size of
typical epidemiologic studies. Neural architecture depends on
several participant-specific factors, including language domi-
nance, handedness, and other physiologic variables. These
relationships may further influence the node abnormality
measure. Thus, our results should motivate a larger study to
test its generalizability, ideally across multiple sites. Finally, we
highlight, on the basis of the presurgical and surgically spared
networks and clinical variables, the chances of at least 1 re-
lapse in 5 years. However, the trajectory of seizure remission
and relapse is more complicated. Patients may have repeated
remissions and relapses due to drug effects, environmental
factors, or other causes.

We have shown evidence of node abnormality being an im-
portant noninvasivemarker of surgical outcome and its severity
at 1 year after surgery. Node abnormality may also be related to
likelihood of seizure relapse in the long-term. We demonstrate
improvement in prediction performance when including sur-
gery information with the presurgery network and clinical data.
We believe this to be an important step toward complementing
clinical decision-making on patient and surgery selection for
intractable TLE and for patient counseling on the risks of sei-
zure severity expected after surgery.
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