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The use of face masks in public places has emerged as one of the most effective non-pharmaceutical
measures to lower the spread of COVID-19 infection. This has led to the development of several
detection systems for identifying people who do not wear a face mask. However, not all face masks
or coverings are equally effective in preventing virus transmission or illness caused by viruses and
therefore, it appears important for those systems to incorporate the ability to distinguish between the
different types of face masks. This paper implements four pre-trained deep transfer learning models
(NasNetMobile, MobileNetv2, ResNet101v2, and ResNet152v2) to classify images based on the type of
face mask (KN95, N95, surgical and cloth) worn by people. Experimental results indicate that the deep
residual networks (ResNet101v2 and ResNet152v2) provide the best performance with the highest
accuracy and the lowest loss.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The COVID-19 outbreak caused by a new strain of coron-
avirus named SARS-CoV-2 was declared as a global pandemic
by the World Health Organization (WHO) on March 11, 2020,
because of its high viral transmission and mortality rates. As of
14 October 2021, more than 239.01 million confirmed cases and
4.87 million deaths (https://covid19.who.int/) have globally been
registered since the first patient was detected in Wuhan, China,
in December 2019. The main transmission pathway of COVID-19
is airborne, that is, human-to-human transmission via droplets
nuclei or aerosols produced by infected individuals during all
expiratory activities, such as coughing, sneezing, talking, singing,
shouting or breathing, especially at a distance of less than 1.5 to
2 metres [1].

To mitigate the risk of viral infection and control the spread
of COVID-19, several prevention measures such as hand hygiene,
social distancing and wearing face masks have been highly rec-
ommended by health agencies worldwide and applied in many
countries [2-4]. It has been found that the use of face masks in
public areas, such as in supermarkets and schools or on pub-
lic transport, is an effective and easy-to-use barrier against the
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spread of COVID-19 infection [5,6]. Although mask fit plays a crit-
ical role, the effectiveness of each type of face mask in reducing
infection risk depends on the mask material, source, structure
and particulate efficacies (particle filtration efficiency and filter
quality factor) [7,8]. Examples of some of the face masks most
widely used during the COVID-19 pandemic are shown in Fig. 1,
whose main features can be summarized as follows [9,10]:

e Cloth masks: Particle filtration efficiency of cloth masks
made of a different fabric (typically 100% cotton or 50%
cotton/50% polyester blend) varies from 25% to 38%.

e Surgical masks: Commonly, these are comprised of three
layers made from non-woven fabric; the middle filter layer
removes particulates, whereas the inner layer absorbs
droplets from the mouth, and the outer layer is water-
repellent. The surgical masks can capture 45%-55% of 0.1 um
particles in the air.

e N95 and KN95 face respirator masks: Both are made from
multiple layers of synthetic material (typically a polypropy-
lene plastic polymer) to filter out 95% of 0.3 wm particles.

Cloth coverings and surgical masks do not provide the wearer
with the same level of protection from inhaling smaller airborne
particles as an N95 (or KN95) mask [11]. Oberg & Brosseau [12]
demonstrated that surgical masks do not exhibit adequate filter
performance against aerosols measuring 0.9, 2.0, and 3.1 pm in
diameter. Lee et al. [13] showed that particles 0.04 to wm can
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Fig. 1. Types of face masks commonly worn during the COVID-19 pandemic (from left to right, they are KN95 mask, N95 mask, cloth mask, surgical mask, and

without mask).

penetrate surgical masks. Although surgical masks are not ideal
for containing airborne transmission in a high-risk environment
because the SARS-CoV-2 particle has a size similar to that of
SARS-CoV (estimated as 0.08 to 0.14 wm), there is good evidence
that they are very useful at a population level [14].

Regarding N95 and KN95 face respirator masks, their main dif-
ference refers to the fact that N95 is the United States standard for
respirator masks, whereas KN95 is the China standard (and FFP2
is the Europe standard). Besides, N95 masks have slightly stricter
requirements for pressure drop while inhaling or exhaling, which
means that they have stronger breathability than KN95 masks.
On the other hand, KN95 masks usually have earloops, while N95
masks have head straps.

Due to the importance of wearing face masks to control the
spreading and transmission of COVID-19, the governments of
many countries have enacted laws and rules that mandate their
use in public places. This has led to the development of various
security and surveillance systems for face mask detection with
the aim to identify people who do not wear a face mask.

At the beginning of the pandemic, there was no explicit rec-
ommendation on the type of mask to wear. However, with the
arrival of new variants of SARS-CoV-2 of increased contagious-
ness, such as the quick-spreading Omicron, Governments and
healthcare agencies changed the guidelines to minimize infec-
tions. On January 14, 2022, the US Centers for Disease Control and
Prevention (CDC) released the report “Type of Masks and Respira-
tors” [15], which lists a series of recommendations on what type
of face mask to use depending on specific risk and vulnerability
situations. Thus, some hospitals joined these recommendations
by establishing their policies on masks and respirators. For ex-
ample, the Mayo Clinic Health System website [16] enumerates
the types of preferred and acceptable masks that are required for
staff, patients and visitors (N95, KN95, and surgical/procedural)
to slow the spread of COVID-19, and those that cannot be used
because of their reduced effectiveness (masks with vents, ban-
danas, neck gaiters, face shields, and cloth masks). An article
entitled “Why Cloth Masks Might Not Be Enough as Omicron
Spreads” [17] in the Wall Street Journal collects the different
recommendations given by doctors on the use of the types of
face masks, as well as the time it takes to transmit COVID-19
between an infected person and an uninfected person depending
on whether they are wearing an N95 mask, surgical mask, cloth
mask or none. In this sense, clinicians and infectious disease
specialists suggest the importance to educate the public on the
different quality of face masks [17].

In this paper, we introduce a model based on deep transfer
learning to recognize/classify four different types of face masks
(plus faces without a mask). The proposed model could be eas-
ily integrated as a software upgrade into existing surveillance
systems developed to detect people not wearing a mask. The inte-
gration of a classification module may enhance the functionality
of surveillance systems by generating alerts to prevent access to
people wearing an inappropriate type of face mask depending
on where the system is installed. The correct use of the face

mask according to the characteristics of the place can limit the
spread and significantly reduce the number of deaths [18]. In
some hospitals, cloth masks are allowed as long as it is inside
or outside work. However, it is mandatory to replace it with a
surgical or procedure mask when at the work unit [16].

Henceforward, this paper is organized as follows. Section 2
reviews some papers that addressed face mask detection for
fighting against COVID-19. Section 3 describes the data sets used
in the experiments. Section 4 introduces the model adopted to
identify the types of face masks. Section 5 presents the experi-
mental set-up and discusses the results. Finally, Section 6 remarks
on the main findings and outlines possible directions for further
research.

2. Some works on face mask detection

This section offers a non-exhaustive sample of works that have
been published on the face mask detection problem. We have
consciously omitted any study on facial recognition or detection
applied to people wearing masks that has not been explicitly
related to the COVID-19 pandemic.

A transfer learning approach built by fine-tuning the pre-
trained InceptionV3 model was proposed to identify people who
are not wearing a mask in public places and crowded areas [19].
Experimental results with the transfer learning model trained for
80 epochs on a testing data set with 479 images achieved a 100%
in terms of accuracy, precision, and specificity.

Qin & Li [20] developed a face mask-wearing condition iden-
tification model by combining image super-resolution and clas-
sification networks to classify images into three categories: no
face mask-wearing, incorrect face mask-wearing, and correct face
mask-wearing. The authors reported that after 200 epochs, the
proposed model achieved a 98.70% of accuracy for the face mask-
wearing condition identification. In contrast, when it is used to
identify two different face masks, the accuracy in folded face
masks vs. N95 was 98.02%, and in medical-surgical vs. basic cloth
face masks was 99.19%. A third experiment for colour face mask
detection suggests that the proposed model could detect blue,
white, black, and other face mask colours with an accuracy of
98.84%, 98.68%, 97.81%, and 98.25%, respectively.

Loey et al. [21] employed the ResNet-50 deep transfer learning
algorithm for the feature extraction process and YOLOv2 for real-
time detection of medical face masks. The proposed detector
optimized with Adam and 60 epochs gave an average precision
of 81% on a new combined data set, obtained from two public
medical masks data sets.

Singh et al. [22] used the YOLOv3 and faster R-CNN con-
volutional networks to monitor people wearing face masks in
public places. The data set used was composed of two data sets
MAFA and WIDER FACE, and images taken from several web
sources. Experimental results on the validation data set showed
an average precision of 62% after testing 50 epochs.

Loey et al. [23] proposed a hybrid method for face mask
detection that comprises two stages: one for feature extraction
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using ResNet-50 and a second part to detect face masks using
traditional machine learning methods (support vector machine,
decision tree and ensemble of classifiers). The authors used four
data sets as a two-class classification problem: (1) real face masks
(RMFD), (2) fake face masks (SMFD), (3) a combined data set from
fake and real face masks, and (4) simulated face masks (LWF).
From all experimental results, the best performance was obtained
using the SVM, where the accuracy testing on RMFD was 99.64%,
SMFD was 99.49% on SMFD, and 100% on LFW.

Wang et al. [24] designed a two-stage method to detect wear-
ing masks based on the transfer model of Faster_RCNN and In-
ceptionV2 structure. Moreover, they also generated a data set for
wearing mask detection that includes 7804 realistic images with
26403 wearing masks and multiple scenes (available at https:
//github.com/BingshuCV/WMD). The effectiveness of the proposal
on the whole data set, which contained images of different num-
bers of people wearing masks (1, 2 to 4, and 5 or more persons),
was measured in terms of precision, recall, and the F-measure
(F1-score). The experimental results indicate that the model could
get competitive testing effectiveness of 93.54% in recall, 94.84% in
precision, and 94.19% in F1-score.

Chen, Liu & Zhang [25] devised a transfer learning algorithm
combined with a skip-connected structure to improve the
classification accuracy of eight masked face poses. Besides, a
semi-synthetic masked face pose data set was constructed by
superimposing the face pose images taken from the CAS-PEAL-R1
data set [26], and a diversity of the mask images. The aim was to
replace the ImageNet data set as a source domain to improve the
model’s accuracy and generalization ability. Experiments using
AlexNet and VGG16 architectures yielded an accuracy testing on
each model of 96.44% and 99.29%, respectively.

Jiang et al. [27] introduced an algorithmic improvement to
the original YOLOv3 by adding the squeeze and excitation block
between the convolutional layer of Darknet53 and replacing the
mean squared error loss function with GloU loss. The authors also
built a large data set with 9205 images of mask-wearing faces
belonging to three predefined classes: with mask, incorrect mask,
and without mask. The final average precision of the proposed
model over the three classes was 75%, representing an increase
of 8.6% compared to YOLOv3.

Yu & Zhang [28] proposed an improved algorithm based on
YOLOv4 for face mask-wearing detection to reduce the computing
cost of the network and improve the learning ability of the model.
The experiments were carried out on a data set constructed from
two sources: (1) the published RMFD and (2) the MaskedFace-
Net. The detection task aimed to classify three images: without
mask, face mask, and incorrect mask. The model’s performance
was measured using precision, recall, F1-score, and average pre-
cision over all classes. The experimental results indicated that the
proposal reached accurate rate recognition of 95.1% for precision,
98.2% for recall, 96.7% for F1-score, and 98.3% for mean average
precision.

Sethi, Kathuria & Kaushik [29] presented a highly accurate and
real-time technique based on bounding box affine transformation
and transfer learning to detect mask faces in public places. The
authors reported that their proposal implemented with ResNet50
achieved an accuracy of 98.2%, while the recall in each class was
99.0% (face detection) and 98.24% (mask detection).

Prusty, Tripathi & Dubey [30] implemented a two-class mask
detection model based on YOLOv3 and DarkNet53 that consists
of a data augmentation block using image filtering techniques
such as greyscale and Gaussian blur. The model was trained in
two parts according to the data set used. First, using the data set
taken from Kaggle, and in the second stage, using the augmented
data set. The proposal was evaluated considering three detection
problems: (1) individual detection on images, (2) group detection
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on images, and (3) group detection in video. In all cases, the
confidence level was between 0.98 and 0.99, while in the video
analysis of a group of people, the average precision over the two
classes was 99.8%.

The MobileNetv2 convolutional neural network to detect peo-
ple wearing and not wearing a face mask in public places has
been used in several studies [31-35]. The experimental results
found in the literature suggest that with the use of MobileNetv2
in classification problems of two classes (mask vs. unmask), the
accuracy rates are above 98%.

Nagrath et al. [36] integrated the single shot detector (SSD) as
a face detector and the SSD MobileNetv2 to determine whether
a mask is worn or not. The proposal methodology involves two
steps; first, a data set obtained from different sources is prepro-
cessed and augmented; second, a MobileNetv2 is trained using
the Adam optimizer. The authors state that their model achieved
an accuracy of 92.64% and F1-score of 93%. Gola et al. [37] in-
vestigated the performance of MobileNetv2, YOLOv3 and YOLOv4
in the context of real-time face mask detection in the Indian
community on various types of masks such as home-made, hand-
kerchiefs, and dupattas, concluding that YOLOv4 performs the
best in terms of sensitivity and precision.

Joshi et al. [38] proposed an approach for detecting face masks
in videos using the multi-task cascaded convolutional network
and the MobileNetv2 model. The experimental evaluation was
carried out on a data set compiled from YouTube videos of multi-
ple geographical locations. The proposal model achieved in the fa-
cial mask prediction task a precision of 84.39% and an accuracy of
81.74%. Alguzo, Alzubi & Albalas [39] implemented a multi-graph
convolutional network to detect people wearing a face mask.
The proposed methodology is characterized by using several con-
volutional filters that transform the extracted facial relief and
generalizes image frequencies. The model was evaluated on the
publicity data set RMFD. A comparative study suggests that the
proposal obtains a high accuracy testing of 97.9%, outperforming
six state-of-the-art models.

A methodology that combines a pre-trained RetinaFace model
for face detection and the NASNetMobile neural network for
classifying the detected faces as masked or non-masked was pro-
posed by [40]. To get cultural diversity, the authors combined sev-
eral data sets to avoid a model biased toward Asian faces. The pro-
posed method obtained identical results to the DenseNet121 and
MobileNetv2 models with an F1-score of 99.13%. However, it per-
formed significantly better in terms of inference speed and also
resulted in a smaller size than the DenseNet121 and MobileNetv2
models.

Three different convolutional neural networks (VGG-19, Xcep-
tion and MobileNetv2) were compared to extract features from
images of faces that were further processed using a support
vector machine and a K-nearest neighbours classifier [41]. The
best results were obtained when the SVM was combined with
MobileNetv2 on a small data set augmented with different tech-
niques such as cropping, padding, and horizontal flipping. The
proposal reached an accuracy of 97.11%.

Similarly, Hussain et al. [42] classified individuals who wear
the face mask properly, improperly, and without a face mask
using VGG-16, MobileNetv2, InceptionV3 and ResNet-50 using
a transfer learning approach, obtaining the highest performance
with VGG-16 and MobileNetv2 models. This detection system was
a module of a complete system called IoT-based Smart Screen-
ing and Disinfection Walkthrough Gate, which included a non-
contact temperature measurement system and could be installed
at the entrance of any place. The authors created a database from
different available sources, such as MAFA, MaskedFace-Net and
Bing images, to evaluate the proposal. The experimental results
showed an accuracy of 99.8% in the detection of three types
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Fig. 2. Sample images from the databases for faces with and without a mask.

of situations: without mask, proper mask, and improper mask.
Finally, an experiment to evaluate the effectiveness of the method
in detecting two types of masks (N95 and surgical) yielded a
98.17% of accuracy.

3. Data sets

The present study was carried out using images taken from
four publicly available databases:

e The Face Mask Classification (FMC) database [43] contains
a total of 440 images of different resolutions: 220 for faces
with a mask and 220 for faces without a mask.

e The Face Mask Detection (FMD) database [44] consists of
853 images of faces to detect mask, no mask and incorrectly
worn masks.

e The Masked Faces in Real-World for Face Recognition
(MFR2) database [45] is a small data set of real-world
masked faces of 53 identities and 269 images aligned and
preprocessed.

e The Masked Faces (MAFA) database [46] contains 30,811
images of unmasked faces and 35,806 images of masked
faces. Faces in the data set have various orientations and
occlusion degrees, while a mask occludes at least one part
of each face.

Apart from these databases, we also picked up images from
Bing Images and Google Images to compensate for the lack of
images with N95 and KN95 face respirator masks. Fig. 2 illustrates
some example images of faces with and without masks taken
from the different databases and repositories used in this work.

After collecting images from the public databases and repos-
itories just mentioned, the distribution of images per class was
as follows: 1450 images with N95 respirator mask, 1848 images
with KN95 respirator mask, 2685 images with surgical mask,
2114 images with fabric mask, and 2716 images without a face
mask. As the distribution of classes was moderately skewed due
to the limited number of images with N95 and KN95 face masks,
only 1450 images from each category were randomly selected
to form a class-balanced data set and thus to avoid the possible
bias towards the most represented classes during the recognition
process.

4. The proposed methodology

This section introduces the methodology designed to classify
images based on the different types of face masks. In summary,
it consists of a first component to prepare/preprocess the image
set and a second one for developing the deep transfer learning
model. The flowchart of the proposed methodology is illustrated
in Fig. 3.

4.1. Data preprocessing

As each database had a different image format, the first step
was to convert all the images into a single format (png) using
ImageMagick. Next, we extracted out the region of interest (ROI)
from the raw images to keep only the face region and remove
the unnecessary parts that could hinder the performance of the
recognition process (Fig. 4). The images (ROIs) were then resized
to 224 x 224 pixels in 3 channels because this is the default size
accepted by the MobileNetv2, ResNet and DenseNet deep transfer
learning models used in this work.

Finally, all the images were normalized through scaling down
by factor 1./255 before feeding to the model. Thus the colour
value of every pixel was transformed from range [0, 255] to range
[0, 1] so that images contribute more evenly to the total loss of
the model.

4.2. Data augmentation

An exploitable deep learning model must show a low gen-
eralization performance, also called test error, when performing
well on unobserved examples [47]. When this does not occur, the
model is said to be overfitting, which means that the difference
between the training error and the test error is too significant.
This problem can be originated when the training data is under-
sized [48]. As a rule of thumb, it has been suggested that to get
deep learning models with satisfactory performance, each class in
the training set should have at least 5000 examples [47].

Two major solutions can be found in the literature to over-
come the overfitting [49]. First, the architecture or learning algo-
rithm level includes a variety of strategies, such as dropout, batch
normalization, transfer learning, pre-training, early stopping, and
limiting the number of parameters by filter size [49,50]. Second,
at the data level, data augmentation is considered the natural way
to deal with the insufficient amount of data, which consists on
creating new training examples from the existing ones either by
basic image manipulation, deep learning techniques, or both [50].

Basic image manipulation is the most straightforward strategy
for enlarging the training set size via geometric transformations
of existing data (e.g., rotation, reflection, flipping, shifting, crop-
ping, elastic distortion, and shearing). Shijie et al. [51] showed
that cropping, flipping, and rotation generally yields better results
than other data augmentation techniques. In addition, several
face mask detection works suggest that this strategy improves the
performance and robustness of the deep learning methods [20,23,
27,36,42].

For this study, the data set was split into two parts, 80% for
training the model and the remaining 20% for testing the recogni-
tion performance of the models. Then, we applied some transfor-
mations to the training images using Keras ImageDataGenerator:
rotation (the rotation parameter was set to 20 degrees), width
and height shifting (in both cases, the parameter was set to 0.2),
shearing (the parameter was set to 0.15), horizontal flipping, and
filling (we filled the empty pixels with the value of their nearest
pixel).
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Fig. 3. Framework of the proposed methodology.

Fig. 4. Region of interest (ROI).

4.3. Recognition models

In this paper, we developed some transfer learning based
models pre-trained on the ImageNet database to solve the re-
quirement of a huge amount of labelled examples:

e MobileNetv2 is based on an inverted residual structure
where the shortcut connections of the residual block are
between the thin bottleneck layers [52]. The intermediate
expansion layer uses lightweight depth-wise convolutions
to filter the features as a source of non-linearity. This ar-
chitecture consists of the primary full convolution layer
through 32 filters and 19 residual bottleneck layers.

e ResNet101v2 and ResNet152v2 are examples of the so-
called residual networks, which contain a lot of layers (101
and 152 in this paper) with high performance [53]. The main
difference between (v2) and the original (v1) is that (v2)
uses batch normalization before each weight layer.

e NasNetMobile is an architecture that aims at searching for
an optimal convolutional architecture using reinforcement
learning [54]. Two types of convolutional cells are used in
the architecture: the normal cells return a feature map of
the same input, whereas the reduction cells return a feature
map where the height and width of the feature map are
reduced by a factor of two.

4.4. Performance evaluation in classification tasks

Scalar metrics are the most frequently used alternative to
evaluate the quality of a predictive classification/recognition sys-
tem. The scalar performance metrics can be obtained from a
confusion matrix representing the number of successes and errors
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distributed across m classes. In a multi-class problem, it is a
square m x m matrix, where each a; element denotes the number
of images or examples whose true class is G;,i = 1, ...m, and was
assigned to class Gj, j = 1, ..., m, by the classifier.

The confusion matrix can be written as in Table 1, where the
diagonal entries a; (i = j) correspond to the correctly classified
examples for the class G, and the non-diagonal elements a;; (i # j)
represent the misclassification examples that were assigned to
the class G; when the actual class is G;.

The most popular scalar performance metrics are accuracy and
its complement the error rate:

m
mog

Accuracy = Lz G . (1)
n

and

Error = 1 — Accuracy. (2)

Accuracy and error rate have been shown to be inappropriate
in those cases where the classes do not have an equal number of
examples (the class imbalance problem). Therefore, it could not
consider the unbalance in the classification results [55].

Straightforward metrics on a single C; class can be computed.
Considering that C; is the class of interest (also called the positive
class), then Recall is the true positive rate (TPR) of a classifier on
the class G;. It is also called the sensitivity of the classifier. For a
specific G class, it can be computed as follows:

Recalle; = Sensitivityc, = TPR¢, = SJ- (3)
G

If class C; is considered as the positive class, then the rest of the
classes can be regarded as the negative class, that is, the negative
class is a subset NGz = {C, ..., Cn} fork=1,...,mand k # i.
Therefore, we can calculate the proportion of all correctly labeled
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Fig. 5. Examples of images misclassified by the ResNet101v2 model (text means ‘true class — predicted class’).

Table 2
Accuracy and loss for the recognition models.
Accuracy Loss
NasNetMobile 0.9324 0.2160
MobileNetv2 0.9324 0.2131
ResNet101v2 0.9800 0.0734
ResNet152v2 0.9737 0.0808

examples that do not belong to the class C; named as the true
negative rate (TNR) or specificity,

m
a
Specificitync, = TNRyc, = Dot Ok

T ,
Zk:l ng,
Precision or Positive Predictive Value (PPV) indicates the rate
of truly samples that belong to C; from among all the examples
predicted as C;. Consequently, it represents how accurate was the
algorithm on a given G class. and can be defined as:
m
> i1 Gi
When the number of samples in each class is unequal, some
authors suggest that measures that combine Recall and Precision
may be more appropriate [56,57]. From the text retrieval area,
the Fg—score for a class C; corresponds to the harmonic mean of
Recall and Precision:

(1+ B2) - Recallc, - Precisionc,
B2 - Precisionc, + Recall,

where f is a weight to adjust the importance of Recall concerning
Precision. Commonly to give the same importance to both metrics

L....omk#i (4

(5)

Precision¢; = PPV, =

Fg — scorec, =

(6)

=1

Recallg, - Precisiong,

(7)

Fy — scorec; =

Precisionc, + Recallc,

As can be seen, the previous metrics were defined for a two-
class problem, where each time, a different class C; was se-
lected as the class of interest (positive) while the rest (m —
1) was the negative class. However, two extensions to multi-
class problems have been proposed in the literature: macro-
average and micro-average. It has been demonstrated that the
macro-average is the best strategy when the classes are not well-
balanced [57]. From Recallg;, Specificitync,, and Precisionc, the
following macro-average measures can be obtained [57,58]:

1 m
Recallmacro—avg = - Z Recall,, (8)
i=1
o T o
Speclﬁat.Vmacro—avg = E ZSpeClﬁCltYNCks 9)
k=1
1 m
Precisionmacro—avg = P ZPrecisionq, (10)

i=1
Recallyacro—avg - Precisionmacro—avg
Precisionmacro—avg + Recallingcro—avg

F1 — scoremacro—avg = . (11)

5. Experiments

The performance of the deep neural networks was analysed
over the data set generated as described in Section 3 for the
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Confusion matrix of the pre-trained deep transfer learning models (true class labels on the rows and predicted class labels

on the columns).

NasNetMobile MobileNetv2
KN95 N95 Cloth  Surgical  Without KN95 N95 Cloth  Surgical  Without
KN95 286 3 0 1 0 KN95 275 14 0 1 0
N95 9 279 0 2 0 N95 6 280 2 2 0
Cloth 19 23 [225 18 5 Cloth 7 7 246 14 16
Surgical 4 7 1 277 1 Surgical 1 6 1 265 17
Without 1 1 1 2 285 Without 0 0 2 2 286
ResNet101v2 ResNet152v2
KN95 N95 Cloth  Surgical  Without KN95 N95 Cloth  Surgical  Without
KN95 284 3 1 1 1 KN95 282 3 4 0 1
N95 2 285 0 3 0 N95 5 282 2 1 0
Cloth 0 2 280 4 4 Cloth 0 3 [ 272 4 11
Surgical 1 1 0 287 1 Surgical 0 0 2 288 0
Without 0 0 4 1 285 Without 0 0 2 0 288
classification of face images into five different classes: face with Table 4
a KN95 mask, face with an N95 mask face with a cloth mask Recall, precision, specificity and F1-score for the ResNet101v2 model.
face with a surgical mask, and face with no mask. To mitigate the Recall Precision Specificity F1-score
problem of long training times, all architectures were trained for KN95 0.9793 0.9895 0.9974 0.9844
10 epochs with 362 passes over the training samples. N95 0.9828 0.9794 0.9948 0.9811
All . ts were performed on the Google Colab comput Cloth 0.9655 0.9825 0.9957 0.9739
) eXperiments were pertormed on the (:0ogle Lolab comput- Surgical 0.9897 0.9696 0.9922 09795
ing service using Python programming language and two open- Without 0.9828 0.9794 0.9948 0.9811
source software libraries, Keras and TensorFlow. The source code Macro-avg 0.9802 0.9801 0.9950 0.9802

is available at https://github.com/ricardomcupido/Gogle-Colab-
Face-Mask-Classification. The performance of the models was
evaluated using five widely-used criteria: accuracy, recall, preci-
sion, specificity, and F1-score.

5.1. Results and discussion

Table 2 reports the values of accuracy and loss for the pre-
trained deep transfer learning models. As can be observed, the
highest training accuracy was achieved with the residual net-
works ResNet101v2 and ResNet152v2, which were as high as
0.9800 and 0.9737 respectively. Both these pre-trained models
based on transfer learning also exhibited the lowest loss values
during the training step. Regarding to the results of NasNetMobile
and MobileNetv2, one can see that these models obtained an
accuracy of 0.9324, whereas the loss of NasNetMobile was the
worst.

For a more detailed review of the performance results, Table 3
shows the confusion matrix of the deep transfer learning models.
With the help of a confusion matrix, the impact of misclassifi-
cations on the model performance can be better analysed. Thus,
values in the confusion matrices indicate that all the models
mainly failed to identify the images of faces wearing a cloth mask;
it has to be noted that most errors were due to mistaking those
for images of faces with a surgical mask or images of faces with-
out a mask (for instance, the ResNet152v2 model misclassified
11 images of faces with a cloth mask as being of faces without a
mask). Another common error found in these confusion matrices
refers to the recognition of images with faces wearing a KN95
that were identified as an image with an N95 face mask and vice
versa, which can be explained because these masks are alike and
provide much the same structural and functional characteristics.

Hereafter we concentrate on the results of ResNet101v2 as
the best performing pre-trained model. From the values in the
confusion matrix of ResNet101v2, it is possible to calculate recall,
precision, specificity and F1-score. Table 4 shows these perfor-
mance evaluation measures of each class. As can be viewed, the
highest value of recall was for the images of faces with a surgical

mask, whereas the highest values of precision, specificity and F1-
score were obtained for the class of KN95 face respirator masks.
However, the most important picture of this table is that all
classes (types of face masks) yielded high performance.

Fig. 5 collects some examples of images that were misclas-
sified with the ResNet101v2 model. This can help one better
understand the rationale of the errors produced during image
recognition. For instance, the KN95 face mask in image labelled
as A1 was recognized as a cloth mask, which can be due to the
profile view of the image and also to the material and colour of
the face mask. Faces partially occluded can also be a source of
error in the recognition of a face mask as is the case of images A2
and B2. The model did not detect a face mask in images labelled
as C2 and D2 because of their resemblance to a face. Errors on
images in the third row of Fig. 5 result from misidentifying some
article (jewel, sticker, hair, scarf) in the face as a face mask.

5.2. Comparison with related works

As mentioned in Section 2, similar proposals for mask de-
tection can be found in the literature. However, they present
several variations in the classification model, transfer learning
approach, data sets, number of classes, and performance evalua-
tion metrics. Therefore, making a fair and informative comparison
under different protocols is not straightforward. Despite this, we
compared our experimental results to show that the method pro-
posed in this paper yields competitive recognition rates against
state-of-the-art methods.

Table 5 summarizes the performance results of related works
and those achieved by our proposal. For comparison purposes, we
included the best results from all the experiments carried out in
each paper. As can be observed, most of the works dealt with two-
class problems to recognize mask vs. unmask, generally giving
results higher than 98% in terms of accuracy and F1-score.

The only work focused on identifying two different types
of masks (N95 and surgical) by using VGG-16 was the one by
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Table 5
Comparison of our proposal against related works.
Reference Techniques Classification problem # Classes Results
This paper ResNet101v2 Multi-class 5 Accuracy = 98.00%
[19] InceptionV3 Two-class 2 Accuracy = 100%
[20] SRCNet Multi-class 3 Accuracy = 98.70%
[21] ResNet50 and YOLOv2 Two-class 2 Average Precision = 81%
[22] YOLOvV3 and Faster R-CNN (ResNet101-FPN) Two-class 2 Average Precision = 62%
[23] ResNet50 and SVM Two-class 2 Accuracy = 100%
[24] Faster R-CNN and InceptionV2 Two-class 2 F1-score = 94.19%
[25] VGG16 Multi-class 7 Accuracy = 99.29%
[27] SE-YOLOv3 Multi-class 3 Average Precision = 73.7%
[28] CSPDarkNet53, PANet and YOLOv4 Multi-class 3 Average Precision = 98.30%, F1-score = 96.7%
[29] ResNet50 Two-class 2 Accuracy = 98.20%
[30] YOLOv3 Two-class 2 Average confidence = 97.00%
[31] MobileNetv2 Two-class 2 Accuracy = 96.85%
[32] MobileNetv2 and Single Shot Detector Two-class 2 Accuracy = 91.70%
[33] MobileNetv2 Two-class 2 Accuracy= 98.00%
[34] MobileNetv2 Two-class 2 Accuracy = 98.00%
[35] InceptionV3 Two-class 2 Accuracy = 98.00%
[36] Single Shot Multibox Detector and MobileNetv2 Two-class 2 Accuracy = 92.64%, F1-score = 93.00%
[37] YOLOv4 Two-class 2 Average Precision = 88%, F1-score = 99.54%
[38] MobileNetv2 Two-class 2 Accuracy = 81.74%
[39] Multigraph CN-VGG16 Two-class 2 Accuracy = 97.9%
[40] MobileNetv2, DenseNet121, NASNet Two-class 2 F1-score = 99.40%
[41] MobileNetv2-SVM Two-class 2 Accuracy = 97.11%
[42] VGG-16 Multi-class 3 Accuracy = 99.81%

Hussain et al. [42], reporting a recall of 97% and 99% for N95
and surgical masks, respectively. As can be seen in Table 4, the
ResNet101v2 model applied to our multi-class problem (KN95,
N95, cloth, surgical, and without) performed similar or even
better than the VGG-16 approach ran over an easier two-class
problem.

6. Conclusions

This paper has developed a deep transfer learning model for
the recognition of different types of face masks. The proposed
method consists of two main stages. The first part includes
data preprocessing (conversion of image format, ROI detection,
and normalization) and data augmentation (rotation, width and
height shifting, shearing, horizontal flipping, and pixel filling),
whereas the second stage is for the recognition process using a
deep transfer learning neural network.

Experiments have investigated the performance of four deep
transfer learning models (NasNetMobile, MobileNetv2,
ResNet101v2, and ResNet152v2) pre-trained on ImageNet
database. The experimental results have shown that both residual
networks perform better than the other models, yielding very
high accuracy and low loss. In particular, the ResNet101v2 ap-
pears as the best deep transfer learning model for the task of
distinguishing between four different types of face masks, with
an accuracy of 98% and a loss of 0.0734.

Despite its contributions, the results of this paper should not
be interpreted without accounting for some limitations that could
be addressed in future works. The emphasis of this paper has
been on four different types of face masks, but other types should
be included for a more real scenario. Although assessing mask
fitting is way beyond the scope of this work, this seems to be a
critical thing to be watched as a loose-fit can significantly impair
even high-filtration masks. On the other hand, the models have
been trained with images from public databases, but a further
step will consist of elucidating the performance with a set of
images of much lower resolution, such as CCTV footage. Finally,
the research has analysed four deep transfer learning models,
but it could be extended to other models such as Inception and
DenseNet.
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