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Abstract: Herpesviruses are important pathogens that can cause significant morbidity and mortality
in the human population. Herpesviruses have a double-stranded DNA genome, and viral genome
replication takes place inside the nucleus. Upon entering the nucleus, herpesviruses have to overcome
the obstacle of cellular proteins in order to enable viral gene expression and genome replication.
In this review, we want to highlight cellular proteins that sense incoming viral genomes of the
DNA-damage repair (DDR) pathway and of PML-nuclear bodies (PML-NBs) that all can act as
antiviral restriction factors within the first hours after the viral genome is released into the nucleus.
We show the function and significance of both nuclear DNA sensors, the DDR and PML-NBs, and
demonstrate for three human herpesviruses of the alpha-, beta- and gamma-subfamilies, HSV-1,
HCMV and KSHV respectively, how viral tegument proteins antagonize these pathways.
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1. Introduction

Herpesviruses have evolved sophisticated ways to subvert the immune system over millions
of years of coevolution with their respective hosts. While herpesviruses also need to surmount
adaptive cell-mediated immunity in order to prevent being killed by immune cells and establish
persistent infection, the antagonism of cellular restriction and the innate immune system is of particular
importance in order to achieve efficient infection of target cells. The nine human members of
the herpesvirus family include important human pathogens, i.e., Herpes-simplex viruses-1 and -2
(HSV-1 and HSV-2), the Varicella-Zoster Virus (VZV), Human Cytomegalovirus (HCMV), Human
Herpesviruses-6A, -6B and -7, and the tumor viruses Epstein-Barr virus (EBV) and Kaposi’s sarcoma
associated herpesvirus (KSHV) [1]. A hallmark of herpesvirus infections is the establishment of lifelong
latency [1]; for example, about 3.7 billion people are infected with HSV-1 worldwide [2], and even
more by HHV-6, -7, and EBV [3,4]. In this regard, herpesviruses are the most “successful” virus family
in the human population, because almost all human adults are latently infected with at least one
herpesvirus, and most by several. Herpesviruses are double-stranded DNA viruses with genome sizes
from 125–250 kbp [1]. For the infection of target cells, herpesviral virus particles bind to cellular surface
receptors. Virus particles are internalized, by fusion or endocytosis, the capsids are transported to the
nucleus, and the linear genome is released into the nucleus through nuclear pores. Whereas the viral
genome is enclosed and protected by capsid proteins in the cytoplasm, upon injection into the nucleus,
the naked linear viral DNA is especially vulnerable to detection by cellular DNA-damage proteins
and to attack by cellular restriction factors. Therefore, the viruses had to evolve ways to (i) prevent
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detection of the genome by DNA-damage proteins; (ii) prevent degradation of the naked, linear viral
DNA; (iii) realize recircularization of the viral genome; (iv) achieve chromatinization of the genome,
but simultaneously, prevent the addition of repressive chromatin marks, and (v) establish efficient
viral gene expression. In our review, we want to focus on the nuclear events of herpesviral infection
in the first hours after the viral genome enters the nucleus by focusing on one human member of
each of the alpha-, beta-, and gamma-herpesviruses, namely HSV-1, HCMV, and KSHV. We try to
highlight the critical steps and their importance for the herpesviral life cycle, and show similarities and
differences between herpesvirus subfamilies. In addition, we want to demonstrate how herpesviral
proteins, in particular tegument proteins that enter the cell as part of the viral particle, antagonize
cellular restriction factors.

2. DNA Sensor Proteins

Upon infection, the viral capsid is transported through the cytoplasm along the cytoskeleton until it
reaches the nuclear membrane; there, the viral genome, which is coiled in the capsid under high pressure,
is injected through nuclear pores [5]. In the cytoplasm, sensing of viral DNA by DNA-sensors like
AIM2 and cGAS leads to the activation of both the STING-IRF3-NF-kB pathway and the inflammasome;
this results in antiviral cytokine production, including interferon and interferon-stimulated genes [6–8].
AIM2, cGAS, and STING are predominantly located in the cytoplasm, which has prompted controversy
about the mechanisms of herpesviral DNA-sensing [9]. Given the model of infection described above,
capsid proteins always protect the viral DNA, and there is no naked viral DNA present in the cytoplasm
during the natural way of infection [5,10]. However, at least after replication in cell culture, the majority
of herpesviral particles are not able to establish infection, as reflected by (packaged genome copies:
plaque forming unit) ratios of >10–1000. In addition, there are also many empty capsids and virions
present. Thus, it is conceivable that there is sensing of such defective viral particles that may contain
or spill accessible and unprotected viral DNA. The uptake of such defective particles by cells during
infection may initiate cGAS- and STING-dependent signaling events that elicit a potent type-I IFN
response. In addition, the cellular protein IFI16 has also been shown to act as a sensor for herpesviral
DNA [11–13]. Most work on IFI16 as an antiviral sensor was done with HSV-1, and the data about
the antiviral role was partially controversial, in particular with respect to the effect of the depletion of
IFI16 on herpesviral replication and the role of ICP0 in the degradation of IFI16 [14]. Nevertheless,
it is well accepted that IFI16 has an important function in sensing herpesviral DNA [9]. In contrast to
cGAS and STING, IFI16 is a predominantly nuclear protein [11,12], and most publications point at
nuclear sensing of herpesviral DNA by IFI16 [14]. In the initial publication describing the antiviral
role of IFI16, it was proposed that IFI16 could shuttle between the nucleus and the cytoplasm to
initiate innate immune signaling [15]. IFI16 can be acetylated within its nuclear localization signal,
which results in the translocation of the protein to the cytoplasm [13]; for KSHV, this acetylation,
followed by translocation, might be involved in sensing the virus [16]. However, it was also shown that
a fraction of cGAS can locate to the nucleus in primary cells, and that cGAS stabilizes IFI16, and thereby
promotes, the sensing of HSV-1 [17]. Moreover, several reports suggest that IFI16 could be directly
associated with herpesviral DNA in the nucleus [16,18], most likely mediated through oligomerization
via its Pyrin domains [19]. As a consequence of oligomerization, IFI16 can form filamentous structures
in viral replication compartments after infection with an ICP0-deficient HSV-1, and it is thought that
these structures restrict viral gene expression [20]. For HCMV, the knockdown of IFI16 has been shown
to facilitate viral replication [21], and HCMV also encodes for a protein, pUL83 (pp65), that prevents
oligomerization of IFI16 via its Pyrin domains, and thereby inhibits innate immune activation [22].
A recombinant HCMV with a deletion of the pp65 gene showed an increase in IFN-beta production
compared to wildtype HCMV, which illustrates the importance of IFI16 in the innate immune response
to herpesviral infection. In contrast to HCMV, HSV-1 infection results in the degradation of IFI16. It is
unclear whether this degradation is mediated by ICP0 [14]. While some publications show that the
degradation of IFI16 is mediated by ICP0 [12], others show that this degradation is independent of
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ICP0 [23], and that ICP0 even prevents the association of IFI16 with viral DNA [23,24]. Most likely,
the observed differences can be explained by cell type-specific regulation of IFI16 in response to
HSV-1 infection [25]. Similar to HSV-1, degradation of IFI16 has also been shown during the lytic
reactivation of KSHV [26] as an immune evasion mechanism to prevent inflammasome activation [27].
KSHV infection leads to inflammasome activation through a unique mechanism that includes IFI16
and BRCA1 translocation into the cytoplasm [28]. In addition to BRCA1, IFI16 also recruits histone
H2B and the acetyl-transferase p300 to sites of viral genomes [29]. Subsequently, H2B and IFI16 get
acetylated by p300, which leads to translocation of the entire IFI16-BRCA1-p300-H2B complex into the
cytoplasm, followed by inflammasome activation and Il1-beta secretion [29]. Mechanistically, the direct
restriction of gene expression by IFI16 could be explained by the introduction of repressive histone
modifications on viral chromatin, as has been reported for HSV-1 [11,30]. More studies are needed
to identify the cellular enzymes that mediate respective histone modifications and whether they are
directly recruited by IFI16 to viral genomes. IFI16 is rapidly recruited to incoming viral genomes [18,22],
and several studies show IFI16 oligomerization in the proximity of viral genomes at later time points
using confocal and live cell microscopy [19,31]. Intriguingly, there was no evidence for the association
of viral DNA with IFI16 or PML-NBs after nuclear entry of adenoviruses [32,33]. It could be that
there is a fundamental difference in the recognition of herpesviruses and adenoviruses by IFI16. In
addition, the detection of incoming viral genomes is technically challenging, which makes it difficult
to perform in-depth biochemical analyses. Nevertheless, it was demonstrated by confocal microscopy
in a recent study by the Knipe lab that IFI16 and ATRX independently localize to EdC-labelled HSV-1
genomes as early as 15 min and until 60 min post infection, but viral heterochromatin formation
was independent of IFI16 [34]. For a more detailed assessment of all cellular DNA-sensing and
immune-evasion of herpesviral infection, however, we would like to recommend the excellent reviews
by Stempel and colleagues and Orzalli and colleagues, both of which discuss the current knowledge in
great detail [35,36].

3. DNA Damage Response Proteins

The relationship between herpesviruses and cellular DNA-damage response (DDR) proteins
is controversial [37]. While selected DDR proteins are beneficial for viral replication, and are even
actively recruited into viral replication compartments at later stages of the lytic cycle, the virus has to
antagonize at least parts of the DDR at early stages of infection. Although there are only few reports
of early herpesviral antagonism of the DNA damage response, the well-studied DNA viruses from
the adenovirus family can serve as an archetypical example. In this regard, adenoviruses have been
shown to inhibit several components of the DDR after infection, in particular the non-homologous
end-joining (NHEJ) pathway, in order to promote viral replication [38–40].

Cellular DDR is composed in a modular way [37]. On top of the cascade are proteins that sense
DNA damage event by directly binding to damaged DNA, hallmarked by DNA double strand breaks
or single-stranded DNA. The Ku70/Ku80 heterodimer, as well as the Mre11/RAD50/NBS1 (MRN)
complex, recognize DNA double strand breaks [41]. In addition, the RPA protein binds to unusual
stretches of ssDNA at stalled or stressed replication forks, recruiting ATRIP. After DNA binding,
a carboxyterminal motif of one of each sensors (NBS1, ATRIP, KU80 respectively) interacts with
its corresponding member of the large phosphatidylinositol-3-kinase like kinases (PI3KKs), ataxia
telangiectasia mutated (ATM), ataxia telangiectasia mutated (ATR), and the DNA-dependent protein
kinase catalytic subunit (DNA-PKcs), and induces their autophosphorylation and activation [41].
DNA double strand break sensing by the MRN complex leads to the activation of ATM, whereas
ssDNA sensing by RPA activates ATR. The activated PI3KKs then phosphorylate the downstream
protein H2AX at serine residue 139 (the phosphorylated form is called γH2AX). H2AX is a DNA
damage-specific histone variant, and its phosphorylation results in the recruitment of additional factors
to the site of DNA damage like RNF8 and RNF168.
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The initiation of the DDR cascade is a fast process. All proteins are ubiquitously present in the
nucleus, and upon activation, the phosphorylation cascade leads to locally-restricted DDR activation
at the point of damage [41]. In addition, there is co-regulation with the cell cycle. From a cellular point
of view, the DNA damage must be detected and resolved before the progression of the cell cycle to
prevent further mutations and passing of the DNA damage to daughter cells. Therefore, a DDR also
results in the activation of cell cycle checkpoints to prevent the replication of damaged DNA. ATM,
as well as ATR, phosphorylate checkpoint kinases CHK1 and CHK2, which results in a G1-S-phase
checkpoint arrest by activating the tumor suppressor p53.

The herpesviral genome enters the nucleus in its naked and linear form [5]. The viral genome
ends resemble DNA double strand breaks (DSB), and in normal cells, a chromosomal DSB is a severe
DNA-damage event that is sensed by DDR sensors and repaired immediately. Moreover, it has been
demonstrated for HSV-1 that the incoming viral genome contains nicks and gaps that could also activate
cellular DDR signaling [42]. Cellular chromosomes are also linear DNA molecules, but their ends
are protected by telomeres [43]. Most herpesviral genomes, however, don’t have terminal telomeric
repeats or similar structures, and therefore, the viruses have to prevent the initiation of a cellular
damage response in order to avoid unwanted repair of their genomes early after infection. Of course,
there are exceptions: the genomes of human Herpesviruses-6 (HHV6-A and HHV-6B) and -7 contain
human telomere-like sequences [44]. Interestingly, while almost all other herpesviral genomes persist
as episomal DNA molecules in infected cells after the establishment of latency, germline-integrated
HHV-6 genomes have been reported in approximately 1% of patients. In these, the viral genome is
found in telomeric regions, to which it is targeted via its viral telomere sequences [45,46]. As these
viruses seem not to yield infectious progeny, the significance of this host genome integration for viral
pathogenesis is currently under investigation [44].

It could be demonstrated for all herpesvirus families that specific DDR proteins are activated
at later stages of the herpesviral replication cycle during lytic replication. Once viral replication
compartments are formed, several DDR proteins are recruited into replication compartments. It has
been shown for HSV-1 that ATR and ATRIP are recruited to viral replication compartments, and that
ATR pathway proteins are needed for efficient viral replication [47–49] while downstream ATR signaling
is blocked simultaneously [48,50–52]. Excellent work by the Weitzman lab showed that ATM and
MRE11 are also activated and needed for efficient viral replication [53,54]. In addition, several cellular
DDR proteins, including members of the mismatch repair complex (MSH2, MSH6), the double strand
repair protein RAD50, and members of the single-strand repair complex (XRCC1, PARP1), among
others, have been demonstrated to associate with viral DNA replication forks by the precipitation of
EdC-labeled viral DNA [55], indicating a role of selected DDR proteins during HSV-1 replication. In the
case of KSHV, both the Ku70/80 complex, as well as MRN complex, colocalize with viral replication
compartments [56] and lytic replication of KSHV activates ATM, DNA-PK, and γH2AX, but not ATR
and CHK1 signaling [57]. As mentioned above, DDR proteins are equally distributed in the nucleus,
and it has been demonstrated for HCMV that a great number of DDR proteins are activated upon
infection, but only a fraction colocalize with viral DNA [58], pointing at a selective regulation of access
to viral replication compartments. Therefore, it is important to assess the subnuclear localization of
DDR proteins relative to viral DNA to discriminate unspecific global bystander activation and specific
local responses. For HCMV, it was further demonstrated that infection results in ATM activation and
downstream signaling, leading to the activation of p53 and γH2AX, and that this is required for efficient
viral replication [59–63]. Taken together, all members of the alpha-, beta- and gamma-herpesvirus
subfamilies have in common that they activate the ATM response at later time points during infection,
indicating an important role of ATM activation for viral replication. Furthermore, an additional, unique
set of DDR proteins are activated for each individual virus.

However, we hypothesize that the viruses need to block the cellular DDR immediately after
infection to prevent the repair of incoming linear genomes. (Figure 1) Herpesviral infection usually
takes place in quiescent cells [64]. During the G1- and G0-phase, the NHEJ pathway, activated by
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KU70/KU80, is the default repair pathway for DSBs. In contrast, the homologous repair (HR) pathway,
which is activated by the MRN-complex via ATM, is active during S-phase and G2-phase when sister
chromatids are present as a template for homologous recombination. Repair through NHEJ would
lead to a loss of genetic information for the virus due to DNA end processing prior to ligation by
DNA ligase IV/XRCC4. As mentioned, adenoviruses, a dsDNA virus family that also replicates in the
nucleus, have evolved potent mechanisms to block NHEJ. Therefore, we think that herpesviruses also
need to block NHEJ in favor of HR in order to achieve the loss of recircularization of their genomes.
It was demonstrated that the NHEJ protein PAXX acts as a restriction factor for HSV-1 replication [65].
PAXX interacts with Ku80 and gets relocated after HSV-1 infection, and depletion of PAXX has been
shown to enhance HSV-1 replication [65]. For KSHV, the depletion of Ku80 and DNA-PK, two proteins
involved in NHEJ, leads to enhanced genome replication [56]. Another important protein in this regard
is SPOC1, a cellular chromatin remodeling factor that inhibits immediate early gene expression of
HCMV and also adenoviruses [66,67]. Upon DNA damage, SPOC1 is recruited to DNA double strand
breaks by ATM signaling, promotes HR-repair, and blocks NHEJ. Moreover, SPOC1 interacts with
KAP-1, inhibits KAP-1 phosphorylation, and enhances H3K9 trimethylation [68]. Although SPOC1
showed the unambiguous features of an antiviral restriction factor, surprisingly, it was found to be
actively upregulated by the HCMV protein IE-1 shortly after infection [66]. Since SPOC1 restricts
both adenoviruses and HCMV, it would be very interesting to see whether SPOC1 also restricts the
herpesviruses of the alpha- and gamma-subfamilies.

Figure 1. Herpesviral antagonism of the ATM- and DNA-PK-branch of the DDR directly after infection.
After infection of target cells, the herpesviral capsid is transported to the nuclear membrane and
the viral DNA released into the nucleus through nuclear pores. We propose that the cellular DDR
complexes recognize the viral linear DNA by MRN- and KU70/KU80-complex binding to double-strand
break resembling ends of the linear viral DNA. This results in activation of kinases ATM and DNA-PK
respectively, followed by phosphorylation of H2AX (γH2AX) and CHK1/2 and activation of downstream
proteins including the cell cycle regulator p53. HSV-1, HCMV and KSHV have been shown to counteract
this activation as indicated in the graph, however, the viral effector proteins and mechanisms are not
identified. Depletion of proteins depicted in red font has been shown to enhance herpesviral replication,
indicating an inhibiting role on herpesviral replication. ? indicates an unknown mechanism.
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In general, it is challenging to assess the early events minutes after viral infection, considering
that under physiological conditions, only one or very few viral genomes enter the nucleus upon
infection, and that one must discriminate between viral and cellular DNA. On these grounds, it is
conceivable that data on these early events are partially conflicting. For example, it is textbook
knowledge that the incoming linear viral genomes have to undergo recircularization before viral
genome replication begins. However, controversial data has been published on whether or not HSV-1
genomes undergo recircularization upon infection [69,70]. In addition, it was assumed that herpesviral
genomes were amplified by rolling circle replication during lytic infection of HSV-1, and that HSV-1
proteins were indeed able to induce rolling circle replication in vitro [71,72]. In contrast, HSV-1
replication also leads to replication intermediates that hint at an alternative recombination-based
mechanism of replication [73–76]. Nevertheless, it is beyond doubt that independent of the mode of
genome recircularization and viral DNA replication, a loss of genetic information would be detrimental
for viral replication. Therefore, it is advantageous for a herpesvirus to prevent NHEJ, and instead,
to create an environment that promotes homologous recombination. The ends of linear herpesviral
genomes contain at least two but up to 50 repeats (depending on the herpesvirus) that are homologous
to each other. These repeats can serve as templates for homologous recombination, and enable genome
circularization. From the concatemers formed by rolling circle replication, linear genomes with flanking
repeats can reform without losing genetic information, similar to sister chromatids during S-phase.
Newer and more sensitive imaging-based detection methods like EdC-/EdU-labeling of viral genomes
and fluorescent in situ hybridization-based techniques with single molecule sensitivity could help to
resolve these controversies in the future. For example, very elegant work by Jill Dembowski and Neal
DeLuca using EdU-labeled viral genomes followed by click-chemistry demonstrated an association
of several DDR proteins including 53BP1, PARP1, PARP14, MRE11A, and Ku70(XRCC6) with HSV-1
DNA at early time points post infection [77]. However, one has to consider that EdC/EdU-labeled
genomes can be sensed by cellular DNA-damage sensors and induce DDR signaling, which might
make an assessment of the results difficult [78,79].

HSV-1 genomes alone are able to induce DNA-PK activation [42]; however, this activation is
abrogated upon viral infection by proteasomal degradation of the catalytic subunit of DNA-PK by
ICP-0 [80,81]. In addition, HSV-1 replication is drastically enhanced in Ku-deficient cells [82], indicating
an inhibitory role of the NHEJ pathway in HSV-1 replication. For HSV-1, it was further demonstrated
that both RNF8 and RNF168 are antiviral proteins that are counteracted by HSV-1 protein ICP-0 [83,84].
The viral ubiquitin E3 ligase ICP-0 mediates the proteasomal degradation of RNF8 and RNF168, and
thereby, prevents recruitment of downstream proteins like BRCA1 and 53BP1 to γH2AX foci [83,84].
RNF8 and RNF168 have also been shown to mediate ubiquitination of histone H2A, and thereby,
induce genome silencing [85].

Taken together, we think that blocking NHEJ immediately after infection and creating a nuclear
environment favoring homologous recombination is beneficial for herpesviruses by promoting genome
replication and preventing loss of viral genetic information.

4. PML Nuclear Bodies

After entering the nucleus, herpesviral genomes have been shown to associate with subnuclear
structures called PML-nuclear bodies (PML-NBs, or Nuclear Domain 10 (ND10)) [86]. (Figure 2)
PML-NBs are named after their key structural component, the promyelocytic leukemia protein (PML or
TRIM19). PML is a TRIM protein containing the eponymous tri-partite motif that confers E3-ligase
activity. PML is a SUMO-E3 ligase, and accordingly, PML-NBs are described as principal aggregations
for SUMOylated proteins in the nucleus. PML-NBs are also involved in other important nuclear
functions as storage organelle for nuclear proteins and centers for active transcription. For a detailed
overview on the architecture and the multiple functions of PML-NBs, we recommend excellent reviews
by others [87]. However, most importantly, PML-NBs are nuclear sites that mediate the antiviral
restriction of DNA-virus gene expression and replication [88,89]. Several PML-NB components like
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PML itself, SP100, DAXX, and ATRX are bona fide restriction factors for viral infection, undermined by
the observation that PML-NB components like PML, Sp100, and DAXX are induced by interferon [90].
DAXX and ATRX form a histone chaperone complex that recruits the non-canonical histone variant H3.3
to incoming viral genomes, as has been reported for the adenoviruses, HCMV and EBV [91–93]. In the
case of HSV-1, H3.3 is also recruited by the histone chaperone HIRA [94,95]. Moreover, DAXX and
ATRX interact with epigenetic modifiers like HP1 and histone methyl-transferase EZH2. It is thought
that thereby a repressive chromatin environment is generated that mediates the epigenetic silencing
of incoming viral genomes, and thus hampers viral gene expression and replication. For HSV-1,
it was demonstrated that viral chromatin is established on the incoming genome as early as 1–2 h
post infection [96]. Interestingly, predominantly repressive histone modifications like H3-lysine
9-tri-methylation (H3K9me3) and H3-lysine 27 trimethylation (H3K27me3) can be found on viral
chromatin, which prevents viral gene expression and replication [96]. As mentioned above, ATRX,
PML, and IFI16 are associated with the HSV-1 genome within the first hour after infection, and initial
heterochromatin formation is dependent on ATRX [34]. For HCMV, viral genomes become associated
with PML after infection, and similar to HSV-1, expression from the major immediate-early promoter
(MIEP) is also repressed through histone modification of the region [97–99].

PML is the key protein of PML-NBs that forms a lattice and serves as a docking site for other
PML-NB components, and the degradation of PML leads to a dispersal of all PML-NB proteins.
Studies by Gerd Maul and colleagues have suggested that PML-NBs are needed for efficient viral gene
expression [100]; meanwhile, it is well accepted in the field that PML-NBs reflect an antiviral entity in
the nucleus, which is also supported by several hundred publications encompassing almost all DNA
viruses [87,90].

The viruses in turn have evolved mechanisms to antagonize restriction by PML-NB. (Figure 2)
In this review, we focus on the early events after infection, and thus, on the tegument proteins of
HSV-1, HCMV, and KSHV; for herpesviral proteins that are de novo expressed at immediate, early,
and later time points, and that antagonize PML-NBs, we recommend reviews by others [89,101]. In the
case of HSV-1, the proteins VP16 and ICP0 facilitate viral gene expression and the removal of viral
heterochromatin [102,103]. ICP0 was one of first viral proteins discovered to antagonize PML [104].
ICP-0 is an immediate early protein of HSV-1, and also part of the virus particle. It is a ubiquitin
E3 ligase that mediates the ubiquitin-mediated degradation of target proteins, including PML [105].
An HSV-1 ICP-0 deficient virus, as well as HCMV, was restricted by PML, DAXX, and Sp100 in a
cooperative manner, shown by shRNA depletion of individual proteins [106]. The replication of
the ICP-0 deficient virus was affected at different replication steps [107], further corroborating the
importance of PML-NB proteins on viral replication and also the role of ICP-0 in antagonizing PML-NBs.
As mentioned, PML-NBs are linked to SUMOylation, and interaction between PML-NB components
heavily depends on interaction between SUMOylated proteins and SUMO-interaction motif (SIM-)
containing proteins [87]. Accordingly, herpesviruses have also evolved ways to target the SUMOylation
of proteins in general to antagonize PML-NB function. Excellent work by the Everett lab demonstrated
that ICP-0 acts as a SUMO-targeted ubiquitin ligase (STUbL) which recognizes SUMOylated proteins
and ubiquitinates them [108]. K48-linked ubiquitination of SUMOylated proteins by ICP-0 leads to the
subsequent proteasomal degradation of target proteins [108].

In the case of HCMV, two proteins have been shown to be of particular importance for PML-NB
antagonism: the tegument protein pp71 and the immediate-early protein 1 (IE-1). pp71 enters the
nucleus together with the viral genome and induces the degradation of DAXX and the sequestration
of ATRX from PML-NBs [109,110]. This first line of PML-NB antagonism enables the expression of
immediate-early proteins including IE-1. IE-1 in turn efficiently dissolves PML-NBs [111], in particular
by interfering with the de novo SUMOylation of PML [112], and thereby enables the expression of
early genes. Most protein–protein interactions in PML-NBs are mediated by SUMOylation; therefore,
SUMOylation of PML is essential for the formation of PML-NBs [87].
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Figure 2. Herpesviral antagonism of PML-nuclear bodies. After the infection of target cells,
the herpesviral capsid is transported to the nuclear membrane and the viral DNA released into
the nucleus through nuclear pores. The genome rapidly associates with PML nuclear bodies (PML-NBs).
PML-NBs are considered as antiviral nuclear organelles that restrict gene expression from viral genomes,
and PML-NB components PML, SP100, DAXX and ATRX as well as the transiently associated proteins
IFI16 and HIRA have been shown to mediate this restriction. PML is an essential structural component
of PML-NBs and depletion of PML disrupts PML-NBs. Herpesviruses in contrast have evolved
mechanisms to counteract this restriction, in particular viral tegument and immediate-early proteins as
depicted in the graph. ? Indicates hypothetical mode of interference.

All gammaherpesviruses like KSHV encode for at least one member of a viral protein family,
the viral formylglycineamide ribonucleotide amidotransferase (vFGARAT) [89]. The vFGARATs are
cellular FGARAT (also PFAS, EC 6.3.5.3) homologs, the enzyme that catalyzes the fourth step in the
de novo purine biosynthesis pathway. Several family members have been shown to counteract the
antiviral function of PML-NBs since the homology of the viral and the cellular gene were first described
in 1997 [89,113]. In doing so, different gammaherpesviruses antagonize different components of
PML-NBs. The vFGARAT of KSHV for example, ORF75, induces the degradation of ATRX and the
relocalization of DAXX [114], whereas closely related human and monkey viruses apply different
strategies [89,93,115–117]. vFGARATs are tegument proteins that enter the newly-infected cell together
with the viral genome. Similar to ICP-0 of HSV-1 and pp71 of HCMV, it is thought that the immediate
antagonism of PML-NBs upon entering of the nucleus is needed for efficient viral early gene expression.
In addition, vFGARATs apparently have additional functions needed for viral infection and replication,
including structural functions as tegument components and involvement in deamidation of target
proteins [89,118–120]. This is also reflected by genetic depletion of ORF75 from the KSHV genome,
which results in a replication-dead virus that cannot be explained solely by its effect on PML-NBs [114].

Intriguingly, the discussed pathways seem to be interconnected in several ways. It is established
that upon initiation of a DDR, PML-NB numbers per cell increase and PML-NBs are recruited to sites
of DNA damage. The PML-NB components DAXX and ATRX for example are important antagonists
of the alternative lengthening of telomeres- (ALT-) pathway [121]. ALT is a recombination-based
mechanism of telomere maintenance that gets activated during early development, and in a subset of
cancer cells. One could speculate that the inactivation of ATRX and DAXX activates ALT (or other
recombination-based pathways), and thereby contributes to recombination of the viral genome [122].
IFI16, the cellular sensor for dsDNA has, in turn, been shown to associate with PML-NBs, although
the antiviral mechanisms by which PML-NB components like PML and ATRX restrict HSV-1 seem
to be different, and not directly connected to IFI16 [20,123]. Along this line, a novel connection
between IFI16, the DDR kinase ATM, and the cellular DNA-sensing pathway molecule STING has
been demonstrated recently [124]. Upon DNA-damage, IFI16, ATM, and PARP1 form a complex that
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leads to non-canonical STING activation via TRAF6 activation, resulting in NF-kB activation [124].
In addition, the DDR proteins RNF8 and RNF168 have been shown to be negative regulators of
PML [125]. An interesting viral protein that has been shown to alter both PML-NBs and the DDR
is pUL35 of HCMV. pUL35 is part of the virion, interacts with pp71, and activates the HCMV MIEP
together with pp71 [126]. The expression of pUL35 leads to formation of UL35 nuclear bodies within
the nucleus [127]. Those bodies form independently of PML, but after the formation PML, Sp100,
and DAXX, get recruited to UL35 bodies [127]. In addition, pUL35 has also been shown to activate the
DDR by inducing 53BP1 and γH2AX foci [128].

Beside the cellular DNA sensors, DDR proteins and PML-NB components, there are a variety
of other cellular proteins that have been demonstrated to inhibit herpesviral immediate-early
gene expression, especially proteins involved in epigenetic regulation and chromatin remodeling.
For example, in addition to its well-known role in the restriction of HIV, it was recently recognized
that the human interferon induced dynamin-like GTPase MX2 (MxB) interferes with HSV-1 entry
at a step after tegument dissociation but before viral genome uncoating and translocation into the
nucleus [129–133]. Although the detailed mechanism of this restriction is not fully elucidated, it is
clear that it requires the GTPase function of MX2.

Taken together, we think that herpesviruses have to counteract several cellular pathways to enable
viral gene expression and prevent silencing of the viral genome immediately after infection. Specifically,
cellular sensors of herpesviral DNA, DNA-damage proteins, and components of PML-nuclear bodies
are described as antiviral restriction factors. In turn, members of all herpesvirus subfamilies have
evolved efficient countermeasures to evade cellular intrinsic immunity, in particular by viral tegument
proteins that enter the nucleus together with the viral genome. However further studies are needed to
analyze this viral and cellular arms race in order to get more insights that might help to identify new
targets for antiviral drugs that could be used for therapy of patients in the future.
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