
Identification of Anti-virulence Compounds That Disrupt
Quorum-Sensing Regulated Acute and Persistent
Pathogenicity
Melissa Starkey1,2,3.¤, Francois Lepine4., Damien Maura1,2,3., Arunava Bandyopadhaya1,2,3,

Biljana Lesic1,2,3, Jianxin He1,2,3, Tomoe Kitao1,2,3, Valeria Righi5,6, Sylvain Milot4, Aria Tzika5,6,

Laurence Rahme1,2,3*

1 Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America, 2 Department of Microbiology

and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America, 3 Shriners Hospitals for Children Boston, Boston, Massachusetts, United
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Abstract

Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug
resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that
causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P.
aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without
affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and
structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and
pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and
are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit
the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and
do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-
tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to
more effectively treat refractory and deleterious bacterial-human infections.
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Introduction

Antibiotic-resistant and tolerant microbes mediate acute,

persistent, chronic, and/or relapsing human infections [1–3].

Such infections occur worldwide, affect all sectors, cause physical

and emotional suffering, impose high financial costs on patients

and healthcare systems, and are refractory to current anti-infective

drugs. As such, identification of new molecular targets and

corresponding compounds to restrict multidrug-resistant (MDR)

and antibiotic-tolerant (AT) infections will substantively benefit

human healthcare.

Bacterial pathogens often develop resistance to antibiotic drugs

that target bacterial growth or viability. In contrast, strategies that

specifically target virulence pathways that are non-essential for

growth could limit selective resistance, and thus are candidates for

the development of next-generation antimicrobial therapeutics.

One candidate pathway is quorum sensing (QS), a cell-to-cell

density-dependent communication system mediated via the

production of and regulation by low molecular weight signaling

molecules. QS, which is evolutionarily conserved throughout

eubacteria and archaebacteria, is crucial for the development and

maintenance of acute and chronic/persistent human infections as

well as the commonly observed antibiotic tolerance of many

pathogenic bacteria [4–10]. As such, anti-virulence compounds

that specifically target QS could have a major impact on the

control and treatment of a wide-range of acute and persistent

bacterial infections [11–13].

P. aeruginosa is a wide-spread opportunistic human pathogen

responsible for acute and chronic/persistent infections that readily

develop multi-drug resistance to clinical antibiotics, and often
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evade clinical treatment [1–3]. P. aeruginosa has three distinct QS

systems mediated by cell-to-cell signals including the acyl-

homoserine lactones (HSL) 3-oxo-C12-HSL and C4-HSL,

respectively produced by the las and rhl QS systems; and the 4-

hydroxy-2-alkylquinolines (HAQs), produced by the mvfR (pqsR)

QS system [14]. MvfR is a LysR-type transcriptional regulator

(LTTR) that directs the synthesis of ,60 low molecular weight

HAQ molecules, including its positive regulatory ligands 4-

hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptyl-

quinoline (PQS); and the non-HAQ, 2-aminoacetophenone (2-AA)

[7,15–16]. LTTRs control the expression of a diverse array of

virulence regulons in Gram-negative and Gram-positive patho-

gens, and are the largest family of homologous regulators in

prokaryotes [17].

While all three P. aeruginosa QS systems are required for full

pathogenicity in mammalian hosts [18–21], the lasR pathway is

often inactivated in isolates from cystic fibrosis (CF) patients, and

thus it may be nonessential for chronic/persistent infections. This

inactivation is due to mutations in LasR itself [22,23], and may be

due to specific MvfR-regulated functions [7]. Conversely, MvfR is

essential for full virulence in several host models [19,24,25], and

clinical isolates with mvfR mutations have not been identified.

MvfR binds to and activates the pqs operon, which encodes

enzymes for the synthesis of HAQs, including PQS and HHQ

[15,16,26]; and for MvfR-regulated small molecules, including 2-

AA. These molecules are produced in human tissues and function

in pathogenicity [27,28]. Both HHQ and PQS bind to and

activate MvfR [16,26] to lead to the production of MvfR-

regulated virulence factors that promote acute infections [25,29–

31]. 2-AA, which is produced in human tissues [32], signals

changes in both bacterial [7] and host pathways [6,33]. Some of

the affected pathways underlie the development and maintenance

of chronic/persistent infections, including functions that promote

antibiotic tolerance [8], long-term survival and persistence [7], and

modulation of host functions that promote pathogen tolerance [6].

Antibiotic-tolerant (AT) cells underlie bacterial persistence and

correspond to sub-populations that survive lethal concentrations of

antibiotics. AT cells are implicated in the clinical failure of

antibiotic therapy, and may populate and/or be responsible for

persistent infections that can be the source of latent, chronic, or

relapsing infections that are suppressed but not eradicated by

antibiotics [34–36].

MvfR, due to its central role in both acute and chronic/

persistent infections, is a potential target for the development of

new anti-microbial drugs, especially as it is nonessential for cell

viability or growth. Here we identify robust quorum sensing

inhibitors (QSI) that inhibit the MvfR virulence regulon via

binding to the MvfR regulatory protein; are highly efficacious in

disrupting MvfR-dependent cell-to-cell communication in vivo;

and limit P. aeruginosa infections and lethality in mice. Moreover,

these are the first identified compounds that restrict the formation

of antibiotic-tolerant persister cells, and consequently, that restrict

P. aeruginosa persistent infections in mice. These molecules,

which belong to a chemical family previously unrecognized for

MvfR inhibitory activity, provide for the development of effective

clinical therapeutics to limit and eradicate acute and chronic/

persistent multi-drug resistant infections.

Results

High-throughput whole-cell screening identifies novel
potent MvfR-regulon inhibitors with a benzamide-
benzimidazole chemical backbone

We used a whole cell high-throughput screen (HTS) to identify

compounds that inhibit MvfR regulon activity without perturbing

cell viability or growth (Fig. 1, S1 and S2b). We screened a

chemical library of 284,256 low molecular weight compounds for

inhibition of pqsA expression using a reporter consisting of the

pqsA promoter fused to the sacB gene (Fig. S1) [7,37]. In this

screen, a solvent control or non-inhibitory compound results in

bacterial death when sucrose is present in the culture media due to

its conversion to toxic levans by the sacB gene product [37], while

compounds that inhibit pqsA promoter expression, and thus HAQ

synthesis, permit bacterial growth.

The MvfR-regulon inhibitory compounds initially identified

belong to 7 distinct chemical families (Fig. 1). The most effective

inhibitors were verified via a second screen for pqsA promoter

repression using a pqsA-GFP [38] reporter construct, which

yielded 39 candidate compounds (Figs. S1 and S2a). These

inhibitors were further analyzed by functional assays for reduced

HAQ production, including HQNO, and the MvfR ligands HHQ

and PQS; and for reduced levels of pyocyanin, an MvfR-regulated

virulence effector. Figure 1 presents the structures and LC/MS

results for 17 compounds that completely eliminated pqsA-GFP

mediated fluorescence, greatly reduced HHQ, PQS, and HQNO

levels at 50 mg/mL, and notably, did not impact bacterial growth

(Fig. S2). Some of these compounds also eliminated or greatly

reduced pyocyanin levels (Fig. 1). Strikingly, 8 of these compounds

(labeled in red) share a benzamide-benzimidazole (BB) backbone,

consisting of a substituted benzamide moiety and endocyclic

aromatic amines. These BB inhibitors also increased anthranillic

acid (AA) in culture (data not shown), likely via its non-utilization

and subsequent accumulation [15,39]. The other 9 inhibitors

presented in Figure 1 are unrelated to the BB inhibitors and do

not share any common structure or distinct feature between them.

Also, 12 of the total 17 inhibitors reduced pyocyanin to less than

50%, while the BB compound M4 and the non-BB compounds

M21, M29, M31, and M32, did not (Fig. 1). All BB inhibitors

identified from the HTS, except for M24, reduced HHQ and PQS

levels to #15%, and M4, M23, M26, M27, and M34 were

effective at #10 mM (Fig. 2). This concentration is 150 fold lower

Author Summary

Antibiotic resistant and tolerant bacterial pathogens are
responsible for acute, chronic and persistent human
infections recalcitrant to any current treatments. Therefore,
there is an urgent need to identify new antimicrobial drugs
that will help circumvent the current antibiotic resistance
crisis. Bacterial pathogens often develop resistance to
antibiotic drugs that target bacterial growth or viability. In
contrast, strategies that specifically target virulence path-
ways non-essential for growth could limit selective
resistance, and thus are candidates for the development
of next-generation antimicrobial therapeutics. In this study
we target the bacterial communication system MvfR
(PqsR), which is known to control virulence of the
opportunistic bacterial pathogen Pseudomonas aeruginosa.
We identified and improved upon new small molecules
that effectively silence the MvfR communication system,
and as a result block P. aeruginosa virulence both in vitro
and in vivo. Moreover, these new compounds are the first
known to restrict the ability of bacteria to form antibiotic-
tolerant cells and consequently proved to be very effective
at preventing persistent infection in a mammalian infec-
tion model. Because of their ability to simultaneously block
acute and persistent infections, these new molecules may
provide a very strong basis for the development of next
generation antimicrobials.
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than the effective concentrations for previously identified MvfR-

regulon inhibitors [40].

Structure-activity relationship analysis identifies
improved 2nd generation benzamide-benzamidazole
MvfR-regulon inhibitors

We performed a structure-activity relationship (SAR) analysis to

define 2nd generation BB derivatives with enhanced MvfR-regulon

inhibitory activity, as determined by repression of HAQ and

pyocyanin production at 10 mM and 1 mM (Fig. 2). Starting with

M56, increased inhibitor activity was obtained by adding an

electron withdrawing group, such as a nitro, to position 5 of the

benzimidazole moiety, to give M52; or an electron-releasing group

to the benzamide para position, to give M55. As such, we focused

on compounds with a nitro substituted benzimidazole ring and a

para substituted benzamide ring. Derivatives having a methoxy

(M61), trifluoromethoxy (M58), chloro (M51), or a cyano (M62)

para group showed increased inhibitory activity at #1 mM IC50

(Fig. 2, white). For further optimization, we synthesized BB

derivatives containing a nitro substituted benzimidazole ring and

a para-bromo (M50), iodo (M59), or phenoxy (M64) substituted

benzamide ring (Fig. 2, green). Also, the BB thioether bond was

critical for inhibition in M59, as replacing it with a methylene

eliminates activity (data not shown). M64 was the most effective 2nd

generation inhibitor for reducing PQS, HHQ, and pyocyanin

production, with respective IC50 of 200 nM, 350 nM, and

300 nM (Fig. S3).

MvfR regulon inhibitors restrict the formation of P.
aeruginosa antibiotic tolerant cells

2-AA, an abundant MvfR-regulated non-HAQ small molecule,

promotes P. aeruginosa antibiotic-tolerant (AT) cell formation

[8,41] and bacterial persistence in infected flies [7] and mice [6].

Figure 3 shows that the MvfR BB inhibitors prevented both 2-AA

synthesis and AT cell accumulation, suggesting their potential to

limit P. aeruginosa chronic/persistent infections.

Figure 3a shows that the 6 most potent BB inhibitors of HAQ

and pyocyanin production (M34, M50, M51, M59, M62 and

M64) dramatically reduced 2-AA production; while two potent

HAQ non-BB inhibitors, M29 and M31, conversely, slightly

increased 2-AA production (Fig. 3a). Figure 3b shows that all of

the BB compounds that decreased 2-AA production also decreased

the number of persister cells tolerant to the b-lactam antibiotic

meropenem while alternatively, M29 increased persisters, perhaps

via increased 2-AA.

We focused on the BB compounds that restrict persister

formation. Figure 3c shows the generalized anti-persister efficacy

of M64, as it limits formation of antibiotic-tolerant persisters to

Figure 1. Chemical structures of 17 MvfR-regulon inhibitors identified by whole cell HTS, and their corresponding inhibition of
HAQ and pyocyanin production. HHQ (dark grey bars), PQS (white bars), HQNO (light grey bars), and pyocyanin (black bars) levels were
quantified plus or minus 50 mg/mL of each compound. Structures labelled in red share the common benzamide-benzimidazole core.
doi:10.1371/journal.ppat.1004321.g001
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Figure 2. Structure and biological activity of benzamide-benzimidazole derivatives for inhibition of HAQ and pyocyanin
production. The HTS compounds are shaded purple, the 2nd generation commercially available derivatives are shaded white, and the 2nd

generation synthetic derivatives are shaded green. Alterations to the M56 benzamide-benzamidazole core structure are marked in red. HHQ, PQS,
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other antibiotic classes, including quinolones (ciprofloxacin, and

levofloxacin), and aminoglycosides (amikacin). In addition, M64

inhibited pyocyanin production in several P. aeruginosa clinical

isolates (Fig. 4a), including multidrug or pan-resistant strains

(Fig. 4b), suggesting its potential for the development of anti-

infective reagents against recalcitrant MDR strains.

Mechanism of MvfR regulon inhibition
The mechanism of action of the most potent MvfR inhibitors is

not obvious, as their common BB backbone is unrelated to MvfR

ligands or the biosynthetic precursors or intermediates of these

ligands. As these compounds decrease HAQ and 2-AA produc-

tion, they might target the MvfR regulatory protein, or

and pyocyanin (pyo.) levels were quantified in response to 10 mM compounds, and 1 mM of the most potent compounds: M34, M51, M62, M50, M59,
and M64.
doi:10.1371/journal.ppat.1004321.g002

Figure 3. The most potent inhibitors reduce 2-AA production and the formation of antibiotic tolerant persisters. a. 2-AA levels in
presence of 10 mM inhibitor. Error bars show mean +/2 SD of at least 2 replicates. b. Observed fold change in persister cell concentrations of PA14
cultures with 10 mM inhibitor or with 0.75 mM 2-AA. Untreated PA14 cells and mvfR- cells were the positive and negative controls, respectively. Error
bars show mean +/2 SEM of at least 3 replicates. Differences between PA14 and the samples M34, M50, M62, M59, M51, M64 or mvfR- (p,0.01) as
well as between PA14 and the samples PA14 + 2-AA or M29 (p,0.01) are statistically significant (one way ANOVA, Dunnett’s test). c. Observed fold
change in persister cell concentrations of PA14 plus 5 mM M64 in the presence of clinical antibiotics used to treat P. aeruginosa infections: amikacin
(blue), levofloxacin (purple), ciprofloxacin (orange) and meropenem (red). All values were normalized to control cultures in 0.01% DMSO. Error bars
show mean +/2 SEM of at least 3 replicates. Differences between control and the samples amikacin, levofloxacin, ciprofloxacin or meropenem are
statistically significant (p,0.01, one way ANOVA, Dunnett’s test).
doi:10.1371/journal.ppat.1004321.g003
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alternatively, the pqs operon enzymes that mediate HAQ and 2-

AA biosynthesis [15]. To this end, we asked if the MvfR-regulon

inhibitors reduce HAQs, as assessed by LC/MS, in an isogenic

mvfR mutant strain that constitutively expresses the pqsABCD
genes, and thus has MvfR-independent HAQ production.

Figure 5a shows that the most potent BB inhibitors (M51, M34,

M62, M50 and M64) did not alter HAQ levels compared to the

solvent control, suggesting that they target MvfR or another

upstream regulatory component. In contrast, the non-BB inhib-

itor, M29, reduced HHQ, PQS, and HQNO levels, and increased

DHQ (Fig. 5a). Since PqsA and PqsD are necessary and sufficient

for DHQ production [42,43], M29 may inhibit the PqsB and/or

PqsC enzymes that are required for HHQ and PQS, but not

DHQ or 2-AA production [7].

An essential step of pqsA promoter activation is the binding of

the MvfR protein to specific DNA residues within the pqs
promoter, which is enhanced by PQS or HHQ [16]. To determine

whether M64 disrupts this binding, PA14 cells expressing MvfR

fused to a vesicular stomatitis virus glycoprotein (VSV-G) epitope

at the C-terminus were grown with and without M64, and the

MvfR–DNA complex was isolated via chromatin immunoprecip-

itation (ChIP). The co-precipitated DNA was quantified by qPCR

[19,44]. Figure 5b shows that M64 decreased MvfR binding to the

pqsA promoter by ,10-fold and blocked the PQS – mediated

increase in MvfR binding (Fig. 5b). As shown in Figure S5, PQS

and/or M64 addition did not affect MvfR levels.

Figure 5 demonstrates that the M64 molecular target is MvfR

itself, rather than an upstream component. Isothermal titration

calorimetry (ITC) showed that this binding has a ,1:1 stoichi-

ometry for M64 and the MvfR co-inducer binding domain, with a

KD = 5.4 nM (Fig. 5c). This binding likely prevents MvfR binding

to the pqsA promoter to inhibit MvfR regulon activation.

MvfR regulon inhibitors attenuate P. aeruginosa acute
virulence

MvfR QS is a target pathway for the development of new anti-

infective reagents, as it controls a large regulon of virulence

functions [16,25] and is required for pathogenicity in evolutionary

distinct hosts [19,20,24,31,45–47]. To this end, we asked if our

MvfR inhibitors limit bacterial virulence in murine macrophages

Figure 4. M64 reduces pyocyanin production in P. aeruginosa clinical multi-drug resistant strains. a. Quantitative pyocyanin production
in multi-drug resistant clinical P. aeruginosa isolates plus (red) and minus (black) 5 mM M64. A representative image of qualitative pyocyanin
production, visible as green media, in PA14 culture +/2 M64, is shown above the histogram. b. Antibiotic resistance profile of P. aeruginosa clinical
strains and their respective isolation sites from infected patients. Amik. = amikacin, Gent. = gentamycin, Mero. = meropenem, Pip. = piperacin,
Tobra. = tobramycin, Cefe. = cefepime, Aze. = azetromycin, Cip. = ciprofloxacin. R = resistant; I = intermediate; S = sensitive.
doi:10.1371/journal.ppat.1004321.g004
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(Fig. 6) and in mice (Figs. 7–9). Figure 6 shows that the BB

inhibitors significantly reduced PA14 cytotoxicity in Raw 264.7

macrophages. M64 was the most effective compound and was not

cytotoxic to the macrophages. 76% of PA14-infected cells survived

in the presence of M64 compared to only 36% survival in the

absence of this compound (p,0.01). In addition, mvfR mutant

cells were less cytotoxic than wild-type PA14, and M64 did not

rescue this cytoxicity, further confirming that it targets the MvfR

pathway.

Two distinct in vivo murine models of acute infection (thermal

injury and lung infection) were used to ask if M64 is therapeu-

tically efficacious for P. aeruginosa-mouse pathogenesis [40],

particularly for highly virulent strains exemplified by PA14.

Burned and infected mice that were injected with M64 beginning

6 h post-infection followed by injections twice daily through day 6,

exhibited increased survival compared to control mice (p,0.001),

demonstrating M64’s anti-infective efficacy in mice to reduce

PA14 acute virulence (Fig. 7a). This increased host survival was

not due to reduced bacterial loads, as both treated and untreated

animals had similar CFUs at the infection site or at the adjacent

muscle up to 6 days post-infection (Fig. 7b and 7c). As such, M64

directly reduced acute PA14 virulence in mice, likely by inhibiting

virulence functions, as opposed to reducing bacterial loads. Using

this model we compared the M64 sensitivity of colonies isolated

from infected versus infected and M64 treated animals. M64

sensitivity was assessed at day 11 post-infection and treatment by

measuring M64 IC50 for pyocyanin production in 10 remaining

colonies per animal (n = 3 animals per group), reasoning that

Figure 5. Identification of the molecular target and mode of action of the MvfR-regulon inhibitors. a. The potential molecular target of
an inhibitor is revealed by the pattern of HAQ and DHQ production in response to 100 mM of the inhibitor in mvfR mutant cells that constitutively
express pqsABCD. Compounds that target MvfR should not impact HAQs production (e.g., M51, M34, M62, M50, M64); compounds that inhibit the
PqsB or PqsC enzymes should result in increased DHQ, which is produced by PqsA/D, and reduced levels of HHQ, PQS, and HQNO, which require the
PqsABCD enzymes (e.g., M29). b. 0.24 mM M64 blocks MvfR binding to the pqsA promoter of PA14, minus and plus 38 mM PQS. Binding was assessed
by ChIP-qPCR and normalized to the rpoD promoter that lacks an MvfR binding site. MvfR bound DNA was expressed as the percent of total input
DNA. Error bars represent mean +/2 SEM of at least 3 replicates. c. Isothermal titration calorimetry analysis of the interaction between MvfRc91
(19 mM) and M64 (200 mM). Heat signals of the M64 titration into MvfRc91 are plotted against the molecular ratio between M64 and MvfRc91 (left
panel), and against time (right panel). The best-fit curve corresponds to a single-site binding model. The stoichiometry of binding (N), association
constant (KA), enthalpy (DH), and entropy of binding (DS) are presented.
doi:10.1371/journal.ppat.1004321.g005
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mutants resistant to M64 would still produce pyocyanin in the

presence of M64. No difference in M64 IC50 was observed in any

of the tested colonies, suggesting that resistance does not arise at

least by day 10 post-treatment (data not shown).

The in vivo anti-infective activity of M64 was further confirmed in

a murine acute lung infection model (Fig. 7d), as M64 significantly

reduced the mortality of PA14 infected mice by ,2.5-fold (p,0.05),

comparable to that of animals infected with attenuated mvfR mutant

bacteria. M64 did not further rescue the reduced mortality of mvfR-

infected mice (Fig. 7d). In addition, in vivo HHQ levels were

significantly decreased in infected animals treated with M64 (p,0.01)

(Fig. 7e) and the pulmonary bacterial loads were unchanged in

treated versus untreated animals at 14 h post-infection. These results

suggest that the in vivo specificity of M64 to inhibit MvfR regulon

function reduces virulence while not affecting bacterial viability.

Nonetheless, Figure 7f shows that bacterial loads in the lungs were

significantly reduced in the treated animals by 33 h post-infection,

suggesting that M64 treatment facilitated host clearance. A similar

effect is also observed in the muscle samples from burned and infected

mice treated with M64 (Fig. 7b and 7c).

M64 combined with a sub-therapeutic (ST) dose of ciproflox-

acin in the thermal injury and infection model resulted in 100%

survival of PA14-infected mice versus 80% survival for mice

receiving ST ciprofloxacin alone (p,0.001), suggesting an

additive effect of M64 and ciprofloxacin (Fig. 7g). This effect is

not due to altered ciprofloxacin minimal inhibitory concentration

(MIC) (Table S1), and instead may be the consequence of

differences in the mode of actions of these two compounds.

Indeed, as the ciprofloxacin ST dose did not kill all of the PA14

cells, M64 might have reduced the virulence of the remaining cells

to be cleared by the host immune system. Despite treatment

ending at day 6, M64 monotherapy led to a dramatic decrease in

bacterial CFUs in both muscle samples of burned and infected

mice post-day 8, with complete bacterial tissue clearance by day

14 (Fig. 7b and 7c), demonstrating efficacy of M64 without the

combinatorial antibiotic. None of the infected but untreated

animals survived past day 11; hence no further samples could be

taken from this population.

M64 attenuates macrophage accumulation at the
infection site

We used a Magnetic Resonance Imaging (MRI) technique to

evaluate M64 anti-infective efficacy in live animals by monitoring

accumulation of macrophages, which are a marker of host anti-

pathogen functions at active infection sites. We introduced a novel

combination of off resonance imaging (ORI) positive-contrast

MRI and T2r relaxation in the rotating frame (ORI-T2r) for

positive-contrast MR imaging of ultra-small superparamagnetic

iron-oxide (USPIO) nanoparticles. This technique exploits the

chemical shift induced by USPIO nanoparticles engulfed by

macrophages to nearby water molecules. Macrophages accumu-

late at the P. aeruginosa infection site in response to bacterial

virulence factors and host immune response functions [48].

Figure 8 demonstrates, via in vivo MRI, that M64 reduced

macrophage accumulation at the P. aeruginosa infection site in

Figure 6. MvfR-regulon inhibitors rescue PA14-macrophage cytotoxicity. PA14-induced killing of Raw264.7 macrophage cells was
determined minus and plus 100 mM inhibitor. Error bars represent mean +/2 SEM of at least 3 replicates. Differences between PA14 + vehicle and the
samples PA14 + M64, PA14 + M62, PA14 + M59, PA14 + M51, PA14 + M50, or PA14 + M27 are statistically significant (p,0.01, one way ANOVA,
Dunnett’s test). Differences between MvfR and MvfR + M64 (p.0.05) or vehicle and M64 (p.0.05) are not statistically significant (unpaired t test).
Notably, M64 does not alter cytotoxicity of mvfR cells, and is itself non-cytotoxic.
doi:10.1371/journal.ppat.1004321.g006
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the murine burn and infection model, corroborating its anti-

infective potential. M64 is not cytotoxic to murine macrophages in

culture, supporting the notion that the reduced macrophage

accumulation is via inhibition of PA14-mediated inflammation

rather than macrophage killing.

M64 inhibits P. aeruginosa persistence in infected mice
Bacterial AT cells are likely a key component of latent, chronic,

persistent, and relapsing infections, as they are a reservoir for re-

initiation of active infections, and have been implicated in

antibiotic treatment failures and host mortality [36,49,50]. To

Figure 7. M64 reduces PA14 virulence in mouse burn infection, and lung infection, models. a. Survival curves of mice from the burn and
infection model following PA14 infection, minus (black, n = 30), and plus (blue, n = 36), M64 (4 mg/kg). M64 was administered by intravenous
injection 6 h post-burn and infection, and then twice a day for 6 days post-infection. Differences between PA14 and PA14 + M64 are statistically
significant (p,0.001, Kaplan-Meier method). b., c. M64 does not significantly reduce PA14 bacterial load within the first 7 days post-infection, and
alternatively promotes bacterial clearance over several days in the burn and infection model. PA14 CFU quantification in muscle underlying (b) or
adjacent to (c) the abdominal infection site in mice infected with PA14, minus (black) and plus (blue) M64. Error bars show mean +/2 SEM of at least 3
replicates. Animals that survived infection post-day 7 were used for CFU quantification at days 8 and 11. Differences between PA14 and PA14 + M64
are statistically significant at day 11 (p,0.001, unpaired t test) but not before day 11 (p.0.05, unpaired t test). d. Survival curves of mice from the
lung infection model following PA14 infection, minus (solid black line, n$10), and plus (solid blue line, n$10) M64 (4 mg/kg); and mvfR infection,
minus (interrupted black line, n$10), and plus (interrupted blue line, n$10) M64 (12 mg/kg). M64 was administered by intravenous injection at 2, 4,
8, and 12 h post infection, and then twice a day up to day 4. Differences between PA14 and PA14 + M64 (p,0.05) or between mvfR and mvfR + M64
(p,0.05) are statistically significant, while differences between mvfR and mvfR + M64 (p.0.05) or between PA14 + M64 and mvfR + M64 (p.0.05) are
not statistically significant (Kaplan-Meier method). Animals were inoculated intranasally with 20 mL of 56106 PA14 cells and 20 ml of 86106 isogenic
mvfR mutant cells, n$10 mice. e. HHQ levels at 14 h post-infection from lung tissues in untreated mice, and from mice treated with M64. n = 7 for
each experimental condition. Difference between PA14 and PA14 + M64 is statistically significant (p,0.001, unpaired t test). f. PA14 pulmonary
bacterial load in mice infected with PA14 (black) and treated with M64 (blue) quantified at 14 or 33 h post infection. Error bars represent mean +/2
SEM of at least 3 replicates. Difference between PA14 and PA14 + M64 at 33 h are statistically significant (p,0.05, unpaired t test) whereas difference
at 14 h was not (p.0.05, unpaired t test). d.l., detection limit. NS, not significant. g. Survival curve of PA14-infected mice from the burn and infection
models, untreated (black, n = 30), treated with ciprofloxacin (green, p,0.001), or treated with a combination of ciprofloxacin and M64 (red, p,0.001),
using a 10 mg/kg therapeutic dose (T, straight line, n = 18–24, p,0.001) or a 4 mg/kg sub-therapeutic dose (ST, dashed line, n = 10, p,0.001) of
ciprofloxacin. Ciprofloxacin was administered by intravenous (IV) injection twice a day for 4 days post-infection, and M64 was administered by IV
injection 6 hours post-infection and then twice a day for 6 days post-infection. In all conditions the M64 dose was 4 mg/kg. Significance of survival
rate differences compared to PA14 infected mice was determined using the Kaplan-Meier method.
doi:10.1371/journal.ppat.1004321.g007
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this end, new clinical therapies are needed that limit the ongoing

presence of AT cells in infected hosts. Our inhibitors prevent 2-AA

synthesis, which promotes the formation of P. aeruginosa persister

cells [8], and persistence in vivo [6,7].

We developed a mouse infection model to assess P. aeruginosa
persistence in vivo following antibiotic treatment, and to evaluate

M64 in vivo efficacy to reduce PA14 persistence in infected animal

tissues, plus and minus combinatorial antibiotic therapy. Using this

model, we demonstrate in Figure 9 that M64 inhibits persistence in

the infected host, suggesting its broad anti-infective potential. No

bacterial CFUs were detected in muscle tissue directly below or

adjacent to the host infection site 4 days post-infection in animals

treated with ciprofloxacin and M64, or with ciprofloxacin alone.

Conversely, CFUs reappeared 6 days post-infection in the

antibiotic-only treated animals, but not in those receiving antibiotic

plus inhibitor. The co-injected animals exhibited minimal to no

CFUs 6–8 days post-infection, with complete clearance by day 11 in

the rectus abdominus muscle directly below or adjacent to the

infection site, while the CFUs in the antibiotic-only animals were

,103–104 6–8 days post-infection and ,100 cells by day 14 (Fig. 9a

and 9b). These CFUs were confirmed to be antibiotic sensitive, as

cultures inoculated from single surviving colonies from animals at

days 6, 8, and 11 had identical ciprofloxacin MICs and killing

curves compared to the parental PA14 culture (data not shown).

These data demonstrate the additive effect of M64 on

ciprofloxacin to fully clear infection and indicate that M64

prevents tissue re-colonization after antibiotic treatment is

stopped. This effect is not due to altered ciprofloxacin MIC

(Table S1), further substantiating the anti-persistence efficacy of

the MvfR regulon inhibitors.

Discussion

The ideal anti-infective to treat bacterial infections in human

patients should: 1) be highly specific to and inhibit a molecular

pathway that is required for virulence in acute, chronic, and

persistent infections; 2) be efficacious against divergent pathogens,

by targeting an essential, evolutionarily conserved, and wide-spread

virulence factor or pathway; 3) minimize selective resistance by not

disrupting pathogen growth or viability; 4) inhibit the occurrence of

AT pathogen cells; 5) be highly robust, and function at nM

concentrations or less; 6) be non-toxic to and metabolically stable in

host and pathogen cells; and 7) be affordably synthesized and

administered. The novel compounds identified here exhibit several

of these characteristics, and as such, provide a foundation for the

development of next-generation anti-infective therapeutics.

Bacterial QS systems are candidate targets for the development

of more effective drugs to treat acute and chronic or persistent

Figure 8. Magnetic resonance imaging of M64 inhibition of macrophage recruitment at a burn and infection site. a–e. In vivo positive
contrast imaging of mice infected with PA14, plus and minus M64. The off resonance imaging transverse relaxation in the rotating frame (ORI-T2r)
images were transformed to signal to noise ratio (SNR) images and thresholded in units of image standard deviation. a., b. The positive-contrast
images are presented in pseudocolor, thresholded to signal greater than three in dimensionless SNR units, and superimposed on a FLASH image. For
image processing, regions of interest (ROI) were drawn around the burn region and the total thresholded signal intensity was integrated within each
ROI. Similar slices were chosen at the same anatomical location in all mice. c., d. 3-dimensional graphs of pixel intensities show an intense peak in the
burn area for the PA14 control mouse, with this peak reduced by M64. e. Signal was measured in units of SNR, thresholded at three standard
deviations, and measured within ROIs at the level of the burn and infection. The noise threshold was estimated by fitting the image background to a
Rician distribution. Error bars depict standard error of the mean image intensity in the ROI. Error bars depict mean +/2 SD of at least 3 replicates.
Difference between PA14 and PA14 + M64 is statistically significant (p,0.05, unpaired t test).
doi:10.1371/journal.ppat.1004321.g008
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bacterial infections, as QS pathways control the coordinated

expression and production of a wide-array of virulence factors in

divergent pathogens, and are dispensable for bacterial survival

[11,13]. Potential QSI therapeutics fundamentally differ from

traditional antimicrobials that are bactericidal and/or bacterio-

static, as they are not expected to disrupt beneficial flora critical for

health [51], nor lead to selective resistance [52]. Past approaches

to identify QSI compounds against the MvfR-regulon have been

predictive, focusing on structural analogues of MvfR-pathway

intermediates, and of the MvfR native ligands. Analogues of

anthranilic acid, the primary precursor of the HAQs and 2-AA,

provided the first demonstration that pharmacological disruption

of the MvfR regulon can limit P. aeruginosa pathogenesis [40,53].

Other compounds were shown to reduce PQS production in vitro,

however they lack anti-infective activity [54–58]. Similarly, PQS

and HHQ analogues reduce a subset of MvfR regulated virulence

functions, yet do not provide in vivo efficacy in murine infection

models, block bacterial cell persistence, or show activity against

multidrug-resistant P. aeruginosa strains [59–61]. In addition, P.
aeruginosa can modify ligand-based MvfR inhibitors into MvfR

activators [62], so drugs based on these compounds could

ultimately increase virulence.

In contrast to these predictive approaches, our whole-cell HTS

activity-based strategy is not predicated on known QS pathway

molecules, and as such, should identify compounds only on their

MvfR-regulon QSI activity, independent of structure. Using this

strategy and chemical libraries of ,300,000 small molecular

weight compounds, we initially isolated 390 QSIs. We then used a

genetic readout system combined with LC/MS to distinguish the

inhibitors for robustness and specificity of MvfR pathway

inhibition, which validated 17 compounds that belong to 7

divergent chemical families. None of these compounds had been

shown to have anti-virulence activity previously, nor proposed as

candidates for such. These are the first identified QSIs that inhibit

a wide spectrum of MvfR regulon virulence functions, including

the pro-acute virulence molecules, HHQ, PQS, and pyocyanin;

and the pro-persistent signaling molecule, 2-AA. They are also

highly potent, with culture IC50 values of 200–350 nM for HHQ,

PQS, and pyocyanin, which is 10–1,000 times more potent than

the previous analogue-based inhibitors [60,62].

Several of the most robust 1st-generation molecules contain the

structural backbone of a benzamide and benzimidazole (BB)

moiety linked through a thioether bond. These inhibitors

demonstrate the validity of our activity-based approach to identify

unpredicted chemical structures to develop anti-infective thera-

peutics. We subsequently used an SAR analysis to define

important BB substituents for enhanced QSI activity, including:

1) the aromatic ring, as in M56; 2) the electron-withdrawing

substituent at the benzamide para position side-group, as in M34

and M59, especially for pyocyanin production; and 3) the

increased bulk of the para substituent on the benzamide moiety

of a nitrobenzimidazole derivative, from chlorine to cyano to

bromo to iodo, with the M64 phenoxy derivative having the

highest activity of all compounds tested. This highly robust 2nd-

generation inhibitor notably has significant therapeutic efficacy

against both acute and persistent infections in mice, with or

without combinatorial antibiotic therapy. In addition, M64 is the

first compound identified to inhibit MvfR regulation in divergent

P. aeruginosa isolates, including currently untreatable multidrug

or pan-resistant strains. Note, this suggests that M64 uptake or

action does not appear to be limited in MDR clinical strains that

potentially exhibit efflux or influx pumps modifications. Addition-

ally, although M64 contains a nitroaromatic residue, it is not

cytotoxic to macrophages (Fig. 6).

Inhibitors of the P. aeruginosa LasR-regulated QS also have in
vitro and in vivo anti-virulence potential [11–13]. Nonetheless,

these reagents may have less practical import and clinical

applicability than the MvfR inhibitors, as P. aeruginosa-human

isolates often carry lasR mutants. Such mutants may contribute to

the fitness of chronic and persistent infections [22,23], and could

cause treatment failure of LasR-specific inhibitors. These lasR cells

are likely ‘‘cheaters’’ that benefit from non-mutant cooperators,

and do not overcome wild type P. aeruginosa cells in environ-

ments lacking selective pressure for LasR activity [52]. In addition,

Figure 9. M64 inhibits P. aeruginosa persistence in the mouse burn and infection models. PA14 CFU quantification in muscle (a)
underlying or (b) adjacent to the abdominal infection site in mice infected with PA14 and treated with ciprofloxacin (10 mg/kg), and minus (green) or
plus (red) M64 (4 mg/kg). Ciprofloxacin and M64 were administered by intravenous injection 6 hours post-infection and then twice a day.
Ciprofloxacin was administered for 4 days as described until no CFUs were detected in the muscle samples. Ciprofloxacin administration was stopped
at day 4 to allow for the potential emergence and detection of antibiotic-tolerant cells. M64 was administered for 6 days, up until antibiotic-tolerant
cells were detected in the PA14 + ciprofloxacin only group. Error bars represent mean +/2 SEM of at least 3 replicates. d.l., detection limit.
doi:10.1371/journal.ppat.1004321.g009
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the MvfR pathway product, 2-AA, promotes lasR mutant

accumulation [7], so QSI compounds that target MvfR should

restrict lasR cheaters from non-mutant cooperators. Moreover,

combinatorial therapy of MvfR and LasR inhibitors could

enhance target spectrum and clinical potential in acute infections.

Our results show that MvfR is not required for short term

bacterial survival in the host, therefore it is not surprising that

M64-treated animals do not clear PA14 cells faster than untreated

controls in the short term. The higher PA14 clearance observed at

day 11 in M64-treated versus not treated animals may suggest a

potential fitness advantage for M64-resistant cells for long-term

survival in the host. However, we did not observe any M64-

resistant cells at day 11 from tissues of animals infected and treated

with M64 (data not shown), indicating no clear fitness advantage

for M64-resistant mutants in vivo. This is consistent with the fact

that no mvfR mutants have been reported in infection sites. Of

greater concern are wild-type persister cells, and M64 greatly

restricts persister appearance and prevents tissue re-colonization

after antibiotic treatment is stopped. Re-colonization may

ultimately be responsible for relapsing infection even though, in

the setting presented, relapsing infection was not lethal. Trans-

posing these data to a clinical perspective, relapsing infection that

occurs after antibiotic treatment arrest may increase patient

morbidity/mortality, especially in the case of immunocompro-

mised individuals, and could serve as a source of nosocomial

infection as patients remain infected for longer periods of time.

M64 directly binds to MvfR in 1:1 stoichiometry and inhibits

pqs operon expression by reducing MvfR binding to the pqsA
promoter, independently of PQS. We propose that M64 induces a

non-productive conformational change in MvfR to interrupt

effective ligand binding to the native binding domain. Elucidation

of the exact M64 binding site and co-crystalization should aid in

the design of enhanced anti-MvfR compounds. That M64 does

not rescue the survival of macrophages or mice infected with

virulence-attenuated mvfR mutant cells further confirms that M64

directly targets MvfR, and its anti-virulence efficacy is not an off-

target effect. These results also show that pharmacological in vivo
inhibition of MvfR function effectively reduces acute and

persistent P. aeruginosa infections. Although M64 and the QS

molecule 2-AA [7] both function as MvfR-regulon inhibitors, these

two molecules act differently. There are several key differences

between 2-AA and M64: 1) 2-AA promotes the accumulation of

AT cells (Fig. 3b and [8]) and host tolerance to infection leading to

bacterial persistence [6] whereas M64 prevents these phenotypes

(Fig. 3b and 9); 2) 2-AA acts upon at least one of the PQS enzymes

of the pqsABCDE operon [7], while M64 does not (Fig. 5a); and 3)

M64 is a much more potent MvfR regulon inhibitor than 2-AA as

M64 IC50 for the pqsA gene expression inhibition is ,1,300 times

lower (Fig. S7).

M64 exhibits additive effects for P. aeruginosa infections when

combined with sub-therapeutic doses of the clinically relevant

antibiotic, ciprofloxacin. M64 is also highly efficacious when used

in monotherapy in burn and lung acute P. aeruginosa infections in

mice. Chronic or persistent infections are often refractory to

traditional antibiotics and/or host defense killing mechanisms due

to AT and persistent cell subpopulations. Biofilms could form a

protective environment for this subpopulation of cells, shielding

them from the immune system. The MvfR regulon is reported to

control biofilm formation, however in this study the contribution

of biofilm or the efficacy of M64 against biofilm formation in our

in vivo studies was not assessed. Although many studies have

focused on targeting biofilms specifically [63,64], only very few

focused on specifically targeting persister/AT cells. Moreover,

current anti-infectives neither target nor limit such cells, leaving a

reservoir for re-initiation of infection that underlies chronic/

persistent and relapsing infections. AT cells are clinically

important, as antibiotics often fail to clear pervasive infections,

and the contribution of tolerance to treatment failure and

mortality can be as significant as antibiotic resistance. As such,

there is considerable need to identify anti-AT compounds that: 1)

prevent the formation of AT cells; 2) allow them to be killed; or 3)

prevent them from ‘‘waking up’’ when an antibiotic is removed,

which can require long-term continuous administration of the

anti-infective to assure full clearance. This is both financially

costly, and potentially deleterious to the host’s natural micro-

biome. Strategies for killing AT cells include augmentation of

antibiotic uptake with sugars [65], stimulation of reactive oxygen

species production [66], activation of endogenous proteases [67],

or waking-up AT cells with small molecules [68]. Here, M64

prevents AT formation, and in combination with ciprofloxacin,

eliminates bacterial rebound and promotes full bacterial clearance.

As such, M64 and related compounds provide for the development

of robust anti-virulence therapeutics to treat acute, chronic,

persistent, and pervasive relapsing infections, in combination with

sub-therapeutic levels of traditional antibiotics. In addition, that

M64 is efficacious in monotherapy and interferes with AT cell

formation, suggests that prophylactic application of M64-based

derivatives could reduce antibiotic use. Although M64 will not

enter clinical trials directly, it will provide a basis for the

development of next generation anti-virulence compounds that

contain a similar core structure. As such, it will guide medicinal

chemistry efforts to improve solubility and eliminate the poten-

tially problematic nitro group to enhance drug characteristics and

ultimately become a new clinical weapon against acute and

persistent bacterial infections.

In conclusion, our MvfR-regulon QSI compounds are candi-

dates for the development of next-generation anti-infective/anti-

virulence therapeutics, as: 1) they inhibit expression of the MvfR

virulence regulon; 2) they do not alter bacterial cell viability or

growth; 3) they inhibit the pathogenicity of MDR clinical isolates;

4) they reduce P. aeruginosa virulence in clinically relevant mouse

infection models, and compound with antibiotics to block

persistent infections; and 5) they restrict the occurrence of AT

bacterial cells that underlie chronic and persistent host infections.

M64, a 2nd generation inhibitor identified by SAR, is the first

identified compound that exhibits significant in vivo therapeutic

efficacy against both acute and persistent mammalian infections.

Furthermore, that LTTRs regulate virulence regulons in divergent

bacterial pathogens [69], and QS functions throughout the

eubacteria and archaebacteria, suggest that M64-based anti-

infectives could have broad clinical potential against a wide-range

of bacterial pathogens.

Materials and Methods

Ethics statement
Animal procedures were performed according to the animal

protocols, 2006N000093/2 and 2005N000387/6, approved by the

Massachusetts General Hospital Institutional Animal Care and

Use Committee. The two protocols conform to the USDA Animal

Welfare Act, PHS Policy on Humane Care and Use of Laboratory

Animals, the ‘‘ILAR Guide for the Care and Use of Laboratory

Animals’’ and other applicable laws and regulations.

Bacterial strains, growth conditions, and gene constructs
UCBPP-PA14 (PA14) is a RifR P. aeruginosa human clinical

isolate [20]. All mutant strains including mvfR [19] are isogenic to

UCBPP-PA14. Unless noted, bacteria were grown at 37uC in LB
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broth or on LB agar plates containing 75 mg/mL tetracycline,

100 mg/mL rifampicin, and 300 mg/mL carbenicillin,.

mvfR-pPqsABCD bacteria, which have constitutive and MvfR-

independent pqs operon expression, were generated by cloning the

pqsABCD operon into pDN18 and electroporating this construct

into mvfR cells. These bacteria were grown for 6 h in 100 mM of

experimental compound, or in 0.2% DMSO as control.

The P. aeruginosa clinical isolates, SH2, Shr12, Shr22, Shr23,

Shr33, Shr34, Shr37, Shr40, and Shr42, were obtained from

Shriners Hospital, Boston MA.

PpqsA-GFPASV was previously described [38].

The growth kinetics of PA14 WT or PA14 PpqsA-GFP cells

were recorded using an automated 96-well plate reader (Sunrise

Tecan, Switzerland) at 37uC with 10 s of circular shaking every

15 min, followed by 10 s of settling at which time OD600 nm was

detected.

The pqsA-sacB reporter gene was generated by fusing the pqsA
promoter to the Bacillus subtilis sacB gene [70]. The pqsA fragment

was amplified using PA14 chromosomal DNA and primer pairs

59GACTAGTCGAGCAAGGGTTGTAACGGTTTTTG39 and

59GAAGATCTGACAGAACGTTCCCTCTTCAGCGA39. The

sacB fragment was amplified using pKOBEG-sacB [70] DNA and

primer pairs 59GAAGATCTATGAACATCAAAAAGTTTGCA39

and 59AAACTGCAGGTTGATAAGAAATAAAAGAAAATGC-

C39. The PpqsA and sacB fragments were digested with SpeI/BglII

and BglII/PstI, respectively, and ligated to SpeI/BglII-digested

pCTX (TetR). The resultant construct was eletroporated into E. coli
SM10 lambda pir and CTX-PpqsA-sacB was integrated into the

PA14 chromosome [71]. PA14:CTX-PpqsA-sacB clones were

selected on Rif/TetR plates and confirmed by PCR.

HTS
That ligand-bound MvfR binds to and activates the pqsA

promoter [16] provided the basis for a biological reporter assay for

a high throughput screen (HTS), using PA14 cells carrying a pqsA-
sacB reporter gene. pqsA encodes an anthranilate-coenzyme A

ligase that activates anthranilic acid and catalyzes the first

committed step to HAQ production [72,73], and is positively

regulated by the MvfR protein. sacB encodes levansucrase, which

causes toxicity when cells are grown in sucrose, and has been

incorporated into allelic exchange vectors to provide counter-

selection [74]. Here, the PA14:pqsA-sacB cells die when MvfR

activates the pqsA promoter, so compounds that suppress pqsA
expression allow growth on sucrose. MvfR inhibition results in

reduced sacB expression and viable growth, as determined by

absorbance.

Using a plate reader and OD600 nm as readout, the pqsA-sacB
construct proved successful in a pilot high-throughput experiment

using 4-CABA, an AA analog that effectively inhibits the MvfR

regulon [40], as a positive control.

Overnight PA14 pqsA-sacB cultures were subcultured and

grown to mid-logarithmic phase, centrifuged, washed, resus-

pended to a final OD600 nm of 0.05 in LB minus NaCl and plus

10% sucrose, and 30 ml of cells were aliquoted into 384-well plates

using a Matrix WellMate. 1.5 mM 4-CABA, a previously

described PqsA inhibitor [40], was added to one plate column as

the positive control, with another column left compound free for

the negative control. 300 nl of a library compound in DMSO was

added to each plate via an Epson compound transfer robot, to give

a final well concentration of 50 mg/ml. Each library plate was

screened in duplicate. After 8 h incubation at 37uC, the OD600 nm

was determined for each well using an EnVision plate reader

(Perkin-Elmer). The relative inhibition of each compound was

from its z-score [75]. This analysis normalizes candidate inhibitory

compounds on a plate to plate basis, and corresponds to the

standard deviation from the mean plate value.

284,256 compounds in libraries at the Institute of Chemistry

and Cell Biology (ICCB)-Longwood screening facility (Fig. S1)

were screened in duplicate to identify 532 potential robust

inhibitors with strong z-scores. Of these, 390 had limited potential

liability, based on their structures. These compounds were tested

in a secondary screen at ,50 mg/mL and ,25 mg/mL using a

reporter construct of the pqsA promoter fused to a short half-life

GFP gene [38] as described [7], such that quantitative quenching

of fluorescence corresponded to pqsA promoter repression. MvfR

inhibition results in reduced GFP expression. This assay eliminat-

ed potential false positives, including compounds that negatively

affect SacB activity (Fig. S2). Each compound was concomitantly

assessed for growth (OD600 nm).

HAQs and pyocyanin quantification
HAQs and 2-AA were quantified in bacterial culture superna-

tants by LC/MS [16,76]. Pyocyanin levels were quantified by

measuring OD520 nm of chloroform-extracted cultures [77].

Persister cell assay
P. aeruginosa PA14 or mvfR mutant cells were grown with

shaking and aeration to mid-logarithmic phase in LB broth, minus

and plus exogenous compound. Before antibiotic addition, and as

the normalization reference, a culture aliquot was diluted 106 fold

in fresh LB (pre-antibiotic) and plated on LB agar for CFU

quantification. The remainder of the culture was treated with

meropenem to a final concentration of 1006MIC (Minimum

Inhibitory Concentration; 10 mg/L) or 5 mg/L amikacin,

0.1 mg/L levofloxacin, or 0.4 mg/L ciprofloxacin. At 16 h post-

antibiotic, culture aliquots were washed 2 times in fresh LB to

remove antibiotic carry-over, 10-fold serially diluted in LB broth,

and plated on LB agar for CFU quantification. This procedure

was repeated at 24 h post-AB to ensure that a killing plateau was

reached. The persisters fraction was determined as the ratio of

normalizers (pre-antibiotic) divided by persisters (24 h post-

antibiotic).

Recombinant MvfRc91 purification
The mvfR gene from residue 91 at nucleotides 271 to 273, to

the MvfR stop codon at nucleotide 999, plus 129 bp downstream,

was cloned into the Nde1 and Xho1 sites of pET16B, to generate

pET16B-MvfRc91. E. coli BL21(DE3) cells harboring pET16b-

MvfRc91 were grown at 37uC to OD600 nm 0.6 [16]. His-tagged

MvfRc91 expression was induced with 0.5 mM IPTG at 20uC for

16 h, and the cells were harvested by centrifugation. The bacterial

pellet was resuspended in Tris buffer (20 mM Tris-HCl, 300 mM

NaCl, pH8.0) with 10 mM imidazole, and lysed by sonication.

The soluble fraction was collected by centrifugation and filtration,

and separated on a Ni-NTA column equilibrated with Tris buffer

containing 50 mM imidazole. After column wash, the His-tagged

MvfRc91 protein was eluted with a 0.1 M–1.0 M imidazole

gradient. The MvfRc91fractions were pooled and dialyzed in

phosphate buffer (pH 8.0) with 300 mM NaCl and 2.5 mM b-

mercaptoethanol.

Chromatin immunoprecipitation (ChIP)
The ChIP assay was performed as described in [78] using VSV-

G-tagged MvfR in PA14 cells. To construct the MvfR - VSV-G

integration vector pP30DFRT-MvfR – VSV-G, the 316 bp

fragment corresponding to mvfR 630–945 region was amplified

by PCR using forward primer mvfR HindIII (59-GACG-
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TAAGCTTGGTCAGCGACAAGGTGCTCTTC-39) and re-

verse primer mvfR_NotI (59-GAAATGCGGCCGCCTGCACC-

GTTTCGACGATGCTCGG-39). The PCR product was then

treated with HindIII and NotI and cloned into the HindIII and

NotI sites of pP30DFRT [79]. PA14 expressing MvfR-VSV-G was

obtained via conjugation of PA14 with E. coli S17-1 lpir carrying

the pP30DFRT-MvfR - VSV-G plasmid. Conjugants with

chromosomally-integrated plasmid were selected on LB plate

containing 30 mg/ml gentamicin. Plasmid backbone excision was

performed by transforming plasmid pFLP2, which encodes FLP

recombinase. Expression of the MvfR – VSV-G protein was

confirmed by western blot analysis using a rabbit anti – VSV-G

primary antibody (Sigma–Aldrich) and a goat anti-rabbit HRP-

conjugated secondary antibody (GE Healthcare). Loading control

was performed for housekeeping protein RpoD detected with a

mouse anti-RpoD primary antibody (Neoclone) and a sheep anti-

mouse HRP-conjugated secondary antibody (GE Healthcare

Science).

Binding of tagged MvfR protein to the non-MvfR-regulated

rpoD promoter DNA was used as the negative control. 5 ml

culture aliquots were inoculated at OD600 nm 0.03, and grown at

37uC to OD600 nm 0.75, minus and plus 0.24 mM M64, and minus

and plus 38 mM PQS. Cross-linking and ChIP were as described

[78]. Quantitative PCR used oligonucleotides to the pqs operon,

and to the rpoD promoter as negative control [31,80]. MvfR

binding was expressed as the percent of total input DNA. Data

were averaged from at least 3 replicates.

Isothermal titration calorimetry (ITC)
ITC experiments were performed using a VP-ITC (Microcal).

Ligand and protein were in 100 mM phosphate buffer (pH 8.0)

plus 2.5 mM b-mercaptoethanol and 10% methanol. For individ-

ual titrations, 10 ml of 200 mM M64 was injected using a

computer-controlled microsyringe at 180 second intervals into

1.5 ml of 19 mM MvfRc91, with the sample cell stirred at

300 rpm, and the heat produced was measured at 25uC. The heat

originating from M64 injection into buffer alone was subtracted

from the raw data. The dissociation constant was calculated using

Origin Software (Microcal) by plotting heat per injection (mJ)

versus the titrated MvfRc91/M64 stoichiometry.

Macrophage cytotoxicity
PA14 or mvfR bacterial cultures were grown to OD600 nm 2.0,

minus and plus 50 mM experimental compound. Raw264.7

macrophage cells were cultured in Dulbecco’s modified Eagles

medium (DMEM) containing 10% FCS, 2 mM glutamine, and

antibiotic-antimycotic; washed with PBS (Mg2+ and Ca2+ free);

resuspended in antibiotic-free medium; and infected with 100

MOI of bacteria. Following 3 h incubation at 37uC under 5%

CO2, macrophages were washed and incubated for a further 3 h

with DMEM containing polymixin B and gentamycin to kill

extracellular bacteria. Raw264.7 viability was assessed using the

MTT (3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium

bromide) assay for early detection of eukaryotic cell death [81].

Briefly, macrophages were incubated in 200 ml PBS containing

200 mg/ml MTT (Sigma-Aldrich) in a 96-well culture plate for 2 h

at 37uC under 5% CO2, and the dissolved MTT was converted to

insoluble purple formazan via intracellular mitochondrial activity.

The supernatant was removed and the cells were lysed for 10 min

with 95% isopropanol and 5% formic acid. Converted dye

absorbance was measured at OD570 nm, with OD690 nm as the

reference wavelength, in a Sunrise plate reader (Tecan Group Ltd,

Männedorf, Switzerland). Per cent infected cell viability was

calculated by dividing the OD570 nm of infected versus uninfected

culture.

Murine burn and infection model to address anti-
virulence and anti-persistence compound efficacy

A murine thermal injury model was used to assess bacterial

pathogenicity in 6–7 wk-old CD-1 mice, as described [20]. Briefly,

animals were anesthetized with Xylazine (13 mg/kg, i.p.) and

Ketamine (87 mg/kg, i.p.), thermally injured (5–8% of body

surface) on the shaved abdomen dermis, and intra-dermally

infected into the burn eschar.

To assess MvfR inhibitory compound activity in acute infection,

animals were inoculated with 56104 PA14 cells in 100 ml of

10 mM MgSO4; and injected IV into the tail vein with M64

(4 mg/kg in 15% cremophore) and/or ciprofloxacin (10 mg/kg or

0.4 mg/kg), twice a day for up to 6 or 4 days post-infection,

respectively, for M64 or ciprofloxacin. Mice survival was assessed

over the course of 7 or 14 days, with 10 animals per experimental

group, and CFUs in adjacent or underlying muscle were

quantified at 2, 3, 4, 6, 8, 11, and 14 days post-infection, as

described [7]. Samples from underlying muscle represent assess-

ment of bacterial CFUs at the site of inoculation, whereas the

adjacent muscle samples provide a read out of the bacterial

dissemination from the site of inoculation. A sub-therapeutic

concentration of ciprofloxacin (0.4 mg/kg) was used to assess M64

and ciprofloxacin additive effect. Kaplan-Meier statistical analysis

was performed using Prism Graphpad software.

To assess MvfR-regulon inhibitor efficacy in persistent infec-

tions, persistent nonlethal infections were produced in burned

mice by using a lower bacterial inoculum than the one used above.

Mice were inoculated with ,66103 PA14 cells in 100 ml of

10 mM MgSO4. Ciprofloxacin (10 mg/kg) plus or minus, M64

(4 mg/kg in 15% cremophore) were IV injected into the tail vein

twice a day for up to 6 or 4 days post-infection for M64 or

ciprofloxacin, respectively. CFUs in adjacent or underlying muscle

were quantified at 2, 3, 4, 6, 8, 11, and 14 days post-infection, as

described [7]. MIC was calculated via the multivariate E-Test

(Biomerieux) [7].

Mouse lung infection model
M64 in vivo efficacy was further assessed in a murine lung acute

infection model [82]. 6 wk-old CD-1 mice were anaesthetized with

Xylazine (13 mg/kg, IP) and Ketamine (87 mg/kg, IP), and

intranasally inoculated with 20 mL of 56106 PA14 or 86106 mvfR
mutant cells. M64 (4 mg/kg or 12 mg/kg) was injected IV at 2, 4,

8, and 12 h, followed by injections twice daily through 4 days post-

infection. Animals were held in a vertical position for 3–5 min to

facilitate distal alveolar migration of the bacteria by gravity. Mice

survival was assessed over 6 days, with 10 or more animals per

experimental group. Kaplan-Meier statistical analysis was per-

formed using Prism Graphpad software.

In vivo molecular MR Imaging to address anti-virulence
compound efficacy

In vivo molecular magnetic resonance imaging positive contrast

method exploits the chemical shift induced by ultra-small super-

paramagnetic iron oxide (USPIO) nanoparticles, known generi-

cally as Ferumoxtran-10 commercially and as Combidex in the

U.S. (Advanced Magnetics, Cambridge, MA). We used the

USPIO nanoparticles as the molecular imaging MRI contrast

agent. Six weeks old CD-1 mice were anesthetized with Xylazine

(13 mg/kg, IP) and Ketamine (87 mg/kg, IP) and a leg thermal

injury of ,8% total burn surface area was produced on the right
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thigh muscle. Six hours post-burn and infection 500 mg of

Ferumextron-10 suspension was injected by intravenous injection

in the tail vein. Mice were randomized into one experimental and

one control group (N = 6 per group). The experimental group

consisted of burned and infected mice, injected with USPIO and

injected with the anti-infective compound M64. The control group

consisted of burned and infected mice injected with USPIO. The

mice were imaged 12 hour post-burn and infection. We imaged

the accumulation of USPIO-labeled macrophages at the P.
aeruginosa infection site in the mouse burn and infection model.

Briefly, imaging was performed in a 4.7 T horizontal magnet

(20 cm bore, Bruker Avance console) equipped with a 39 G/cm

gradient system, using a custom volume coil of 3 cm inner

diameter and 10 cm active length. This set-up permits high B1 for

extended periods of time necessary for T2r and provides extended

homogeneity. Imaging was performed with RARE acceleration

factor two. The ORI-T2r sequence used a spin-locking pulse block

for relaxation in the rotating frame between the 90u and 180u RF

pulses of the RARE sequence. Magnetization inversion was

achieved with 180u adiabatic full passage pulses using HS4

adiabatic pulses (3 ms pulse duration, BW = 7 kHz) [83]. The

spin-locking block was implemented with the MLEV-4 scheme

(12 ms duration of spin-lock) [84]. Water and fat were suppressed

using frequency-selective ten-lobed sinc pulses (400 Hz pulse

bandwidth for water, 800 Hz for fat), followed by spoiling

gradients to dephase the transverse magnetization. Typical

parameters were RARE acceleration factor 2, effective echo time

(TE) 9.93 ms, repetition time TR 2240 ms, with 8 averages.

Anatomical reference images were acquired with RARE or

proton-density weighted FLASH (fast-low angle shot) imaging.

Negative contrast was achieved with a series of FLASH images

with increasing echo time for T2* weighting, with typical values

a= 35u, TR = 500 ms, TE = 4, 6, 8, 12, and 14 ms. The same slice

prescription was used for all sequences. Typically, 10 axial slices

were acquired in the burned region (1 mm thickness, 1.5 mm gap,

363 cm FOV, 1286128 matrix size, 8 averages). Typical MR

imaging times were 1.3 hr per animal.

MIC determination and antibiotic sensitivity/resistance
profiling

PA14 MIC for antibiotic treatment was as described [85].

Antibiotic sensitivity/resistance profiles were determined using the

disc diffusion method [86].

Statistical analysis
Data from 3 or more independent experiments were analyzed

using the Student’s t-test or one way ANOVA with Dunnett’s post-

test when required, and animal data were analyzed using the

Kaplan-Meier survivability test. P values,0.05, ,0.01, and ,

0.001 were considered statistically significant, very significant, and

highly significant, respectively.

Supporting Information

Figure S1 Experimental strategy using whole cell High
Throughput Screening (HTS) and functional assays to
identify MvfR regulon inhibitory compounds.

(JPG)

Figure S2 HTS identified MvfR-regulon inhibitors
quench fluorescence of pqsA-GFP expression without
impacting bacterial growth. a. Cells fluoresce when the pqsA-

GFP reporter gene is activated via MvfR. Fluorescence was

unaltered in response to HTS inhibitors at 50 mg/ml, versus the

0.2% DMSO positive control (black line). Similar results to those

from LB medium were obtained with the low autofluorescence

medium TSB (data not shown). b. Growth, measured by OD600 nm,

was unaltered by each of these compounds. Note that these

compounds represent those with strong z-scores in the initial HTS.

(JPG)

Figure S3 M64 inhibitory efficacy on HHQ, PQS, and
pyocyanin production in P. aeruginosa. HHQ, PQS, and

pyocyanin production were determined in response to increasing

concentrations of M64 (5 nM to 100 mM). Data represent the

average of at least two replicates.

(JPG)

Figure S4 Inhibitors do not affect P. aeruginosa growth
even at later growth stage. PA14 growth curves in presence of two

representative inhibitors, M64 and M31. Growth curves of PA14 +
0.04% DMSO (black), PA14 + 20 mM M64 (red) and PA14 + 20 mM

M31. Data represent the average +/2 SEM of three replicates.

(JPG)

Figure S5 M64 and/or PQS do not affect MvfR levels.
Equal quantities of cells producing MvfR – VSV-G, grown in the

absence (2) or presence (+) of PQS and/or M64, were probed for

western blotting with antibodies specific for VSV-G epitope (upper

panel) and RpoD (loading control, lower panel).

(JPG)

Figure S6 Proposed biosynthetic pathway of HAQ, 2-AA
and DHQ. AA: anthranilic acid; 2-ABA: 2-aminobenzoylacetic

acid; 2-AA: 2-aminoacetophenone; DHQ: 2,4-dihydroxyquino-

line; PQS: 3,4-dihydroxy-2-heptylquinoline: HHQ: 4-hydroxy-2-

heptylquinoline. The biosynthetic pathway of HAQ, 2-AA and

DHO is adapted from Dulcey et al. (2013).

(JPG)

Figure S7 M64 and 2-AA inhibitory efficacy of pqsA
expression in P. aeruginosa. pqsA-GFP expression was

determined in response to increasing concentrations of M64

(10 nM to 100 mM) or 2-AA (180 mM to 1.5 mM). Data represent

the average of at least two replicates.

(JPG)

Table S1 M64 does not affect PA14 MIC for common
clinical antibiotics. PA14 cultures plus or minus 2 mM M64

were incubated for 24 h in meropenem, carbenicillin, kanamycin,

ciprofloxacin, amikacin, imipenem or levofloxacin; and scored for

MIC.

(JPG)

Table S2 Bacterial strains used in this study.
(JPG)
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