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Abstract

We introduce Semantic Ontology-Controlled application for web Content Management

Systems (SOCCOMAS), a development framework for FAIR (‘findable’, ‘accessible’,

‘interoperable’, ‘reusable’) Semantic Web Content Management Systems (S-WCMSs).

Each S-WCMS run by SOCCOMAS has its contents managed through a corresponding

knowledge base that stores all data and metadata in the form of semantic knowledge

graphs in a Jena tuple store. Automated procedures track provenance, user contribu-

tions and detailed change history. Each S-WCMS is accessible via both a graphical

user interface (GUI), utilizing the JavaScript framework AngularJS, and a SPARQL

endpoint. As a consequence, all data and metadata are maximally findable, accessible,

interoperable and reusable and comply with the FAIR Guiding Principles. The source

code of SOCCOMAS is written using the Semantic Programming Ontology (SPrO).

SPrO consists of commands, attributes and variables, with which one can describe an

S-WCMS. We used SPrO to describe all the features and workflows typically required

by any S-WCMS and documented these descriptions in a SOCCOMAS source code

ontology (SC-Basic). SC-Basic specifies a set of default features, such as provenance

tracking and publication life cycle with versioning, which will be available in all

S-WCMS run by SOCCOMAS. All features and workflows specific to a particular

S-WCMS, however, must be described within an instance source code ontology

(INST-SCO), defining, e.g. the function and composition of the GUI, with all its user

interactions, the underlying data schemes and representations and all its workflow

processes. The combination of descriptions in SC-Basic and a given INST-SCO specify

the behavior of an S-WCMS. SOCCOMAS controls this S-WCMS through the Java-based

middleware that accompanies SPrO, which functions as an interpreter. Because of the
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ontology-controlled design, SOCCOMAS allows easy customization with a minimum of

technical programming background required, thereby seamlessly integrating conven-

tional web page technologies with semantic web technologies. SOCCOMAS and the Java

Interpreter are available from (https://github.com/SemanticProgramming).

Database URL: https://github.com/SemanticProgramming/SOCCOMAS

Introduction

Every day we create more and more data, in exponen-
tially increasing amounts. More than 90% of today’s data
have been created within the past 2 years (1–3). With the
emergence of high-throughput technologies, social media,
mobile services, digital photos and the Internet of things, big
data created in science and everyday life allow us to answer
questions that could not be answered before, resulting in the
advent of a new driving force for scientific progress that is
becoming increasingly important in all data-rich fields of
empirical research. This new approach to research has been
called data exploration or eScience (4).

Big data and eScience are virtue and challenge at the
same time. Challenges arise from the amounts of data,
the rates in which they are created and transmitted, and
from their heterogeneity. This change in size, velocity and
variety that big data bring about outclasses the capabilities
of conventional methods and techniques of handling, pro-
cessing, analyzing, managing, storing and retrieving data
within a reasonable time frame (5). In order to find the
data that are relevant to a given study from within a
lake of data and process them in a timely manner, we
now have to rely on algorithms and software applications.
eScience thus requires the development of corresponding
applications and services that focus on capturing, curating,
mining, integrating, analyzing and reasoning over data,
thereby often utilizing Semantic Web technologies, web
content management systems and data harvester services.
The applications and services, in turn, demand data and
accompanying metadata to be semantically structured in a
standardized way that makes them computer-parsable and
semantically transparent. Ontologies and other controlled
vocabularies have taken a central role in this context (6–9).

More and more organizations and institutions recognize
their research data to be their most valuable asset and seek
for technical solutions for managing the accessibility, usabil-
ity, disseminability, integrity and security of all the data
they create. Content management systems, coupled with
ontologies and semantic technology, have the potential to
provide a solution that meets these new requirements from
organizations and institutions as well as from eScience.
Unfortunately, not many content management systems have
implemented ontologies and semantic technology to their

full potential. Our impression is that the overwhelming
majority of applications of ontologies in the life sciences
has been restricted to semantically enriching documents and
annotating database contents by using Uniform Resource
Identifiers (URIs) of ontology classes as values in tables
of relational databases. Most content management systems
do not document and communicate their data in the form
of instance-based Resource Description Framework (RDF)
(10) triple statements and thus do not benefit from the
detailed search functions and the reasoning capabilities of
tuple stores, including consistency checks, data analyses,
data integration and reusability of data in for example
mobile apps (11).

We do not think that this is due to technological limita-
tions and restrictions. Tuple stores are capable of handling
large volumes of RDF triple statements representing data
and metadata as well as underlying data schemes (i.e.
ontologies (11–14)). ‘Tuple store’ is a general expression for
a store that stores tuples. A tuple is a list of entities. Several
common specific expressions exist: a triple store, also called
RDF store, is a tuple store that stores triples, i.e. subject–
predicate–object expressions. A quad store is a tuple store
that stores quadruples, i.e. subject–predicate–object–named
graph expressions. In a tuple store, data are organized
through a layer of triple statements that specify a hierarchy
of classes and subclasses with accompanying axioms, i.e.
ontologies (see ‘universal statements’ further below). The
actual data are triple statements about instances of respec-
tive classes (see ‘assertional statements’ further below). The
function of ontologies in a tuple store is thus comparable
to the data scheme in a relational database. Semantic tech-
nology facilitates detailed information retrieval from large
sets of triple statements through SPARQL endpoints (15)
and reasoning over them through semantic reasoners (16).

Although tuple stores and RDF-based data solutions are
superior in many respects, they yet have to replace conven-
tional relational databases such as MySQL or PostgreSQL
in rank as the prime database technology for content man-
agement systems. One reason is the lack of application
development frameworks with a native graph data structure
that are well integrated with RDF and allow handling graph
data and manipulating and displaying SPARQL results (17)
[for initial attempts of integrating RDF with conventional
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technologies, but not specifically with content management
systems, see e.g. (18–27)].

After introducing some background on ontologies,
semantic knowledge graphs, knowledge bases and today’s
demands on web content management systems, we
introduce a new approach to application programming
in which the source code is written in an ontology, the
source code ontology, using terms from the Semantic
Programming Ontology (SPrO). We call this approach
‘semantic programming’ (28). The source code is inter-
preted by an accompanying Java-based middleware that
executes it and produces the respective application. We
then introduce Semantic Ontology-Controlled application
for web Content Management Systems (SOCCOMAS), a
Semantic Web Content Management System (S-WCMS)
that is based on semantic programming and used for cre-
ating and publishing data documents. All S-WCMSs based
on SOCCOMAS provide data and metadata complying
with the FAIR (‘Findable’, ‘Accessible’, ‘Interoperable’,
‘Reusable’) Guiding Principles (29).

Ontologies, empirical data, knowledge bases

and semantic knowledge graphs

The use of ontologies for semantically enriching documents
and annotating database contents promises to provide not
only semantic transparency and computer parsability but
also a framework for applying data and metadata standards
that improve the integration and interoperability of data, all
of which is much needed in the age of eScience (30–32).

Ontologies are dictionaries that can be used for describ-
ing a certain reality. They consist of labeled classes with
clear definitions that are created by experts through con-
sensus and that are formulated in a highly formalized
canonical syntax and standardized format, such as the Web
Ontology Language (OWL) that can be serialized to RDF,
with the goal to yield a lexical or taxonomic framework
for knowledge representation (33). Each ontology class pos-
sesses its own URI, through which it can be identified and
individually referenced. Ontologies contain expert-curated
domain knowledge about specific kinds of entities together
with their properties and relations in the form of classes
defined through universal statements (34, 35). Ontologies
in this sense do not include statements about particular
entities, that is, about individuals.

Statements about particular entities are assertional
statements. Description logic (DL) distinguishes TBox
and ABox expressions. TBoxes contain assertions on
classes, whereas ABoxes contain assertions on instances.
Class axioms expressed in OWL are TBox expressions,
whereas empirical data statements are ABox expressions. If
assertional statements are grounded in empirical knowledge

that is based on observation and experimentation, we
refer to them as empirical data. Both ontologies and
data can be documented in the form of sets of triple
statements, following RDF’s syntax of ‘Subject’, ‘Predicate’
and ‘Object’. Any particular entity mentioned in a data
statement should have its own URI for reference, and its
class affiliation should be specified by referencing the URI
of the respective ontology class that the particular entity
instantiates. In this way, empirical data become semantically
transparent because they reference the ontology class that
each of their described particular entities instantiates and
with it also the class’s definition (see 3 below).

A given URI can take the ‘Object’ position in one triple
statement and the ‘Subject’ position in another triple state-
ment. As a consequence, several triple statements can be
connected to form a network of RDF/OWL-based triple
statements, i.e. a semantic graph. Because both ontologies
and empirical data can be documented in RDF/OWL, we
distinguish class-based and instance-based semantic graphs,
respectively [representing data as an instance-based instead
of a class-based semantic graph has many advantages (36)].
Empirical data represented as an instance-based semantic
graph is computer-parsable, and algorithms can reason over
them, thus taking full advantage of the power of Semantic
Web technologies.

Obviously, not every OWL file and not every semantic
graph is an ontology—it is an ontology only if it limits
itself to express universal statements about kinds of entities
(35). A knowledge base, in contrast, consists of a set of
ontology classes that are populated with empirical data
(35). Ontologies, therefore, do not represent knowledge
bases but are part of them and provide a means to struc-
ture them (37) [An ontology contains TBox expressions,
whereas a knowledge base expressed in DL is constituted
by a combination of TBox and ABox expressions (38).]. In
this sense, one can think of ontologies as providing the data
schemes in knowledge bases.

The contents of such a knowledge base form a semantic
knowledge graph (39–43) (Figure 1). We use the term
‘semantic knowledge graph’ here to be understood as
the combination of instance-based semantic graphs that
contain assertional statements (i.e. data) and class-based
semantic graphs that contain universal statements (i.e.
ontologies). Semantic knowledge graphs are thus RDF-
based knowledge graphs.

eScience-compliant data and metadata

standards and the FAIR Guiding Principles

To be maximally efficient, eScience requires the develop-
ment and implementation of eScience-compliant data and
metadata standards that establish semantic transparency
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Figure 1. Example for a knowledge graph. The knowledge graph describes parts of the anatomy of a particular multicellular organism that is of a

flattened shape, has a weight of 84.3 mg and has a head as its part. The description is not comprehensive and follows the open world assumption.

Parts of the graph specify relations between instances (purple-bordered boxes) or specify values or labels referring to instances (gray-bordered

boxes) and thus represent instance-based subgraphs, whereas other parts link to class expressions (yellow-bordered boxes), which in turn link to

class-based subgraphs provided by the respective ontologies (IAO, information artifact ontology (44); OBI, ontology for biomedical investigations

(45); PATO, phenotype quality ontology (46); SC-MDB-MD, semantic Morph·D·Base source code ontology for the morphological descriptions module;

UBERON, Uber-anatomy ontology (47); UO, units of measurement ontology (48)). For reasons of clarity, resources are not represented with their

URIs but with labels.

and computer parsability. This is achieved by providing for
each data or metadata statement the adequate nomenclat-
ural, concept, format and content standards (9, 31, 32),
which together also guarantees their FAIRness.

An eScience-compliant ‘nomenclatural standard’ unam-
biguously links the words and identifiers used in a data or
metadata statement to their underlying concepts, whereas
an eScience-compliant ‘concept standard’ specifies the
meaning of these concepts. Many ontologies provide for-
malized term definitions accompanied by human-readable
free text definitions that provide concept standards.
Moreover, since each ontology term has its own persistent
URI in addition to a human-readable label and some
ontologies even specify additional human-readable syn-
onyms, ontologies also provide the required nomenclatural
standards. In a semantic knowledge graph, the URIs of
the instantiated ontology classes guarantee that data and
metadata are ‘findable’ and ‘interoperable’ across all
knowledge bases that use the respective ontology classes
as part of their data scheme. Moreover, data and metadata
of a knowledge base are ‘accessible’ through the SPARQL
endpoint of the knowledge base. If the URIs of the
instantiated ontology classes are also URLs, they are
‘accessible’ through HTTP as well.

An eScience-compliant ‘content standard’ requires the
specification of what information is relevant and must be
covered for a particular type of data or metadata statement.
This can be achieved by developing and implementing data
models that specify for the scientific domain in question
which information is relevant for a given type of data or

metadata statement (9) [see also ‘minimum information
convention’ (6, 7)]. Each such data model should take the
form of a template graph for how to represent the respective
type of data or metadata as a semantic knowledge graph
[for a detailed discussion see (36, 49)]. In this way, a web
content management system can implement procedures for
automatically tracking provenance and user contributions
to a given data document, thus contributing to a rich
metadata documentation. This metadata should be docu-
mented as a semantic knowledge graph that can be searched
through a SPARQL endpoint, which would further increase
the ‘findability’ and ‘accessibility’ of the data. The content
standard also ensures that data and metadata are richly
described and meet domain-relevant community standards,
which increases their ‘interoperability’ and ‘reusability’.

Last but not least, an eScience-compliant ‘format stan-
dard’ specifies the syntax and file format in which data or
metadata statements should be recorded, archived and com-
municated in the Web. Here, OWL, RDF and RDF Schema
(RDFS), which can be represented in Extensible Markup
Language (XML) format or JavaScript Object Notation
(JSON) (50), seem to become common consensus formats,
although alternatives exist. They provide formal, accessible,
shared and broadly applicable languages for knowledge
representation and thus make data and metadata of respec-
tive semantic knowledge graphs ‘interoperable’.

If data and metadata statements comply with these four
standards, they thus become maximally ‘findable’, ‘acces-
sible’, ‘interoperable’ and ‘reusable’ and therefore comply
with the FAIR Guiding Principles (29). In order to be FAIR,
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however, web content management systems must store and
organize not only the scientific data in the form of semantic
knowledge graphs but also their provenance and all other
types of associated metadata, including change history,
versioning and access rights (40, 51–54).

S-WCMSs and their specific challenges

By S-WCMS we understand a web content management
system that is based on a knowledge base, i.e. a set of ontol-
ogy classes that are populated with empirical data. An S-
WCMS is used for creating and publishing data documents.
It stores its data and metadata in the form of eScience-
compliant semantic knowledge graphs that provide FAIR
data and metadata. A tuple store provides an efficient
means to store and query semantic knowledge graphs. The
data and metadata graphs can be readily consumed by
various applications through the SPARQL endpoint of the
S-WCMS.

The downside of storing data and metadata as semantic
knowledge graphs, however, is that they often possess a
rather complicated structure, which is why they are usually
not as intuitively comprehensible for a human reader as
data and metadata represented in form of conventional
tables or entry forms. As a consequence, most human read-
ers are not interested in directly interacting with semantic
knowledge graphs. Unfortunately, SPARQL endpoints only
allow interacting directly with semantic knowledge graphs
and do not provide user-friendly presentations of data such
as through HTML pages. Tools such as YASGUI (55) and
Wikidata Query Service (56) do help to make SPARQL
more accessible, but there is still a long way to go. In
order to be intuitively accessible, S-WCMSs would have
to hide all semantic knowledge graphs from their users
and, instead, provide more user-friendly representations of
their data and metadata. However, they would still have to
store and manage their data and metadata in the form of
semantic knowledge graphs in order to benefit from the
advantages of ontologies and semantic technologies such
as providing FAIR data and metadata and being capable
of reasoning. What is required in order to increase the
applicability of semantic graphs is a means for readers to
indirectly interact with them through entry forms, tables
and other ways of visualizing and interacting with data in
intuitive ways.

Independent of the requirements for eScience, for FAIR
data and metadata and for more intuitive ways of inter-
acting with semantic graphs through graphical user inter-
faces (GUIs), we know from our own experience with
running the morphological data repository Morph·D·Base
(57), which has been online since 2006, that there is also
a strong demand for a flexible middleware/backend that

is easily adaptable to changing standards, project-specific
requirements and newly emerging scientific workflows.
After the initial funding phase of Morph·D·Base, we fre-
quently faced the situation that users asked for extending
given entry forms to allow for documenting additional data
or metadata that were relevant for their projects and that
we had not anticipated as relevant when we developed
Morph·D·Base. Since Morph·D·Base is based on the rela-
tional database management system MySQL (MySQL 5.5;
http://www.mysql.com) with a Zope middleware (http://
www.zope.org), we usually had to program in three layers,
(i) backend, (ii) middleware and (iii) frontend, using three
different programming frameworks, which was tedious,
error-prone and time consuming. We thus learned the hard
way that, for long-term acceptance and overall longevity
and sustainability of a scientific S-WCMS, it is crucial to be
able to adapt it to individual needs and evolving demands
without requiring substantial additional programming in
three different layers. We thus wanted to develop a highly
configurable system that is, ideally, both easy to use and to
maintain and whose flexibility goes beyond being able to
conveniently modify and adapt the GUI. Web content man-
agement systems that are based on conventional relational
database technologies fail to provide such flexibility.

SOCCOMAS

Initial idea for SOCCOMAS

SOCCOMAS is an S-WCMS that is used for creating and
publishing data documents that comply with the FAIR data
principles. It is based on semantic programming and stores
all data and metadata in the form of semantic knowledge
graphs.

Instead of limiting the application of ontologies to mod-
eling a specific domain, we had the idea to use ontolo-
gies also for software development. We developed SPrO
with an accompanying Java-based middleware and inter-
face that can be used like a programming language (28),
with which we can describe and thereby control every
aspect of a domain-independent S-WCMS. The descrip-
tions themselves are formulated in OWL and stored in a
corresponding ontology. The descriptions function like the
source code of the S-WCMS, which is why we refer to the
ontology as ‘source code ontology’. We realized that, by
understanding the definition of the underlying data model
and the specification of the S-WCMS as being equivalent
to programming code, we would be able to implement
new features and new types of data documents for any
particular S-WCMS by describing them in a set of source
code ontologies using SPrO. The source code ontologies
thus provide the steering logic for an S-WCMS run by SOC-
COMAS. With this clear separation of steering logic from
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Figure 2. Overall workflow of SOCCOMAS. Left: Jena tuple store framework containing the data of the S-WCMS as well as a set of ontologies.

The ontologies comprise (i) the SPrO (28), which defines the commands, subcommands and variables used for describing an S-WCMS, (ii) the

SOCCOMAS SC-Basic, which contains the descriptions of general workflows and features that can be used by any S-WCMSO and (iii) an instance

source code ontology (INST-SCO) for a particular S-WCMS, which has been individually customized to contain the descriptions of all features that are

special to this particular S-WCMS. The data of the S-WCMS are stored in form of semantic knowledge graphs. Middle: The Java-based middleware

with associated MongoDB reads the descriptions contained in SC-Basic and INST-SCO and interprets them as the specification of this particular

S-WCMS. Right: The frontend, based on the JavaScript framework AngularJS, with HTML and CSS output for browser requests and access to a

SPARQL endpoint for service requests.

interpretation logic, semantic programming follows the idea
of separating main layers of an application, analogous to
the separation of interpretation logic and presentation logic.

In other words, the underlying key idea of SOCCOMAS
is that specific ontology resources in the form of classes,
individuals and properties are defined in SPrO and can be
used in a source code ontology for describing a data-centric
application. The middleware interprets these SPrO classes,
individuals and properties as commands, subcommands
and variables [see (28)]. With SPrO and its accompanying
middleware, semantic programming provides a basic devel-
opment framework that supports developers of knowledge
graph applications. The middleware provides a RESTful
API that enables CRUD (i.e. create, read/retrieve, update
and delete) operations on RDF data to be handled more
easily for HTML/JavaScript developers. The API provides
graph data within a JSON object together with structured
information (just like a Document Object Model tree) for
its HTML representation, which frontend developers can
use to visualize a web page with data from the tuple store.
It thus enables RDF data to be reused across languages,
implementations, and libraries.

Descriptions of basic processes and features that any S-
WCMS can use are contained in a SOCCOMAS source code
ontology (SC-Basic). Descriptions of special features and
peculiarities of a particular S-WCMS are contained in its
corresponding instance source code ontology (INST-SCO),
which has been individually customized for this particular

instance of a SOCCOMAS S-WCMS. The middleware
dynamically executes the programming code based on these
descriptions. Comparable to a system of building blocks,
we use the set of commands and variables known to the
middleware to describe and specify all relevant features of
an S-WCMS, thereby creating declarative specifications
of the S-WCMS that the middleware interprets and
dynamically executes.

Based on the declarative specifications contained in SC-
Basic and INST-SCO, the specification runs directly. By
describing the S-WCMS in a source code ontology one
implicitly writes the programming code of the S-WCMS.
We call this approach ‘semantic programming’ (28, 58).
The commands and variables provided by SPrO serve as
an ontology-based language used for describing the GUI,
data representations (i.e. composition and specification of
HTML components of all data documents in an S-WCMS,
including their functionality and input restrictions and
logic), user interactions, basic programming logic and all
workflow processes of an S-WCMS. No programming in
addition to making the descriptions is required as soon
as a sufficient set of commands and variables is defined
in SPrO, its accompanying middleware and the frontend.
This approach, however, requires the development of
a middleware (i.e. application tier) that is capable of
interpreting all given commands and variables of SPrO
and compiling the information of SC-Basic and INST-SCO
into an S-WCMS with an automatically generated GUI.
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To our knowledge, something like SOCCOMAS has not
been realized before. SOCCOMAS applies Semantic Web
technology for managing a tuple store, has SPARQL access
built into its system rather than having it added as an
afterthought and stores data and metadata of an S-WCMS
in form of semantic knowledge graphs in its tuple store,
making data and metadata accessible for machines through
its SPARQL endpoint.

There are other S-WCMS-like frameworks. Apache
Stanbol (59), for example, provides components that
can be used for extending a content management system
with a number of semantic services such as extracting
information from contents and documenting them in RDF,
thereby semantically enriching them, or providing semantic
indexing and search functions. Semantic MediaWiki (60) is
an extension of MediaWiki that helps to search, organize,
tag, browse, evaluate and share the wiki’s content by
adding semantic annotations. Semantic MediaWikis thus
represent S-WCMS. Callimachus (61) is a linked data
management system for developing semantically enabled
web applications, with a strong focus on structured
data similar to SOCCOMAS. However, in none of these
examples the application itself is controlled by an ontology
or SPARQL access is built directly into their system.

Since we entered unknown territory with the semantic
programming approach, we could not rely on existing code
and concepts and had to develop the corresponding basic
engine of SOCCOMAS from scratch. Currently, we are in a
development stage that demonstrates, as a proof of concept,
that we turned our initial idea into a functional application.

Basic concept and infrastructure of SOCCOMAS

SOCCOMAS is a ready-to-use application for developing
and controlling an S-WCMS. It comprises (see Figure 2) the
following:

1) Tuple store framework:

a) The SPrO [available from (62)] that provides the
commands, subcommands, and variables that can be
used as a programming language for specifying an
S-WCMS (28)

b) The SC-Basic [available from (63)] that contains a
set of basic descriptions that specify various features,
workflows and database processes typically required
by an S-WCMS

c) We have developed a set of INST-SCOs for a seman-
tic version of Morph·D·Base, i.e. a morphological
S-WCMS that is currently in development (64). Its
source code ontologies (MDB-SCOs; available from
(65)) contain data views and entry forms specific to
semantic Morph·D·Base.

d) A tuple store framework that stores not only SPrO,
SC-Basic and any particular INST-SCO but also all
data and metadata statements produced by the users of
the S-WCMS. These statements are stored in the form
of semantic knowledge graphs. SOCCOMAS uses the
Jena tuple store framework, which can be organized
into several independent physical RDF stores, with
each such store representing a separate ‘workspace’.
The workspaces are used to organize the data of the
S-WCMS.

2) Middleware and application layer:

a) A Java-based middleware (available from (66)) that
interprets the descriptions from SC-Basic and any
INST-SCO and executes all user-triggered interactions

b) A NoSQL MongoDB that is used for efficient session
handling

3) Frontend:

a) An HTML5/CSS3-based frontend (available from
(67)) with a GUI that is specified by the middleware
based on the descriptions from SC-Basic and any
INST-SCO

b) A controlled SPARQL endpoint for searching and
accessing published data in the knowledge base of the
S-WCMS

It is important to note that SOCCOMAS is not restricted
to a particular data scheme or knowledge domain. It is
developed to allow the set-up of scientific S-WCMSs that
are individually customizable. Customization includes the
specification of workflows and database processes and
different types of data documents with their accompanying
entry forms, all of which do not require a specific infor-
matics background except for experience with ontology
editors in order to be able to create the descriptions using
terms from SPrO. The overall look of the GUI is easily cus-
tomizable by altering and expanding the well-documented
HTML and CSS code of the frontend.

All data of an S-WCMS are uploaded, edited, organized,
published and accessed through data documents. Each
particular data document possesses its own persistent URI
(The URI is generated following the pattern ‘namespace/
resource/UniqueNumber-YearMonthDay-DocumentType-
VersionNumber’), which can be used to get either an RDF
version using the SPARQL endpoint of the S-WCMS or an
HTML version through a web browser. In the future, this
will be handled through content negotiation.

Currently, each S-WCMS run by SOCCOMAS possesses
a very basic access rights system that allows collaborative
editing of unpublished data documents [We plan to improve
the access rights system to differentiate various access rights
categories (read-only, edit, publish etc.) that can be assigned
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Figure 3. Data document life cycle. The creation of a new data document results in a current draft version of that data document. A copy of the

current draft version can be created and subsequently accessed as a saved draft version by triggering the ‘backup’ process for it. Several different

saved draft versions can exist at a time but only one current draft version of a given data document. The current draft version will be moved to the

recycle bin and be subsequently accessible as a recycle draft version by triggering the ‘to bin’ process for it. This will result in a lack of a current draft

version. However, one of the saved draft or recycle draft versions can be selected to become the new current draft version by triggering the ‘restore’

process for it. Triggering this process is only possible if no current draft version exists. A saved draft version can also be moved to the recycle bin

by triggering the ‘to bin’ process for it. A recycle draft version can be completely deleted by triggering the ‘delete’ process for it. All data will be

deleted except for the metadata referring to the ‘delete’ process, which can be accessed subsequently through the deleted draft version. However,

if this has been the last remaining recycle bin version of this document and no other saved or current draft and no current or previously published

version exists anymore for this data document, the entire data record will be completely deleted. A current draft version can be published and thus

moved from the draft workspace to the published workspace by triggering the ‘publish’ process. This results in a new current published version of

the data document and the deletion of all saved, recycled and deleted draft versions. If a current published version already exists, it will become a

previously published version. All previously published versions point to the new current published version. A new revision can be started from the

current published version by triggering the ‘revise’ process. This will move a copy of the current published version to the draft workspace, which

subsequently can be accessed as a new current draft version. This, however, is only possible if no draft version of this data document. All transition

steps triggered for a given data document are tracked in the document’s change history knowledge graph (see Figure 5).

to individual users as well as to defined groups of users.].
When a data document is published and thus becomes
openly accessible in the web, it receives its own digital object
identifier and is no longer editable, thus enabling persistence
of citations.

Main engine of SOCCOMAS

SPrO together with its accompanying Java-based middle-
ware establishes a semantic language for describing an
S-WCMS. The interaction between SPrO, SC-Basic, INST-
SCO and the middleware is essential to SOCCOMAS and
establishes its main engine.

The commands and subcommands are defined in SPrO
as annotation properties, whereas values and variable-
carrying resources are ontology individuals (i.e. instances
of ontology classes) (28). Relations between resources can
be described using specific SPrO object properties. SPrO
data properties are used for specifying numerical values
or literals for resources that describe the S-WCMS. The
descriptions themselves are added, depending on whether
they describe general features of any S-WCMS or features
that are specific to a particular S-WCMS, to SC-Basic or to
the particular INST-SCO, respectively.

The descriptions take the form of annotations of ontol-
ogy classes and ontology individuals. Each annotation con-
sists of a command, followed by a value, index or resource,
and can be extended by axiom annotations that contain

subcommands, values and variables taken from SPrO. In
the case of ontology individuals, the annotations can also
be extended by property assertions.

The descriptions in SC-Basic and any particular INST-
SCO cover various features of a scientific S-WCMS and
can be modified, extended and adapted to the individual
needs of any organization or any specific project. SC-Basic
describes user administration, covering the description of
signup and login forms, user registration and login pro-
cesses, as well as session management and the description of
the template form of a user document. It also describes the
general organization and structure of the underlying Jena
tuple store framework (68) into six different workspaces,
each of which is a separate physical RDF store within the
tuple store framework. SC-Basic’s descriptions cover all life
cycle processes of a data document (Figure 3). Last but
not least, SC-Basic describes automatic tracking procedures,
in which (i) user contributions to any given data docu-
ment are tracked for both the document and the user, (ii)
the overall provenance (Figure 4) of a data document is
tracked and (iii) a detailed change history (Figure 5) is being
logged for each editing step a user conducts for any given
document version. All the information gathered through
these tracking procedures is recorded in RDF following
established data and metadata standards using terms and
their corresponding URIs from established ontologies.

A particular INST-SCO, on the other hand, describes
all HTML templates for entry forms used in the particular
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Figure 6. Data management knowledge graphs for a document and its versions. Top: The data management knowledge graph for a SOCCOMAS

data document. The graph is stored in the ‘core document contents named graph’ belonging to a particular SOCCOMAS data document. The graph

lists the core document ID and links it to various named graphs that contain different kinds of metadata, including the ‘versions and provenance’

named graph (see Figure 4), the ‘change-log’ named graph (see Figure 5), the ‘document-specific access-rights’ named graph (contains access-

rights specifications), the ‘core document individuals’ named graph (lists all instances generated for this document together with their rdf:type

specification), the ‘document version contents’ named graphs of all versions of the document and the ‘core document contents’ named graph itself.

Bottom: The data management knowledge graph for a particular version of a SOCCOMAS data document. The graph is stored in the ‘document

version contents named graph’ belonging to the particular version. The graph lists the document version ID and links it to various named graphs that

contain different kinds of data and metadata, including the ‘core document contents’ named graph of the document, the ‘versions and provenance’

named graph (see Figure 4), the ‘change-log’ named graph (see Figure 5), the ‘document-specific access-rights’ named graph (contains access-

rights specifications), the ‘core document individuals’ named graph (lists all instances generated for this document together with their rdf:type

specification), the ‘document composition’ named graphs (specifies the entry form of the version) and the ‘assertions’ named graph (contains the

actual assertions, i.e. data). Additional named graphs may be listed depending on the type of data document. Further information is specified relating

that is required for efficient searching and version-specific metadata. pav, Provenance, Authoring and Versioning ontology (69, 70); pso, Publishing

Status Ontology (71, 72); rdf, Resource Description Framework (10); sc-basic, SOCCOMAS source code ontology; ti, Time Interval ontology (73); tvc,

The Time-indexed Value in Context ontology (72); xsd, XML Schema (74). For reasons of clarity, resources are not represented with their URIs but

with labels. Yellow-bordered box, ontology class; purple-bordered box, instance; gray-bordered box, value or label; blue narrow-dashed-bordered

box, named graph stored in the core workspace; green broad-dashed-bordered box, named graph stored in the draft or published workspace.
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S-WCMS, including all the entry forms and data views
for the various types of data documents of this S-WCMS.
INST-SCO furthermore covers the specification of the
input control and overall behavior of each input field,
including the underlying data scheme that specifies how
user input triggers the generation of data-scheme-compliant
triple statements and where these triple statements must be
saved in the Jena tuple store in terms of named graphs
and workspaces. A named graph identifies a set of triple
statements by adding the URI of the named graph to each
triple belonging to this named graph, thus turning the
triple into a quad. The Jena tuple store can handle such
quadruples. The use of named graphs enables partitioning
data in an RDF store and enables making statements
about statements comparable to OWL reification, but
outperforms the latter for more complex queries (76).

The underlying Jena tuple store framework is organized
into six different workspaces. The ‘ontology workspace’
stores SPrO, SC-Basic and the particular INST-SCO for the
respective S-WCMS. The ‘admin workspace’ stores user-
specific data and metadata. The ‘core workspace’ stores
all version-independent data and metadata of a given data
document, whereas the ‘draft workspace’ and the ‘pub-
lished workspace’ store all version-dependent data and
metadata of non-published and published versions of a
given data document, respectively. The ‘external ontologies
workspace’ stores all classes of external ontologies (e.g.
from domain reference ontologies used for documenting
the data) only with the corresponding label and definition
triples. It is connected with a Lucene index directory (77)
to handle efficient text-based SPARQL queries. Each work-
space is further structured into various different named
graphs, with each named graph having its own URI. These
named graphs are modeled as ontology instances. Each
named graph instantiates a specific ontology class. This
allows SOCCOMAS to differentially store the data belong-
ing to a specific document or a specific version of a docu-
ment into different named graphs. The network of different
named graphs belonging to a data document is being set up
during the creation life cycle process of a data document.
The set of named graphs belonging to a given document
can be found in the document’s ‘core document contents
named graph’. This named graph also lists the ‘document
version contents named graph’ of each particular version
that exists of the document. The ‘document version contents
named graph’, in turn, lists all named graphs belonging to
a particular document version (Figure 6).

The structuring of a workspace into various instances of
named graphs of different classes not only facilitatesdata
retrieval and data safety but also allows flexible and mean-
ingful fragmentation of data [for a discussion see (36, 49)].
Moreover, the use of named graphs allows SOCCOMAS to

store data and metadata associated with a particular version
of a document in two ways: (i) in specific named graphs that
contain the data and metadata according to the specified
data scheme for a machine-readable version and (ii) in the
current structure of the particular entry form of this version
with all user input for a HTML representation of the data
and metadata and thus for a human-readable version. If the
version is a draft version, corresponding named graphs are
located in the draft workspace; if it is a published version,
they are located in the published workspace. Whereas the
published workspace can be made publicly accessible via
an open SPARQL endpoint, the draft workspace is only
accessibly for logged in users with sufficient access rights.
All version-independent metadata associated with a given
data document are located in corresponding named graphs
in the core workspace (Figure 6).

The Java-based middleware interprets the descrip-
tions from SC-Basic and any particular INST-SCO and
produces the respective S-WCMS and coordinates its
overall operation based on the information from the
descriptions contained in SC-Basic and INST-SCO. This
includes not only interpreting the descriptions of entry
forms and the overall architecture of the GUI and
communicating these interpretations with the frontend but
also interpreting the data of the particular S-WCMS in
reference to the information contained in SC-Basic and
INST-SCO. It also includes interpreting the user input
communicated from the frontend and processing it in
accordance with the corresponding descriptions from SC-
Basic and INST-SCO. In other words, the middleware
mediates between SC-Basic, INST-SCO and all semantic
knowledge graphs in the underlying Jena tuple store
framework on the one hand and the browser-based GUI
with the user interaction on the other hand (Figure 2). For
loading, copying, saving and searching data and metadata
in the underlying tuple store framework, the middleware
utilizes particular Java classes and methods, which are
called through specific trigger points, i.e. URIs of specific
SPrO annotation properties, used in description within
SC-Basic and INST-SCO and the specific organization of
its tuple store framework in terms of different workspaces
and named graphs.

List of functions of SOCCOMAS

Each S-WCMS powered by SOCCOMAS provides a com-
prehensive, yet very flexible data management tool that
meets the growing and constantly changing requirements
of organizations and research institutes for storing and pro-
cessing FAIR data and metadata. It supports the following
ontology-driven functionalities:

1) Data control:
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a) intuitive GUI for data retrieval and data input of an
S-WCMS, with auto-completion input fields for ontol-
ogy terms, search and filtering and semantic annota-
tion of free texts;

b) version-control and document life cycle that allows the
saving of work-in-progress copies, controlled publish-
ing and versioning of several publications of the same
data document (Figure 3);

c) provenance transparency provided by the provenance
and versioning knowledge graph (Figure 4), with (i)
every contributor being tracked, (ii) the possibility to
distinguish between the creator of the data document
and creator of the data themselves (specification of
data-creators is not implemented yet, but will be in
future releases of SOCCOMAS) and (iii) the documen-
tation of relevant literature and other metadata;

d) editing transparency, with every change and every edit-
ing step being logged and time-stamped, resulting in a
searchable change history knowledge graph (Figure 5)
for each data document;

e) shared semantics over data across all data documents
of the same type;

f) ontology-driven GUI allows changing the description
of entry forms within SC-Basic or any particular INST-
SCO and the interface will adapt instantly;

g) SPARQL endpoint allows detailed searches over the
various workspaces of an S-WCMS;

2) Data modeling:

h) by changing the descriptions in SC-Basic or INST-SCO
one can

• re-define the architecture of the GUI components
that compose a page in the S-WCMS;

• re-define the appearance and functionality of each
GUI component;

• change the input control and error-handling of each
input field of a given form;

• re-define the RDF/OWL-compliant data scheme for
storing user input (i.e. data);

• change the location where to store data and there-
with change the overall organization of the data;

• add new data document types with their own specific
entry forms and underlying data schemes.

All S-WCMSs based on SOCCOMAS support scien-
tific communication following the FAIR Guiding Principles
(29) and provide computer-parsable data and metadata
following eScience-compliant standards. Moreover, their
published data are Linked Open Data-compliant and enable
persistence of citations for all data documents that users
publish with the S-WCMS. SOCCOMAS and all S-WCMSs
run by it will be entirely built on Semantic Web tech-

nologies, thereby providing a maximum of semantic trans-
parency that not only covers data and metadata documenta-
tion but also includes the documentation of the application
itself. Each S-WCMS run by SOCCOMAS is self-describing.

Example description

In the following, we give an example of how commands
and subcommands from SPrO can be used for describing
functions and execution procedures of a particular input
field of an S-WCMS run by SOCCOMAS. The description
is contained in the INST-SCO of that S-WCMS. As an exam-
ple, we use a positive integer input field of the entry form
template of specimen documents described for the semantic
version of Morph·D·Base that is currently in development
(https://proto.morphdbase.de/). (Semantic Morph·D·Base
is a prototype and is fully implemented using semantic
programming; even the log in and sign up forms are based
on SPrO. If you want to test the prototype, you must first
sign up.) The input field is used for specifying the maximum
number of individuals of a ranged specimen lot, with a
corresponding minimum input field to its left (Figure 7).
This description is contained in the corresponding instance
source code ontology for specimen documents of semantic
Morph·D·Base [SC-MDB-S; available from (65)].

Description of the HTML representation of the input field SPrO can
be used for describing the overall composition of an HTML
page of a data document (28). Each page is described as a set
of HTML elements, which we call entry components. Each
entry component is represented in the respective source
code ontology as an ontology instance that instantiates a
particular ontology class. The composition of entry compo-
nents of a given page is thus represented as a set of ontology
instances and their affiliated ontology classes.

The entry components are linked to each other through
the SPrO object property ‘entry component of’ and its
inverse property ‘has entry component’, resulting in a nested
hierarchy of entry components. A given entry component
can have several child entry components, which at their turn
also can have several child components, etc. The children
of an entry component are represented in HTML as being
contained in their parent component. For instance, a label
with an input field, another label and another input field
being contained in an HTML Document Division Element
(<div>) (Figure 7, bottom row). We use the SPrO data
property ‘has position in entry component’ to specify for
each entry component, in which order, from left to right, it
must be represented within its parent component.

The entire composition of an entry form in form of
a nested hierarchy of entry components is represented as
an instance-based semantic graph, which is described in
the respective source code ontology, stored in its own

https://proto.morphdbase.de/
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Figure 7. Positive integer input field example. Detail from the entry form of a specimen document from the prototype of semantic Morph·D·Base that

is currently in development (https://proto.morphdbase.de/). The positive integer input field discussed in the text is at the bottom right. Here, it contains

the value ‘5’ as its input. At its left is the corresponding minimum input field, with the value ‘1’ as its input.

Figure 8. Example of the information associated with a particular entry component. The example is taken from the instance source code ontology

SC-MDB-S of the semantic version of Morph·D·Base currently in development (https://proto.morphdbase.de/). Top left: Detail from the class hierarchy

of SC-MDB-S, with a focus on the entry component class for a specific maximum integer input field used in an entry form for specimen documents in

semantic Morph·D·Base.Bottom left: An ontology instance that represents a particular entry component that instantiates the ontology class currently

in focus. This entry component is part of the template form that has been described for specimen documents in semantic Morph·D·Base. The blue

background indicates that it is currently selected. Top right: Descriptions belonging to the currently selected ontology instance. The label and ID

of the entry component and the SPrO command ‘has associated instance resource [input_A]’, which defines the SPrO variable ‘SPrO_VARIABLE:

associated instance resource [input_A]’ initially to be set to ‘SPrO_VARIABLE: empty’. Bottom right: Specification of the parent component of the

entry component and its position within this parent compared to its direct sibling entry components. Information visualized using Protégé (http://
protege.stanford.edu) (78).

named graph. The graph functions as a template for the
entry form of a particular type of data document. In our
example, the type of data document is a specimen docu-
ment of semantic Morph·D·Base and the template graph
is stored within the SC-MDB-S source code ontology. The
corresponding description that is linked to the entry com-
ponent of our example of a positive integer input field is
depicted in Figure 8. When a user creates a new specimen
document in semantic Morph·D·Base, SOCCOMAS copies
the template graph and stores the copy in a particular
named graph belonging to the newly created document
(document composition named graph, Figure 6). SOCCO-
MAS interprets this copied graph and produces the HTML
representation of this newly created specimen document
whenever a browser requests accession to this document.

The actual HTML representation of a particular entry
component is specified in the ontology class it instantiates

or in the instance itself. The value linked to the SPrO
annotation property ‘has GUI representation’ can be
mapped to a particular Cascading Styles Sheets (CSS) class.
This CSS class, in turn, specifies how the entry component
must be represented in HTML. In our example, the value
‘GUI_COMPONENT__INPUT_TYPE: .css-data-input-
narrow’ maps to the CSS class ‘.css-data-input-narrow’,
which defines a specific type of input field element such as
the one in Figure 7, at the bottom right. Additional axiom
annotations are used to specify a tooltip text to appear
when hovering with a mouse over the input field, and an
information text that appears in the input field as long as
no input has been provided by the user (for the respective
class descriptions, see Figure 9). The value specified with
the SPrO annotation property ‘has associated instance
resource [input_A]’ tracks the input from the corresponding
minimum input field. Initially, it has no value associated,

https://proto.morphdbase.de/
https://proto.morphdbase.de/
http://protege.stanford.edu
http://protege.stanford.edu
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Figure 9. Example of the information associated with an ontology class that is instantiated by a particular entry component. The example is taken

from the instance source code ontology SC-MDB-S of the semantic version of Morph·D·Base currently in development (https://proto.morphdbase.
de/). Top left: Detail from the class hierarchy of SC-MDB-S, with the entry component class currently selected that is for a specific maximum integer

input field used in an entry form for specimen documents in semantic Morph·D·Base. Bottom left: An ontology instance that represents a particular

entry component that instantiates the ontology class currently in focus. Contrary to Figure 3, here the ontology instance is not selected. Right top:

Excerpt from the descriptions of the ontology class currently selected. The annotation ‘required input [BOOLEAN]’ = true indicates that this input

field must be completed for the specimen document to be publishable. The annotation ‘has GUI representation’ is currently in focus. It links to

the SPrO value ‘GUI_COMPONENT__INPUT_TYPE: .css-data-input-narrow’, which specifies which CSS-class must be used for visualizing all entry

component instances of this ontology class in the GUI. The functionality of the input field, including its input control and interactions with other entry

components of the entry form, are described in a sequence of ordered execution steps, of which only execution step 3C ‘update triple statement(s)’ is

partially shown. Right bottom: The axiom annotations of the annotation in focus above (i.e. ‘has GUI representation’. The SPrO annotation property

‘tooltip text’ with a literal as its value specifies the information that appears when hovering the mouse over the input field. The SPrO annotation

property ‘with information text’ with its literal as value specifies the text that appears in the input field when no input has been provided. Information

visualized using Protégé (http://protege.stanford.edu) (79).

indicated by the SPrO variable ‘SPrO_VARIABLE: empty’,
but it will be updated if a value is entered in the minimum
input field.

List of GUI-related RDF-specifications for the input field
(including the two axiom annotations):

entry
component
instance

spro:‘entry
component
of’

parent entry
component
instance

entry
component
instance

spro:‘has
position in
entry
component’

‘4’

entry
component
instance

spro:‘has
associated
instance
resource
[input_A]’

spro:‘SPrO_
VARIABLE: empty’

entry
component
class

spro:‘has
GUI repre-
sentation’

scbasic:‘GUI_COMPONENT__INPUT_TYPE:
css-data-
input-narrow’
spro:‘with
information text’

‘max’

spro:‘tooltip text’ ‘REQUIRED INPUT (may not
be left empty)! Please provide
the maximum number of
individual organisms to which
the specimen enumerates.’

Descriptionof the input control and functionality of the input field

The HTML representation of each entry component (i.e.
its CSS class reference), its input control and its specific
functionality, including the data scheme for how user input
must be translated into a corresponding semantic graph
and where this graph must be stored within the underlying
tuple store in terms of named graph and workspace, are
described in the ontology class that the entry component
instantiates using annotation properties and variables from
SPrO (Figure 9).

Some entry components of the entry form of a data doc-
ument refer to required input. This is also the case with our
positive integer input field example. The SPrO annotation
property ‘required input [BOOLEAN]’ with the value ‘true’
indicates that input is mandatory for the positive integer
input field. SOCCOMAS checks whether the user provided
adequate input and in case they have not, SOCCOMAS will
notify them when they attempt to publish the document.

Execution step 0: trigger The entry component class
also contains a sequentially ordered list of execution
steps that is triggered through user input. The first

https://proto.morphdbase.de/
https://proto.morphdbase.de/
http://protege.stanford.edu
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Figure 10. Example of the visual response of the input controls of an application powered by SOCCOMAS. (A) The positive integer input field

with no user input. ‘required’ is written in red because the input field represents a mandatory input field and it still has no input. ‘max’ is written

in light gray inside of the input field, indicating that it should be used to provide the maximum value of a range of two values that must be

provided, with the minimum input field taking the position left of this input field (see Figure 2). (B) The same input field with a non-positive integer

input. The field has a pink background, its border is red, and a temporary error message appears (here not shown) informing the user to use

only natural numbers in case the input is not a positive integer or a higher value than the one used in the minimum input field as input. (C)

The same input field with a positive integer input. The border of the field is green, indicating that the input successfully passed the application’s

input control.

execution step in the sequence is described using the
SPrO annotation property ‘execution step trigger’. The
axiom annotation using the SPrO annotation property
‘has GUI input type’ together with the SPrO value
‘INPUT_CONTROL: positive integer’ defines the input
control (Currently, SOCCOMAS provides defined input
control for ‘Boolean’, ‘click’, ‘phone number’, ‘email
address’, ‘composite literal’, ‘GeoJSON string’, ‘literal’,
‘date’, ‘date time’, ‘decimal degree’, ‘float’, ‘float pH’,
‘float percentage’, ‘geo-coordinate decimal latitude’, ‘geo-
coordinate decimal longitude’, ‘integer percentage’ and
‘positive integer’, each with a corresponding error message.
Moreover, it provides input control for ontology classes
and instances via auto complete of their labels.). It
specifies that only positive integer is allowed as input.
Additional axiom annotations specify that the input defines
a particular SPrO variable (‘SPrO_VARIABLE: user/GUI
input [input_B]’ and that only users with the right to edit
the document will be able to trigger this sequence of execu-
tion steps. SOCCOMAS will check whether the input is a
positive integer and indicate success with a green border
around the input field and a red border in case of
failure (Figure 10). After having successfully passed the
input control, SOCCOMAS will continue with execution
step 1A.

List of RDF-specifications for execution step 0:

entry
component
class

spro:
‘execution
step
trigger’

‘0’

spro:‘has GUI
input type’

spro:‘INPUT_CONTROL:
positive integer’

spro:‘input value/
resource defines SPrO
variable resource’

spro:‘SPrO_VARIABLE:
user/GUI input [input_B]’

spro:‘requirement
for triggering the
execution step’

spro:‘SPrO_VARIABLE:
edit document-access-right
for this document’

Execution step 1A: search triple store. Execution step
1A searches for a specific resource that has been linked to
this particular max input field entry component through a
specific triple statement. This resource refers to the URI of
the particular specimen that the document references. This
URI is used when storing the input according to an underly-
ing data scheme. The SPrO annotation properties ‘subject’,
‘property’ and ‘object’ specify the searched triple, with
the SPrO variable ‘SPrO_VARIABLE:?’ indicating a place-
holder and the SPrO annotation properties ‘load from/save
to/update in named graph (this document’s specific indi-
vidual of)’ and ‘named graph belongs to workspace’ the
named graph and workspace where the triple can be found.
The SPrO annotation properties ‘search target’ and ‘search
target defines SPrO variable’ specify which resource of the
triple is the target of the search and writes it to a specific
SPrO variable for referencing it in subsequent execution
steps.

List of RDF-specifications for execution step 1A:

entry
component
class

spro:
‘execution
step: search
triple store’

‘1A’

spro:‘subject’ spro:‘SPrO_VARIABLE:
this entry component’

spro:‘property’ spro:‘has associated
instance resource
[input M]’

spro:‘object’ spro:‘SPrO_VARIABLE:?’
spro:‘load from/save
to/update in named
graph (this document’s
specific individual of)’

scbasic:‘document-
composition named
graph’

spro:‘named graph
belongs to workspace’

scbasic:‘WORKSPACE_
BASIC: draft workspace’

spro:‘search target’ spro:‘SPrO_VARIABLE:
object’

spro:‘search target
defines SPrO
variable’

spro:‘SPrO_VARIABLE:
associated instance
resource [input_M]’

Execution step 2A: search triple store Execution step
2A searches for another value that has been linked to
this entry component. This value is the input value of the
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corresponding minimum input field, which is empty in case
no minimum value has been provided yet.

List of RDF-specifications for execution step 2A:

entry
component
class

spro:
‘execution
step: search
triple store’

‘2A’

spro:‘subject’ spro:‘SPrO_VARIABLE:
this entry component’

spro:‘property’ spro:‘has associated instance
resource [input A]’

spro:‘object’ spro:‘SPrO_VARIABLE:?’
spro:‘load from/save
to/update in named
graph (this document’s
specific individual of)’

scbasic:‘document-
composition named graph’

spro:‘named graph
belongs to workspace’

scbasic:
‘WORKSPACE_BASIC:
draft workspace’

spro:‘search target’ spro:‘SPrO_VARIABLE:
object’

spro:‘search target
defines SPrO variable’

spro:‘SPrO_VARIABLE:
associated instance resource
[input_A]’

Execution step 2B: if–then–else statement Execution
step 2B executes an if–then–else condition, in which the ‘if’
input value is set to the input that triggered this execution
process (i.e. the maximum number of individuals of the
specimen lot) and the ‘if’ target value is set to the value
identified in step 2A, which is the input of the minimum
input field (i.e. the minimum number of individuals of
the specimen lot). The ‘if’ operation compares the input
value with the target value and returns ‘true’ if the input
value is larger than the target value. If this is not the
case, it returns ‘false’. If the application returns ‘true’, the
process will ‘then’ proceed with execution step 3A, ‘else’
with 2C.

As a side note, it should be mentioned that SOCCOMAS
can also handle several if-then-else conditions, but each
must be specified as separate execution step and they will
be executed in the specified sequence order of steps.

List of RDF-specifications for execution step 2B:

entry
component
class

spro:
‘execution
step:
if-then-else
statement’

‘2B’

spro:‘has IF input
value’

spro:‘SPrO_VARIABLE:
user/GUI input [input_B]’

spro:‘has IF target
value’

spro:‘SPrO_VARIABLE:
associated instance
resource [input_A]’

spro:‘has IF
operation’

spro:‘SPrO_IF_OPERATION:
SOME input larger than target’

spro:‘then:’ ‘3A’

Execution step 2C: decision dialog Execution step 2C
returns an error message to the GUI, informing the user that

the value must be higher than the value of the minimum
number input field and terminates the process. Nothing will
be saved to the tuple store.

List of RDF-specifications for execution step 2C:

entry
component
class

spro:‘execution
step: decision
dialogue’

‘2C’

spro:‘application
error message’

‘The value must be higher
than the value of the
minimum number.’

spro:‘end action
operation’

spro:‘SPrO_OPERATION:
ERROR end action’

Execution step 3A: update triple statement(s) Execu-
tion step 3A updates the input stored for this particular
entry component. This guarantees that the input will be
shown in the document’s entry form after reloading the
HTML page of the specimen document.

List of RDF-specifications for execution step 3A:

entry
component
class

spro:‘execution
step: update
triple
statement(s)’

‘3A’

spro:‘subject (this
document’s specific
individual of)’

this entry component
class

spro:‘property’ scbasic:‘has user/GUI
input [value_B]’

spro:‘object’ spro:‘SPrO_VARIABLE:
to be updated’

spro:‘load from/save
to/update in named
graph (this document’s
specific individual of)’

scbasic:‘document-
composition named
graph’

spro:‘named graph
belongs to workspace’

scbasic:‘WORKSPACE_
BASIC: draft workspace’

spro:‘update with
resource/value’

spro:‘SPrO_VARIABLE:
user/GUI input [input_B]’

Execution step 3B: update triple statement(s) Execu-
tion step 3B updates the object position of a defined triple
statement consisting of the particular resource identified
in execution step 1A as the ‘subject’, the data property
‘maximum number of individuals’ as the ‘property’ and the
‘object’ to be updated with the user input that triggered
this execution process. The triple is located in the asser-
tions named graph belonging to the particular specimen
document being edited and resides in the draft workspace.
The semantic knowledge graph located in the assertions
named graph is the data graph belonging to this particular
specimen document.
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List of RDF-specifications for execution step 3B:

entry
component
class

spro:‘execution
step: update
triple
statement(s)’

‘3B’

spro:‘subject’ spro:‘SPrO_VARIABLE:
associated instance
resource [input_M]’

spro:‘property’ scMDBs:‘max number
of individuals’

spro:‘object’ spro:‘SPrO_VARIABLE:
to be updated’

spro:‘load from/save
to/update in named
graph (this document’s
specific individual of)’

scbasic:‘assertions
named graph’

spro:‘named graph
belongs to workspace’

scbasic:‘WORKSPACE_
BASIC: draft workspace’

spro:‘update with
resource/value’

spro:‘SPrO_VARIABLE:
user/GUI input [input_B]’

Execution step 3C: update triple statement(s). Execu-
tion step 3C updates the object position of a triple statement
that is linked to the entry component of the minimum input
field. It is updated to the value of the maximum input
field, which is provided by the user input that triggered
this execution process. This value is needed for when user
input is provided for the minimum input field, in which
case the minimum number input must be compared to this
maximum number input with the requirement to be smaller
than the maximum input value.

List of RDF-specifications for execution step 3C:

entry
component
class

spro:‘execution
step: update
triple
statement(s)’

‘3C’

spro:‘subject (this
document’s specific
individual of)’

minimum number of
individuals input field
entry component class

spro:‘property’ spro:‘has associated
instance resource
[input_B]’

spro:‘object’ spro:‘SPrO_VARIABLE:
to be updated’

spro:‘load from/save
to/update in named
graph (this document’s
specific individual of)’

scbasic:‘document-
composition named
graph’

spro:‘named graph
belongs to workspace’

scbasic:‘WORKSPACE_
BASIC: draft workspace’

spro:‘update with
resource/value’

spro:‘SPrO_VARIABLE:
user/GUI input [input_B]’

Execution step 3D: trigger workflow action Execution
step 3D triggers the ‘edit’ SOCCOMAS workflow action,
which in turn triggers the automatic tracking procedures
that track the user’s contribution to this document, update
the document’s provenance metadata and log the edit action
in the document’s change history.

List of RDF-specifications for execution step 3D:

entry
component
class

spro:‘execution
step: trigger
workflow action’

‘3D’

spro:‘triggers
workflow action’

scbasic:‘SOCCOMAS_
BASIC_WORKFLOW_
ACTION: edit’

Synergetic effects and advantages

of SOCCOMAS

Centralized development but still flexible

customization

Basic functions and features are implemented by
SOCCOMAS and shared by all S-WCMSs driven by
SOCCOMAS. This enables easy set-up of an S-WCMS,
even for small projects that usually have no funding for
developing their own S-WCMS. With SOCCOMAS and
within the limits set by the commands and variables
provided by SPrO and its accompanying Java middleware,
domain experts can customize their S-WCMS to suit their
own institutional needs. All customization is modular and
may involve not only the specification of a particular look
for the GUI (by specifying their own CSS file), but also
the specification of particular entry forms, data document
types and underlying data schemes as well as particular
workflows through customizing the INST-SCO. Moreover,
any third party can develop additional functions (e.g.
implementation of analytic tools for refining the basic
functionality and interface of a particular S-WCMS) and
make the corresponding new commands and variables
with the accompanying middleware functionality openly
available through additional source code ontologies and
accompanying Java classes and methods.

SOCCOMAS’s underlying modular architecture and
the separation between SPrO, SC-Basic and any particular
INST-SCO will enable the introduction of new commands
and variables or new widgets that may be required for
developing new functions and adapting to new standards.
They can be implemented in all existing S-WCMS by
updating and complementing the various ontologies
and accompanying Java classes or methods used by
SOCCOMAS.

Moreover, since the specifications for any S-WCMS run
by SOCCOMAS are contained in its corresponding INST-
SCO, it can be used as a template for specifying the source
code ontology for a similar S-WCMS, only having to adjust
the descriptions to the requirements specific to this partic-
ular S-WCMS. For semantic Morph·D·Base, for example,
we use several different source code ontologies. We have a
basic source code ontology (SC-MDB-Basic) that contains
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descriptions for the features and processes that all the differ-
ent data modules within semantic Morph·D·Base share, and
we have a separate source code ontology for each data mod-
ule within semantic Morph·D·Base, including one for spec-
imen documents (SC-MDB-S) and one for morphological
description documents (SC-MDB-MD). Now, if somebody
wants to develop their own S-WCMS for specimen data,
they could use not only SPrO and SC-Basic but also SC-
MDB-Basic together with SC-MDB-S and adjust the latter
two to meet the requirements of their particular S-WCMS
for specimen data, thereby saving valuable development
resources.

In case somebody wants to change some of the defined
SOCCOMAS processes such as the document status tran-
sitions belonging to the document life cycle or somebody
wants to change the data scheme underlying, for instance,
the change history tracking procedure, they can change
respective descriptions in SC-Basic.

Comparability and Linked Open Data–enabled

All S-WCMSs based on SOCCOMAS will be fully compa-
rable in terms of cross-visualizing their data and metadata
views. They all share the same data schemes for basic
metadata such as provenance, change-log, access rights, and
versioning, which is especially interesting in the context of
interdisciplinary research. In the future, SOCCOMAS will
also enable the convenient inter-linking of different data
documents within a particular S-WCMS. Such inter-linking
possibilities can be readily extended to allow inter-linking
of data documents across all the different S-WCMSs run by
SOCCOMAS. Moreover, import- and export-functions of
data and metadata can be easily specified across particular
S-WCMSs, because they are run by the same engine and
based on the same SPrO, which SOCCOMAS’ middleware
can interpret.

Each S-WCMS that is based on SOCCOMAS is also
Linked Open Data–compliant and FAIR, as its contents are
documented in semantic knowledge graphs, the contents of
which are (i) accessible and referable via stable URLs, (ii)
are linked to vocabularies and ontologies that express their
meaning, (iii) can be accessed and searched through the S-
WCMS’s SPARQL endpoint, with which data and metadata
can be exported in a variety of formats (RDF/XML, RDF/
JSON, JSON-LD, Turtle, N-Triples), and (iv) are amendable
to open licenses as soon as they are published (i.e. moved
from the draft to the published workspace by triggering
the ‘publish’ document status transaction). When appro-
priable, an S-WCMS will leverage available Linked Open
Data to serve tools like text annotation, geo-coding, and
citation management. Users of an S-WCMS that is based on
SOCCOMAS are guided to interlink their data with existing
resources on the Web or resources from the S-WCMS itself.

Flexible GUI development

The composition, structure and functionality of the GUI of
an S-WCMS based on SOCCOMAS are described in SC-
Basic and the corresponding INST-SCO and are thus con-
trolled through SOCCOMAS. As a consequence, changes in
the basic composition of the GUI can be conducted on-the-
fly, which allows adapting it to user demands at any point.
As a consequence, when the middleware has been set up,
the GUI of an S-WCMS can be developed through a user-
centered design approach, by enabling the domain experts
and thus the main users of the S-WCMS to adjust the entry
components of any given page without the intervention of
software programmers.

Conclusion and outlook

Although RDF tuple stores handle large data volumes well
and facilitate detailed data retrieval and data inferences,
they have yet to become the prime database technology for
content management systems. One reason may be found in
the lack of adequate application development frameworks
that are well integrated with RDF, i.e. that allow read-
ing, writing, updating and searching semantic knowledge
graphs and visualizing contents from the graph in HTML
(17) [for initial attempts see e.g. (18–27)]. It is not enough
to be able to store and query data from a tuple store.
Application developers need means to provide possibilities
for users to interact with the data and metadata graphs
through entry forms and various data visualizations.

SOCCOMAS is the first step toward such a development
framework. With SOCCOMAS you can develop GUIs that
are easy to use for any user, providing conventional HTML
entry forms with easy to read and interpret user-input. User
input triggers the generation of often rather complicated
semantic data and metadata knowledge graphs, which will
be stored in the background into various named graphs of
the respective S-WCMS. For users who access the data via
the web portal of the S-WCMS, the semantic knowledge
graphs are hidden behind HTML pages. The graphs can,
however, be consumed by various applications through the
SPARQL endpoint of the S-WCMS and are thus available
for querying and analyses. As a consequence, all S-WCMSs
based on SOCCOMAS support scientific communication
following the FAIR Guiding Principles (29) (see also dis-
cussion above, 3.1) and provide computer-parsable data
and metadata following eScience-compliant standards. And
with the HTML display of contents from the underlying
semantic knowledge graph, SOCCOMAS bridges the gap
between the Semantic Web of data and the classical web of
applications and pages.

Our use case of developing a specimen document
module for semantic Morph·D·Base has proven that using
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SOCCOMAS and semantic programming saves valuable
resources and development time. The source code ontology
(SC-MDB-S) for this module has been written by a
domain expert with knowledge in ontology engineering
but no expertise in any programming language. Devel-
opment time was substantially reduced by the fact that
many processes and functionalities for this module have
been automatically provided by SOCCOMAS so that
development was restricted only to features specific to
this particular module. Another reason for the reduced
development time is the fact that SOCCOMAS allows
for one-layer development of an S-WCMS—as opposed
to the common three-layer development (i.e. back end,
middleware, front end) for other data base systems—
because all its specifications are made in source code
ontologies. The use case has also shown that changes to
the overall organization of the GUI or the addition of new
input fields can be conducted on-the-fly by only having
to change the respective descriptions in SC-MDB-S, which
facilitates a user-centered design approach to application
development.

At the moment, developing and editing an S-WCMS
based on SOCCOMAS still requires, in addition to a min-
imum of technical programming background, experience
with an ontology editor such as Protégé. We plan to develop
an editor with GUI for SOCCOMAS itself. This editor
should be usable by domain experts (i.e. experts on some
subject matter) as a one-stop application for developing a
particular S-WCMS. Domain experts with no informatics
background should be able to use this editor to set up their
own S-WCMS for collaboration with other experts through
the Internet.

SOCCOMAS stands for full semantic transparency: each
S-WCMS powered by SOCCOMAS allows the documen-
tation of how data and metadata are produced and what
they mean, of the data’s provenance and editing history as
well as who contributed to it and how each data document
is interlinked with other documents in the S-WCMS. Since
SOCCOMAS and its S-WCMSs are based on semantic
programming and described in source code ontologies, the
SOCCOMAS application itself is semantically transpar-
ent—SOCCOMAS is self-describing.

Our next steps will be to test the scalability of SOC-
COMAS and compare storage space required for simi-
lar data documents between SOCCOMAS and relational
database applications. We plan to migrate the data from the
relational Morph·D·Base to the semantic Morph·D·Base,
which will allow us to compare the two systems. We will
also test how well specific information is findable and
accessible through the SPARQL endpoint of the semantic
Morph·D·Base as compared to the same information in the
relational Morph·D·Base.

Availability of Data and Materials

SPrO is available for free under the GNU Lesser General
Public License Version 3 (LGPL) at https://github.com/
SemanticProgramming/SPrO.

The accompanying Java-based interpreter and the inter-
face are both available for free under the LGPL 3 at https://
github.com/SemanticProgramming/Interpreter and https://
github.com/SemanticProgramming/Interface, respectively.

SC-Basic is available for free under the LGPL 3 at https://
github.com/SemanticProgramming/SOCCOMAS.

SC-MDB-Basic, SC-MDB-S and SC-MDB-MD are
available for free under the LGPL 3 at https://github.com/
SemanticProgramming/SemMorphDBase.

The prototype of Semantic Morph·D·Base serves as
a proof of concept of the applicability of SPrO and
semantic programming and can be found at (https://proto.
morphdbase.de/).
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