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Wdr47, Camsaps, and Katanin cooperate to
generate ciliary central microtubules
Hao Liu1,2,7, Jianqun Zheng1,2,7, Lei Zhu1,2,7, Lele Xie1, Yawen Chen1,2, Yirong Zhang1,2, Wei Zhang1, Yue Yin3,

Chao Peng 3, Jun Zhou 4, Xueliang Zhu 1,2,5,8✉ & Xiumin Yan1,6,8✉

The axonemal central pair (CP) are non-centrosomal microtubules critical for planar ciliary

beat. How they form, however, is poorly understood. Here, we show that mammalian CP

formation requires Wdr47, Camsaps, and microtubule-severing activity of Katanin. Katanin

severs peripheral microtubules to produce central microtubule seeds in nascent cilia. Cam-

saps stabilize minus ends of the seeds to facilitate microtubule outgrowth, whereas Wdr47

concentrates Camsaps into the axonemal central lumen to properly position central micro-

tubules. Wdr47 deficiency in mouse multicilia results in complete loss of CP, rotatory beat,

and primary ciliary dyskinesia. Overexpression of Camsaps or their microtubule-binding

regions induces central microtubules in Wdr47−/− ependymal cells but at the expense of low

efficiency, abnormal numbers, and wrong location. Katanin levels and activity also impact the

central microtubule number. We propose that Wdr47, Camsaps, and Katanin function

together for the generation of non-centrosomal microtubule arrays in polarized subcellular

compartments.
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M icrotubules (MTs) are organized into different arrays as
cytoskeletons of subcellular structures such as the
spindle, neurites, and cilia and as tracks for MT-based

molecular motors dynein and kinesin1–4. Although the centro-
some functions as a major MT-organizing center (MTOC) in
most animal cells, non-centrosomal MTs also widely exist and are
organized into unique arrays in certain cell types or subcellular
compartments5–7. For instance, non-centrosomal MTs are con-
structed into parallel arrays perpendicular to the tissue plane in
epithelial cells by anchoring their minus ends to adapters at the
apical membrane domain8,9. They also form unidirectional and
bidirectional bundles respectively in axons and dendrites fol-
lowing neuronal polarization1. Recently, calmodulin-regulated
spectrin-associated proteins (Camsaps) have been found to sta-
bilize free MT minus ends through direct binding to facilitate the
rapid growth of the MT plus ends10–14. They function in the
organization of non-centrosomal MT arrays in epithelial and
neuronal cells15–19.

The majority of motile cilia, e.g. those on the surface of
mammalian trachea and ependyma or forming the tail of sperms,
contain a “9+ 2”-type axoneme with a pair of non-centrosomal
central (C1; C2) MTs surrounded by nine MT doublets extended
from the basal body20,21. Such a central pair (CP) of MTs are
positioned over the center of the transition zone, with their plus
ends pointing to the ciliary tip22–24. They are interconnected by
bridges constituted by proteins such as Spag16 and coated with
distinct repetitive arrays of proteinous projections. The resultant
supramolecular structure, the CP apparatus, contacts directly
with radial spokes emanated from peripheral MT doublets to
coordinate axonemal dynein activities23–25. Tracheal and epen-
dymal cilia beat in a back-and-forth, or planar, manner. Their
loss of CP or CP-associated proteins, such as the C1-associated
Spag6 or C2-associated Hydin, results in an abnormal beat pat-
tern and in humans contributes to primary ciliary dyskinesia
(PCD)3,21,26–30.

Centrosomal MTs are nucleated from and stabilized at their
minus ends mainly by the γ-tubulin ring complex2,31. Usually,
non-centrosomal MTs use MTs released from the centrosome as
“seeds”5,6. Cilium, however, is a subcellular compartment gated
by the transition zone32,33. While tubulin dimers are found to
enter cilia through the intraflagellar transport (IFT) machinery,
no evidence suggests that cytoplasmic MTs can pass the transi-
tion zone34,35. How the initial seeds of the central MTs are
produced is thus an outstanding question. Furthermore, although
we have previously reported that the mammalian CP formation
requires Spef1-mediated MT stabilization in cilia36, how the
number and the position of the central MTs are precisely con-
trolled is still unknown.

In this work, we demonstrate that the WD40 repeat-containing
Wdr47 (also called Nemitin)15,37, Camsaps, and the MT-severing
enzyme Katanin12,38–40, co-operate to achieve the initial central
MT formation in mammalian multicilia. Katanin produces cen-
tral MT seeds by severing the peripheral MTs. Wdr47 con-
centrates Camsaps into the central lumen, where Camsaps
stabilize the minus ends of the seeds to allow central MT elon-
gation. As emerging evidence suggests that Wdr47, Camsaps, and
Katanin also similarly impact neuronal polarization and axonal
growth15,16,18,41,42, our findings indicate that the same pathway is
used to properly generate and organize non-centrosomal MT
arrays in polarized subcellular compartments such as the axon
and motile cilium.

Results
Wdr47 is a CP-associated protein implicated in CP MT for-
mation. Data mining in our cDNA array results43 and

subsequent immunoblotting indicated that Wdr47 (Fig. 1a) was
upregulated during multiciliation of mouse tracheal epithelial
cells (mTECs) cultured at an air-liquid interface (ALI) (Fig. 1b).
Wdr47 was highly expressed in mouse tissues abundant in the
9+ 2 type of cilia, such as the lung, the testis, the ependyma, and
the oviduct (Fig. 1c). Consistently, immunostaining of cultured
mouse ependymal cells (mEPCs) revealed a ciliary-shaft locali-
zation of Wdr47 in multicilia (Fig. 1d). Interestingly, Wdr47 was
highly concentrated in short cilia, especially at the ciliary tip. Its
ciliary-tip intensities declined following ciliary elongation,
accompanied with the emergence of Wdr47-positive puncta along
and especially at the bottom of the ciliary shaft above ciliary
transition zone (TZ), when Cep162, a protein at the bottom
region of TZ44, was used as marker (Fig. 1d)45. By contrast,
Wdr47 was not detected in the shaft of primary cilium (Supple-
mentary Fig. 1).

Super-resolution microscopy revealed that the ciliary Wdr47
was distributed at the CP region when Hydin23,28,29 was used as
CP marker, with its bottommost distribution preceding that of
Hydin (Fig. 1e). Interestingly, in short cilia decorated strongly
with Wdr47, Hydin was sometimes weak or undetectable (Fig. 1e),
suggesting that central MTs are either not yet formed or still in
initial production stages. In such cilia, however, Wdr47 was still
concentrated in the central lumen of axonemes in addition to its
tip accumulation (Fig. 1e). When we pre-extracted the cells with
Triton X-100 to remove soluble proteins prior to fixation, Wdr47
became undetectable in short cilia but still remained on CP in
long cilia (Fig. 1e). Therefore, Wdr47 is a previously undocu-
mented CP-associated protein preferentially enriched at the
minus-end region of CP. More importantly, as CP MTs in
Chlamydomonas are initially assembled at the ciliary distal
region46, the strong enrichment of Wdr47 in short cilia lacking
Hydin strongly implies a role in early stages of CP formation.

Wdr47 deficiency in mice abolishes CP formation. We gener-
ated Wdr47-deficient mice by crossing Wdr47 knockout-first
(Wdr47Kof/+) mice with EIIa-Cre mice (Fig. 1f)15 and analyzed
the ciliary motility of cultured mEPCs36. Comparing to the back-
and-forth beat pattern of the Wdr47+/+ and Wdr47+/− multi-
cilia, the Wdr47−/− multicilia moved in a rotatory manner but
with similar frequency (Fig. 1g and Supplementary Movie 1).
When fluorescent beads were added to the culture medium, the
beating Wdr47+/+ or Wdr47+/− cilia drove rapid directional
flows of the beads (Fig. 1h). The rotatory Wdr47−/− cilia, how-
ever, failed to do so (Fig. 1h).

To clarify whether the rotatory pattern of the Wdr47−/−

multicilia was due to loss of the central MTs26,36, we examined
the ciliary ultrastructure by transmission EM. While multicilia of
Wdr47+/+ or Wdr47+/− mEPCs contained normal 9+ 2
axonemes, those of Wdr47−/− mEPCs completely lacked both
CP MTs (Fig. 1i). Sometimes electron-dense materials were
observed in the central lumen of Wdr47−/− cilia (Fig. 1i), similar
to CP-free flagella of some Chlamydomonas mutants47,48. When
ciliary cross-sections (n= 126) were classified into proximal ones,
based on the presence of surrounding microvilli49,50, and distal
ones, the luminal materials were observed in 71% of the distal
sections and 23% of the proximal ones, possibly due to remnants
of CP components. EM analyses indicated that Wdr47−/−

respiratory multicilia were also CP-less (Supplementary Fig. 2).
Wdr47 is thus essential to the CP MTs formation.

Wdr47 is critical for both ciliary localization of CP proteins
and CP maintenance. We observed that the ciliary localizations of
multiple CP proteins, including CP MTs-associated Spef1, C2 MT-
associated Hydin, C1 MT-associated Spag6, and C1-C2 bridge-
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Fig. 1 Wdr47 is an essential CP protein implicated in initial CP MT formation. a Diagram for mouse Wdr47. LisH, Lis1 homology; CTLH, carboxyl-terminal
to LisH. b Upregulation of Wdr47 during multicilia formation. mTECs were cultured at an air–liquid interface (ALI) for the indicated days. Multicilia
formation was indicated by the increased levels of Ift80, Bbs3, and acetylated tubulin (Ac-tub) from after ALI d3. Gapdh served as loading control (n= 2
biological replicates). c Wdr47 was abundant in mouse tissues containing motile cilia. The tissue lysates were prepared from 8-week-old mice (n= 2
biological replicates). d Wdr47 localized in multicilia as puncta. Cultured mEPCs were serum starved at day 0 to induce multiciliation and fixed at day 7,
followed by immunostaining and confocal imaging. Ac-tub and Cep162 labeled the ciliary axoneme and the transition zone (TZ), respectively. Cilia pointed
by arrows were magnified by 150% to show distribution changes of Wdr47 following the ciliary elongation. Arrowheads point to Wdr47 puncta at the base
of cilia over the TZ. Diagrams are provided to aid comprehension (n= 5 biological replicates). e Wdr47 entered ciliary central lumen earlier than Hydin in
short cilia and was enriched at the bottom region of CP (arrowheads) in long cilia. mEPCs at day 7 were fixed either directly (top panel) or after pre-
extraction with Triton X-100 to remove soluble proteins (bottom panel), followed by immunostaining and three dimensional structured illumination
microscopy (3D-SIM). Hydin served as CP marker. Cilia pointed by arrows were magnified by 150% to show details. Line scans were performed at
positions marked by white lines to show colocalization of Wdr47 with Hydin (n= 3 biological replicates). f Strategy for generating Wdr47 knockout (KO)
mice. The knockout-first (Kof) allele of Wdr47 contains a trapping cassette, followed by Exon 5 (e5) flanked by two loxP sites. Wdr47Kof/+ mice were
crossed with EIIa-Cre mice to generate Wdr47+/- mice, which were then used to produce Wdr47−/− mice. FRT flippase recognition target, LacZ
β-galactosidase gene, neo neomycin-resistant gene. g Representative frames cropped from Supplementary Movie 1 to show trajectories of four cilia in each
EPC of the indicated genotypes. The corresponding ciliary beat patterns and ciliary beat frequencies (mean ± s.d.) are also illustrated (n= 5 biological
replicates). h Stacked images showing the multicilia-driven flows of fluorescent beads over 30 s. The arrows indicate flow directions. Beads velocities were
quantified from three independent experiments. Data are presented as mean ± s.d. Two-sided Student’s t test: ns no significance; ***P < 0.001. i CP MTs
(arrowheads) were lost in Wdr47−/−ependymal cilia. Cultured mEPCs were fixed at day 11 or day 15 and subjected to transmission EM analyses. BB, basal
body (indicated by yellow lines); TZ, transition zone (indicated by yellow lines) (n= 2 biological replicates).
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associated Spag16 (Fig. 2a and Supplementary Fig. 3)23,36,51, were
abolished or markedly reduced in Wdr47−/− mEPCs, whereas
Rsph4a, a radial spoke component49,52, was not affected (Fig. 2b
and Supplementary Fig. 3). To further corroborate this, we purified
multicilia from cultured Wdr47+/+ and Wdr47−/− mEPCs and
performed label-free quantitative (LFQ) proteomic analysis53. In
addition to Wdr47, 10 CP proteins were hit in the wild-type cilia.
Their levels declined by at least 3.7-fold in the Wdr47−/− cilia
(Fig. 2c, d). By contrast, subunits of intraflagellar transport (IFT)
complexes A and B4 were either unchanged or only reduced by <2-
fold (Fig. 2c, d). Therefore, CP proteins require Wdr47 for their
ciliary localization.

To further confirm the importance of Wdr47 in CP formation,
we performed rescue experiments by expressing GFP-tagged Wdr47
or Centrin1 (negative control) intoWdr47−/− mEPCs. GFP-Wdr47
entered the Wdr47−/− multicilia and restored the ciliary localiza-
tion of CP proteins (Fig. 2e and Supplementary Fig. 4). By contrast,
the CP proteins still displayed no or weak ciliary localization in the
cells expressing Centrin1-GFP (Fig. 2e and Supplementary Fig. 4).
Live imaging revealed that multicilia in Wdr47−/− mEPCs
expressing Centrin1-GFP were still rotatory, whereas those in
Wdr47−/− mEPCs expressing GFP-Wdr47 displayed planar beat
(Fig. 2f and Supplementary Movie 2). These results further attribute
the lack of CP formation in Wdr47−/− multiciliated cells (Fig. 1i
and Supplementary Fig. 2) to the loss of Wdr47.

Next we investigated whether Wdr47 was also required for the
stability of pre-existing CP. To do this, we tried to deplete Wdr47
after the CP formation by expressing Cre recombinase in cultured
Wdr47flox/flox mEPCs from day −4 or −1 and examined
multicilia at day 5 or day 15 (Fig. 2g). The Cre expression at
day −4 resulted in rotatory beat pattern and loss of ciliary Hydin
even at day 5 (Fig. 2h and Supplementary Fig. 5), suggesting that
under the condition Wdr47 was depleted prior to the CP
formation in the cells. By contrast, in mEPCs expressing Cre from
day −1, Wdr47 was depleted after the CP formation because the
incidence of rotatory beat increased dramatically from day 5 to
day 15, accompanied with a similar extent of reduction in Hydin-
positive multicilia (Fig. 2h and Supplementary Fig. 5). Transmis-
sion EM confirmed a 3.5-fold increase of CP-less cilia from day 5
to day 15 (Fig. 2i). Therefore, the maintenance of CP also
requires Wdr47.

Wdr47-deficient mice display PCD-like phenotypes hydro-
cephalus and sinusitis. Next, we investigated whether Wdr47
deficiency induced multicilia-related pathological disorders in
mice. Wdr47-deficient mice die immediately after birth due to
central nervous system defects15 and were not suitable for the
investigation. The Wdr47Kof/Kof mice, however, are quite het-
erogeneous in viability: the majority of them die before P55 but
the remaining mice live longer than P15354, probably due to
variations in Wdr47 expression levels15. To maintain minimal
levels of Wdr47 for mouse survival, we created Wdr47Kof/− mice
and found that they were viable after birth.Wdr47Kof/− mice were
considerably smaller in size than their wild-type littermates
(Fig. 3a) and could only survive for <4 weeks. While Wdr47-
deficient neonatal mice15 and Wdr47Kof/Kof adult mice54 only
display slightly enlarged brain ventricles, the ventricles of
Wdr47Kof/− mice expanded markedly when examined at P14
(Fig. 3b), indicating hydrocephalus21,28,55. Moreover, massive
amounts of mucus were observed bilaterally in the paranasal
cavity of P14 Wdr47Kof/− mice (Fig. 3b), indicating chronic
sinusitis55. These phenotypes are hallmarks of primary ciliary
dyskinesia (PCD)21,26,56.

To further clarify that the enlarged ventricles were not due to
Wdr47 deficiency-induced neuronal death54, we removed the Kof

cassette15 and generated Wdr47flox/flox;GFAP-Cre conditional
knockout (cKO) mice to specifically knockout Wdr47 in GFAP-
positive glial cells (Fig. 3c)57, including EPC progenitors58,59. The
cKO mice were born normally but developed dome-shaped heads
within 3 weeks (Fig. 3d) and died at ~4 weeks old. Coronal brain
sections revealed dilated ventricles and magnetic resonance
imaging further confirmed severe hydrocephalus of the mice
(Fig. 3e). Scanning EM revealed that multicilia in individual
ependymal cells tended to cluster together in Wdr47flox/flox mice
but became scattered in the cKO mice (Fig. 3f). Live imaging of
brain slices revealed planar beat of the Wdr47flox/flox ependymal
cilia but rotatory beat of the cKO cilia (Fig. 3g). Wdr47 deficiency
or insufficiency thus causes PCD.

Camsaps are CP-associated proteins colocalizing with Wdr47.
How does Wdr47 impact the CP formation? As Wdr47 can be
recruited to MTs by MT-binding proteins such as Map8 and
Camsap315,37, we speculated that it might function with certain
MT-binding proteins for the nucleation or stabilization of central
MT seeds. Interestingly, we noticed that all three mouse para-
logues of Camsaps, Camsap1, Camsap2, and Camsap3, were
readily identified from our purified wild-type multicilia samples
by mass spectrometry (Fig. 4a). Camsap3 appeared to be the most
abundant among the three Camsaps according to both their LFQ
intensities and unique peptide counts (Fig. 4a). We have pre-
viously shown that all three Camsaps can associate with Wdr47.
Moreover, Camsap1 and Camsap3 function as downstream
effectors of Wdr47 in neuronal polarization15. Therefore, Cam-
saps might also function in multicilia with Wdr47.

Super-resolution imaging revealed that Camsaps were indeed
CP-associated proteins with distribution patterns resembling
those of Wdr47. In short cilia negative for Hydin, Camsaps were
highly concentrated at the ciliary tip and also distributed in the
axonemal central lumen (Fig. 4b). In long cilia they tended to
concentrate in the bottom region of the central lumen
complementary to Hydin (Fig. 4b). In addition, Camsap1 tended
to display punctate distributions along the CP (Fig. 4b). Both
endogenous and GFP-tagged Camsaps were distributed above TZ
in ependymal cilia when Cep162 and Cep290 were used as TZ
markers (Fig. 4c)44,60. When mEPCs were pre-extracted with
Triton X-100 to remove soluble proteins prior to fixation, the
enrichment of Camsaps at the base of the central lumen became
more obvious (Fig. 4c). Such a distribution pattern of Camsaps
(Fig. 4b, c) resembles proteins localized at the CP minus end
region, or the CP-foot45. Therefore, similar to Wdr47, Camsaps
are preferentially enriched at the tip of nascent short cilia and the
minus end region of central MTs in long cilia.

As our antibodies did not allow co-immunostaining with Wdr47,
we examined GFP-Camsaps. In mEPCs expressing Centrin1-GFP,
immunofluorescent signals of Wdr47 were independent of those of
Centrin1-GFP (Fig. 4d), indicating no fluorescent bleed between the
two channels. In contrast, GFP-Camsaps co-localized nicely with
endogenous Wdr47 in multicilia (Fig. 4d), confirming their
interplays with Wdr47 in ependymal cilia.

Although the levels of Camsaps in mEPCs were not affected by
the Wdr47 deficiency (Fig. 4e), immunostaining confirmed that
the ciliary localization of Camsaps was largely dependent on
Wdr47 (Fig. 4f, g). Therefore, Camsaps could be downstream
effectors of Wdr47 in the CP formation.

Overexpression of Camsaps induces central MT formation in
Wdr47−/− multicilia. We have recently reported that over-
expression of Camsap1 or −3 rescues the polarization defects of
Wdr47-deficient neurons15. To understand whether excessive
Camsaps could also functionally compensate for the Wdr47
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imaging (h), and 50 ciliary cross-sections in the EM (i) were scored in each experiment and condition. Three (h) and two (i) biologically independent
experiments were performed. Refer to Supplementary Fig. 5 for representative confocal images. Quantification results are presented as mean ± s.d. Two-
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deficiency in mEPCs, we overexpressed GFP-tagged Camsaps or
Centrin1 (negative control) in Wdr47−/− mEPCs through lenti-
viral infection (Fig. 5a). Wdr47−/− mEPCs expressing Centrin1-
GFP still displayed rotatory multicilia, whereas the majority of the
GFP-Camsap1-expressing cells displayed planar ciliary beat
(Fig. 5b, c and Supplementary Movie 3). Different cilia, however,
tended to beat towards different directions (Fig. 5b and Supple-
mentary Movie 3). The GFP-Camsap1 overexpression also
increased the percentage of cells with mixed ciliary beat patterns
by 3.1-fold (Fig. 5b, c). Although GFP-Camsap2 and GFP-
Camsap3 were expressed in low levels (Fig. 5a), percentages of
mEPCs with planar and mixed beat patterns still increased by 6.5-
fold and 10.9-fold, respectively, as compared to the Centrin1-
GFP-positive cells (Fig. 5b, c). When fixed cells were examined,
GFP-Camsaps markedly rescued the ciliary Hydin localization as
compared to Centrin1-GFP (Fig. 5d, e). These results suggest a
partial rescue of CP by Camsaps overexpression.

Next, we examined the ciliary ultrastructure. As we were
unable to recognize GFP-positive cells in EM, we extensively
examined the GFP-Camsap1 samples due to their high viral
infection efficiency (>80%), exogenous expression levels

(Fig. 5a), and rescue effects on the planar beat pattern and
ciliary Hydin localization (Fig. 5b–e). 48.9% of their axonemal
cross-sections displayed two central MTs; 3.5% displayed
abnormal central MT numbers (1 or 3-to-6) (Fig. 5f, g).
Occasionally we observed one dislocated central MT outside the
central lumen (n= 2), (Fig. 5f) or extra doublet-like MTs
(n= 3) (Supplementary Fig. 6a). Central MTs were observed to
extend from the ciliary base to the tip in longitudinal sections
(Fig. 5f). We also observed multiple short MTs at the tip
(Fig. 5f), suggesting that the incidence of axonemes with extra
central MTs (2.6%; Fig. 5g) is probably underestimated due to
quantifications on cross-sections. By contrast, none of the
axonemal cross-sections (total n= 307) from the Centrin1-GFP
samples displayed visible central MT(s). We also examined a set
of samples for GFP-Camsap2 and GFP-Camsap3. In all, 27% of
axonemal cross-sections from the Camsap3 sample contained
either one (1/173) or two (46/173) central MTs (Fig. 5g). All
cross-sections from the Camsap2 sample (n= 239), however,
were CP-less, possibly due to its low expression level and
efficacy because EM does not allow choosing cells expressing
relative high levels of GFP-Camsap2.

g

10μm

Time:  0                                   28ms                             56ms                            84ms                             112ms

 flo
x/

flo
x

 fl
ox

/fl
ox

;G
FA

P
-C

re

flox/flox

10μm

flox/flox;GFAP-Cref

P
10

 m
ic

e

3mm

P
10

 m
ic

e
P

21
 m

ic
e

e flox/flox flox/flox;GFAP-Cre

2mm

d

P21 mice

flox/flox flox/flox; GFAP-Cre
Flp

Kof

Flox

cKO

GFAP-Cre

c Wdr47

b

0.5mm

1mm

P
14

 m
ic

e

+/+ Kof/-a +/+ Kof/-
P

14
 m

ic
e

Fig. 3 Wdr47 deficiency in multicilia results in hydrocephalus and chronic sinusitis. a Representative littermates of Wdr47Kof/− and wild-type mice.
b Wdr47Kof/− mice displayed both hydrocephalus and chronic sinusitis (n= 3 biological replicates). Shown are representative HE-stained coronal sections
of the brain and the paranasal cavity. Arrows and arrowheads indicate enlarged ventricles and accumulated mucus, respectively. c Strategies for generating
Wdr47flox/flox;GFAP-Cre conditional knockout (cKO) mice to knockout Wdr47 in progenitors of mEPCs. Wdr47Kof/+ mice were crossed with Flp mice to
produce Wdr47flox/+ mice, which were then crossed with GFAP-Cre mice to produce Wdr47flox/+;GFAP-Cre mice. d The Wdr47 cKO mice displayed a
dome-shaped skull (arrow) (n= 3 biological replicates). e The cKO mice displayed progressive hydrocephalus (arrows) as shown by coronal brain sections
at P10 and transverse magnetic resonance images at P21. Experiment was performed once. f, g Multicilia in the Wdr47flox/+;GFAP-Cre ependyma were
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Taken together, we conclude that increasing the total levels of
Camsaps partially compensate forWdr47 deficiency in the central
MT formation.

Wdr47 recruits Camsaps to the central lumen for proper CP
formation. As the partial rescue effects of overexpressed Camsaps
(Fig. 5a–g) suggested a role of Wdr47 for efficient production and
proper positioning of central MTs, we speculated that Wdr47
might function by increasing the regional ciliary concentration of
Camsaps. We have previously shown that Wdr47 interacts with
Camsaps through its N-terminal region (WdrN) but not the
C-terminal WD40 repeats (WdrC) (Fig. 5h)15. When expressed in
Wdr47−/− mEPCs, GFP-Wdr47 entered multicilia and rescued the
ciliary localizations of endogenous Camsap1 and Hydin, the CP
marker (Fig. 5i; also see Fig. 2e). GFP-WdrC, but not GFP-WdrN,

strongly localized into multicilia (Fig. 5i). Neither construct, how-
ever, was able to function as the full-length to restore ciliary
Camsap1 and Hydin (Fig. 5i) or the planar ciliary beat (Fig. 5j vs.
Fig. 2f). Wdr47 thus requires both its Camsap-interacting and cilia-
localization regions for the ciliary enrichment of endogenous
Camsaps and, consequently, proper CP formation.

We further examined the detailed localization of GFP-WdrC
through super-resolution microscopy and found that GFP-WdrC
was distributed in the ciliary central lumen (Fig. 5k). AsWdr47−/−

multicilia are CP-less (Fig. 1i), such a result suggests that this
C-terminal region can target Wdr47 to the central lumen
independently of central MTs. Taken together, we conclude that
Wdr47 binds to Camsaps through its N-terminal region and
targets them to the ciliary central lumen through its C-terminal
region for efficient and proper CP formation.
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26058-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5796 | https://doi.org/10.1038/s41467-021-26058-5 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


k

5μm 1μm

GFP-WdrC                         Ac-tub                               Merge

W
dr

47
-/-

 

10μm

W
dr

47
-/-

GFP-WdrN

GFP-WdrC

56ms
j

72%
(n=89)

89%
(n=92)

i

5μm

Hydin MergeCamsap1GFP-Wdr47

GFP-WdrC

GFP-WdrN

Ac-tub

W
dr

47
-/-

h Camsaps
interaction

+

+
-

400
401

WdrN
WdrC

Wdr47
1 920

LisHCTLH WD40 repeats

n=173

GFP-Camsap3GFP-Camsap1

26.6%
0.6%

72.8%
47.6%

0.9%

2.6%

Central MT:
0    1     2     >2

48.9%

n=805

gf

3947 16 1 1 3

entral MT: 0              1                  2                 3                  4                  5                 6                2+1d

200nm

Wdr47-/- (GFP-Camsap1)

383
BB TZ

Lo
ng

itu
di

na
l

se
ct

io
n

e

C
am

sa
p1

C
en

tri
n1

C
am

sa
p3

C
am

sa
p2

GFP-
tagged

C
el

ls
 w

ith
 H

yd
in

+
m

ut
lic

ili
a 

(%
)  80

       60 

       40
       20
        0

***

**
**

Wdr47-/-

d

5μm

GFP-Camsap1Centrin1-GFP

GFP-Camsap3GFP-Camsap2

Hydin

Ac-tub

W
dr

47
-/-

c

*** ***
ns

***

**

***

**

**
*

100
  80
       60 

       40
       20
        0C

el
ls

 w
ith

 in
di

ca
te

d
m

ul
tic

ili
a 

(%
)

Planar RotatoryMixed

Ce
nt

rin
1

Ca
m

sa
p1

Ca
m

sa
p2

Ca
m

sa
p3

Wdr47-/-

GFP-
tagged

b Wdr47-/- 

56ms

Centrin1-GFP

GFP-Camsap2

GFP-Camsap1

GFP-Camsap3

5μm250_

a

_
_
_
_
_

__
43

170
130
95
72
55

43

kDa
Centrin

1GFP-
tagged

Wdr47-/-

Camsa
p1

Camsa
p2

Camsa
p3

Gapdh

IB
: α

G
FP

GFP-Camsap1
Camsap1

Fig. 5 Wdr47 concentrates Camsaps to the central lumen for efficient and proper central MT formation. a Expression levels of exogenous Camsaps and
Centrin1 (arrowheads) inWdr47-/- mEPCs.Wdr47−/− mEPCs were infected with lentivirus at day −1, day 2, and day 5 to express GFP-tagged Camsaps or
Centrin1 (negative control). The cells were harvested at day 10 for immunoblotting (IB) or assays in b–g. >80% of the cells were usually GFP-positive. The
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panel). Gapdh served as loading control. n= 3 biological replicates. b, c Effects on ciliary beat pattern. Trajectories of three cilia during the first 56ms of live
imaging are shown for each mEPC (b). Please refer to Supplementary Movie 3. Quantification results (c) were from three biologically independent
experiments. At least 40 cells were scored in each experiment and condition. Data are presented as mean ± s.d. Two-sided Student’s t test: *P < 0.05;
**P < 0.01; ***P < 0.001. d, e Effects on ciliary localization of Hydin. Separate grayscale channels are shown for the framed regions in the confocal images
(d). Quantification results (e) were from three biologically independent experiments. At least 66 cells were scored in each experiment and condition. Data
are presented as mean ± s.d. Two-sided Student’s t test against the Centrin1-GFP populations: **P < 0.01; ***P < 0.001. f Representative axonemal
ultrastructure. Arrowheads point to central MTs. The cyan arrowhead in the last cross-section indicates a dislocated MT outside the central lumen
(marked with a postfix “d” in the central MT numbers), whereas the magenta arrowheads in the longitudinal section point to two possible pairs of short
central MTs at the ciliary tip. The total count for each type (red number) was from three biologically independent experiments. See Supplementary Fig. 6a
for additional examples. g Pie charts summarizing the percentages of axoneme sections with different central MT numbers. Quantification results of GFP-
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Camsaps promote the central MT formation by stabilizing the
MT minus end. We have previously shown that Camsap3 can
recruit Wdr47 to MT minus ends15, implying that Wdr47 might
target Camsaps by binding to regions outside their MT-binding
domains. To clarify this, we mapped the Wdr47-interacting
region of Camsap1 by co-immunoprecipitation. Indeed, the linker
region between the CH and the first coiled coil (CC) domains of
Camsap1 (312-858 aa) strongly interacted with Wdr47, whereas
the CC-containing region and the CKK domain involved in the
MT association10–13 were dispensable (Fig. 6a, b).

Camsaps function in MT dynamics by stabilizing the minus
end of pre-existing MTs10,12,13. It is known that, although the
CKK domain alone is sufficient for binding to the MT minus end,
a longer fragment containing the CC region displays markedly
increased lattice-binding and minus end-stabilization ability10–13.
To understand whether Camsaps used the similar mechanism to
induce central MT formation, we overexpressed constructs
containing the CKK domain and a longer CC-containing
fragment (LC) as GFP fusion proteins in Wdr47−/− mEPCs
(Fig. 6c, d). Both types of constructs displayed significant rescue
effects on ciliary beat patterns as compared to Centrin1-GFP
(Fig. 6e and Supplementary Movie 4), suggesting that the CKK
domain alone is already functional. Consistently, all the
constructs displayed ciliary localizations as well as an ability to
rescue the ciliary localization of Hydin in the Wdr47−/− mEPCs
(Fig. 6f and Supplementary Fig. 7). The LC constructs generally
yielded higher percentages of ciliary Hydin-positive mEPCs than
the CKK constructs (Fig. 6f and Supplementary Fig. 7).

EM further confirmed that all the constructs of Camsaps
induced central MT formation in the Wdr47−/− multicilia
(Fig. 6g, h). Notably, 70% of the axonemal cross-sections from
the GFP-Ca1LC samples contained one or more central MTs and
21% contained >2 (up to 13) central MTs (Fig. 6g, h).
Furthermore, 28 sections (8%) contained dislocated central
MTs outside the central lumen (Fig. 6h). By contrast, 25% of
the cross-sections from the GFP-Ca1CKK samples contained
central MTs (Fig. 6g). Among them, three sections (2%)
contained dislocated central MT(s). In addition, axonemes with
an extra MT doublet were also observed for both constructs
(Supplementary Fig. 6b, c). We observed both long and short
central MTs in longitudinal axonemal sections (Supplementary
Fig. 6d). In comparison, 38% and 44% of the cross-sections
respectively from the GFP-Ca2LC and GFP-Ca3LC samples
contained one or more central MTs, with 3% and 18% of the total
cross-sections containing >2 (up to 10) central MTs (Fig. 6g, h).
The incidences of central MT-containing cross-sections from the
GFP-Ca2CKK and GFP-Ca3CKK samples were 15% and 38%,
respectively (Fig. 6g).

These results further strongly support a direct role of Camsaps
in the CP formation by binding and stabilizing the minus ends of
central MTs. The prominent rescue effects of GFP-Ca2LC and
GFP-Ca2CKK (Fig. 6e–g), despite their low expression levels
relative to the corresponding constructs of Camsap1 and
Camsap3 (Fig. 6d), also confirm that Camsap2 is involved in
the CP formation. Furthermore, as Camsaps are unable to
nucleate MTs10–13, the formation of extra and even 13 central
MTs indicates that the available central MT seeds in an axoneme
can largely exceed two.

Central MT formation requires the MT-severing activity of
Katanin. The seeds for non-centrosomal MTs usually come from
severed MTs or MTs released from the γ-tubulin ring
complex5,6,12,13. As the MT-severing enzyme Katanin directly
binds to Camsap2 and −312,40 and protozoan Katanin is essential
for the CP formation and has been shown to bind to and severing

axonemal MT doublets61–63, we speculated that Katanin might
function to generate the central MT seeds for mammalian mul-
ticilia. Immunostaining revealed that Katanin p60 displayed
multiciliary localizations in mEPCs, abundant at the tip of short
cilia (Fig. 7a). GFP-p60 also displayed similar ciliary localizations
and co-localized with Camsaps at the ciliary tip, when Camsap1
was used as marker (Fig. 7b).

To investigate whether the MT severing activity of Katanin is
required for the central MT formation, we overexpressed GFP-
p60 or GFP-p60K257A, a point mutant acting as a dominant
inhibitor64, in wild-type mEPCs (Fig. 7c). Like p60, the dominant
mutant p60K257A also entered multicilia (Fig. 7d). Wild-type
mEPCs overexpressing Centrin1-GFP rarely had Hydin-negative
cilia (0.9%; n= 117) (Fig. 7d). The GFP-p60 overexpression
moderately increased the incidence (8.9%; n= 90). By contrast,
multicilia in 46.7% of mEPCs positive for GFP-p60K257A

(n= 105) lacked Hydin (Fig. 7d). Consistently, the percentage
of mEPCs with rotatory ciliary beat pattern increased moderately
(5.3-fold) in the GFP-p60 populations and markedly (40.7-fold)
in the GFP-p60K257A populations as compared to the Centrin1-
GFP populations (Fig. 7e and Supplementary Movie 5). EM
analyses revealed increased incidences of CP-less cross-sections
(2.3-fold in the GFP-p60 samples and 9.3-fold in the GFP-
p60K257A samples) as well (Fig. 7f). Notably, cross-sections
containing 1 (3%) and >2 (4%) central MTs emerged in the GFP-
p60 samples, which were not observed in either the Centrin1-GFP
or the GFP-p60K257A samples (Fig. 7f). The MT-severing activity
of Katanin is thus critical for proper mammalian CP formation.

Next we explored whether the rescue effect of Camsaps in
Wdr47−/− mEPCs required Katanin activity by co-expressing
RFP-p60K257A or RFP-p60. We initially performed the experi-
ments with GFP-Camsap1 because it displayed the strongest
rescue effect (Fig. 5a–g). Moreover, as Camsap1 does not interact
with Katanin1, its overexpression would not influence the effects
of RPF-p60 and RFP-p60K257A. Compared to Centrin1-RFP, co-
expression of RFP-p60K257A with GFP-Camsap1 induced a 3.3-
fold decrease in percentage of cells with planar ciliary beat and a
2.8-fold increase in that with rotatory ciliary beat (Fig. 7g and
Supplementary Movie 6). In comparison, co-expression of RFP-
p60 did not significantly alter the rescue effects of GFP-Camsap1
in Wdr47-deficient mEPCs (Fig. 7g and Supplementary Movie 6).
We then examined GFP-Ca3LC, the Camsap3 deletion mutant
displaying a remarkable rescue effect (Fig. 6d–h) and lacking
Katanin-binding region (Fig. 6c)40. Compared to Centrin1-RFP,
co-expression of RFP- p60K257A also similarly compromised the
rescue efficiency of GFP-Ca3LC (Fig. 7g). Therefore, Katanin
activity is important for the Camsap overexpression-induced
central MT formation.

Therefore, like protozoan Katanin61–63, mammalian Katanin
also functions in the CP formation. As tubulin dimers can be
transported into cilia through intraflagellar transport35, we
modified the model by Sharma and colleagues63 and propose
that Katanin provides central MT seeds by severing the tip region
of axonemal MT doublets (Fig. 7h).

Discussion
Our results indicate that Wdr47 ensures the efficient formation and
accurate positioning of central MTs by concentrating Camsaps into
cilia. Wdr47 is a prerequisite because CP completely failed to form
upon Wdr47 deficiency (Figs. 1 and 2, and Supplementary Figs. 2
and 3). Ciliary Camsaps co-localized with Wdr47 mainly at the tip
of nascent short cilia and the base of central lumen in long cilia and
became markedly reduced in Wdr47-deficient mEPCs (Figs. 1d, e
and 4b–g). Although central MTs can form in Wdr47−/− mEPC
when the total levels of Camsaps were increased through
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Fig. 6 Camsaps induce central MTs by stabilizing pre-existing MT seeds. a, b Mapping the Wdr47-binding region of Camsap1. GFP-tagged Camsap1 and
constructs (a) were co-expressed with Flag-Wdr47 in HEK293T cells, followed by co-immunoprecipitation using anti-Flag resin and immunoblotting (b)
(n= 3 biological replicates). Structural regions in a: CH Calponin homology, CC coiled coil, CKK MT minus end-binding. c Diagrams of Camsap deletion
constructs for experiments in d–h. KB Katanin-binding domain, which appears to exist only in Camsap2 and -340. d Expression levels of Camsap deletion
constructs. Wdr47−/− mEPCs were infected with lentivirus at day −1, day 2, and day 5 to overexpress GFP-tagged Camsap constructs or Centrin1-GFP
(negative control) and harvested at day 10 for immunoblotting (d) and experiments in e–h. Percentages of GFP-positive cells for a typical set of the cells
were indicated. At least 134 multiciliated cells were scored for each example (n= 2 biological replicates). e Effects on ciliary beat patterns, quantified from
three biologically independent experiments and presented as mean ± s.d. At least 36 multiciliated cells expressing Centrin1-GFP and 80 multiciliated cells
expressing the Camsap constructs were scored in each time and condition. Two-sided Student’s t test: ***P < 0.001. Please refer to Supplementary
Movie 4. f Typical confocal micrographs of multiciliated cells expressing the LC constructs or Centrin1-GFP. Hydin served as CP marker. Percentages of
GFP and ciliary Hydin double-positive cells are shown. See Supplementary Fig. 7 for micrographs of the CKK constructs (n= 3 biological replicates). g, h Pie
charts (g) and representative axoneme cross-sections (h) for the status of central MTs. Numbers of central MTs (arrowheads) are marked in h, with the
postfix “d” standing for dislocated central MTs outside the central lumen (cyan arrowheads). Experiments were performed once. See Supplementary
Fig. 6b–d for additional axoneme examples.
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overexpression (Figs. 5a–g and 6, and Supplementary Fig. 7), they
emerged with low efficiency and abnormal numbers, and some-
times at a wrong location: comparing to a near 100% efficiency of
the CP formation in wild-type ependymal and airway multiciliated
cells (Fig. 1i and Supplementary Fig. 2)28,30,65, only <50% of
ependymal ciliary cross-sections were rescued to two central MTs
and at least 30% were still CP-less (Figs. 5f, g and 6g, h). Fur-
thermore, up to 21% contained more than two central MTs, and
dislocated singlet MT(s) outside the central lumen were also
observed (Figs. 5f, g and 6g, h, and Supplementary Fig. 6d). As
Camsaps do not induce MT nucleation10–13, the emergence of
excessive numbers (up to 13 in our EM results) of central MTs
(Figs. 5f, g and 6g, h) indicate that Camsaps function by stabilizing
the minus ends of pre-existing MT seeds whose number can largely
exceed two in a cilium. Our interaction and localization analyses
(Figs. 5i, k and 6a, b) further suggest that Wdr47 binds to the N2
region of Camsaps through its N-terminal region and recruits them
to the ciliary central lumen through its C-terminal region.

Therefore, the Wdr47-Camsap interaction allows Camsaps to
function at low physiological concentrations to avoid production of
extra central MTs. How a cilium manages to produce precisely two
central MTs, however, still requires future quantitative studies.

Camsap1-3 appear to function redundantly and contribute
collectively to the central MT formation. Different Camsaps share
common and also display individual properties10–14. As mEPCs
express all three proteins concomitantly (Fig. 4), the contribution
of each Camsap may be affected by both expression level and
efficacy relative to the others (Figs. 5 and 6). Although multicilia-
related defects have not been documented for Camsap1- or
Camsap2-deficient mice14,18, during the revision process we
noticed that a recent publication reports that Camsap3 localizes
to the base of axonemes in murine nasal multiciliated cells and
Camsap3 deficiency results in the CP loss in 77.4% axonemal
cross-sections of the cells66. Consistently, Camsap3-deficient mice
display severe nasal airway blockage66, similar to our Wdr47Kof/-

mice (Fig. 3b). In sharp contrast to the severe hydrocephalus of
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our Wdr47flox/flox;GFAP-Cre cKO mice (Fig. 3c–e), Camsap3-
deficient mice display only mild or no hydrocephalus
phenotypes66. Two subsequent publications report that Camsap3-
deficient mice have normal beating cilia in ependymal cells67 and
normal CP formation in oviduct multicilia68. These results also
echo our proposed redundant and collective effects of Camsaps.
Future systematic analyses using single, double, and triple gene
knockout mice of Camsaps will be still required to determine
detailed contributions of individual Camsaps and their collective
effects on ciliary CP formation of different tissue cells.

Our results suggest that Katanin is involved in the production
of central MT seeds. p60 and p80 subunits of Katanin are in fact
the only two proteins known to be essential to the CP formation
in protozoa48,61–63. Chlamydomonas p80 specifically distributes
in ciliary outer doublet compartment61, whereas overexpressed
GFP-p60 has been shown to specifically bind to and sever outer
doublets in Tetrahymena63. Protozoan Katanin has also been
proposed to provide central MT seeds by severing MTs nucleated
from intraflagellar γ-tubulin62 or free tubulin dimers for CP
assembly by severing outer doublets63. We found that both
endogenous p60 and GFP-p60 display ciliary localization and also
enrich at the tip of short cilia (Fig. 7a, b). Katanin activity is also
important for Camsaps-mediated CP formation (Fig. 7e–g). As
overexpression of GFP-p60 induced CP loss in a portion of
ependymal axonemes (Fig. 7e, f), mammalian Katanin unlikely
functions by providing tubulin dimers for the CP formation. On
the other hand, no evidence to date suggests a localization of γ-
tubulin in mammalian multicilia69–71. As the observations of up
to 13 central MTs in our rescue experiments (Figs. 5f, g and 6g, h)
provide solid evidence for the presence of excessive central MT
seeds and nascent central MTs have been shown to emerge
initially from the top region of Chlamydomonas flagella46, we
modified the previous models and propose that mammalian
Katanin severs the tip of axonemal outer MTs to generate central
MT seeds for Camsaps to bind and stabilize at early stages of
ciliogenesis (Fig. 7h). Consistently, we observed doublet-like MTs
additional to the nine outer doublets upon the overexpression of
Camsap1 or its deletion constructs (Supplementary Fig. 6a–c).
Future studies will be required to verify whether Katanin p60/p80
enters multicilia by binding to Camsap2 and Camsap312,40. In
addition, two paralogues of Katanin p60, Katnal1 and Katnal2,

also affect the growth and motility of multicilia38,72,73. Katnal1
has also been shown to sever MTs to build the dense MT arrays in
Drosophila mechanosensory cilia38,72–74. As the overexpress of
p60K257A did not completely abolish the CP formation in mEPCs
(Fig. 7e, f), whether Katnal1 and Katnal2 have a role in metazoan
central MT seeds production also needs to be clarified in the
future.

Taken together, we propose a model that Wdr47, Camsaps,
and Katanin function together to produce the CP of mammalian
multicilia: Katanin severs the tip of outer MTs to generate central
MT seeds in nascent short cilia, Camsaps stabilize the seeds by
binding to their minus ends, and Wdr47 concentrates Camsaps
and facilitates their targeting into ciliary central lumen so that the
Camsaps-bound MT seeds eventually develop into CP following
the elongation of cilia (Fig. 7h). In addition to the CP formation,
emerging clues of their corporative actions are reported in
neurons15,16,18,41,42,75 and epithelial cells17,19,76. Other non-
centrosomal MT arrays requiring Camsaps5–7 could involve
Katanin and Wdr47 as well. Both Katanin and Wdr47 are
expected to bind between the CH domain and the first CC region
of Camsap2 and -3 (Fig. 6a, b)40. Therefore, these three groups of
proteins might similarly constitute a team for the formation of
non-centrosomal MT arrays in polarized subcellular compart-
ments. It will thus be interesting to clarify their detailed interplays
and consequences of the interactions as well in other types
of cells.

Methods
Plasmids. The full-length or partial cDNAs for mouse Wdr47 (NM_181400),
mouse Camsap1 (XM_006497897), mouse Camsap2 (NM_001347109), and mouse
Katanin p60 (NM_011835) were amplified by PCR from total cDNAs from mouse
testis, brain or mTECs. The full-length of mouse Camsap3 (NM_027171) was
amplified by PCR from the GFP-Nezha plasmid (kindly provided by Dr. Wenxiang
Meng, Institute of Genetics and Developmental Biology, Chinese Academy of
Sciences)77. To express GFP- or RFP- fusion proteins, the cDNA fragments were
constructed into the lentiviral expression vector, pLV-EGFP-C1 or pLV-RFP-C178,
respectively. The cDNAs of WdrN (1-400 aa) and WdrC (401-920 aa) were PCR
amplified from the pLV-EGFP-Wdr47 plasmid and constructed into pLV-EGFP-
C1. The cDNAs of Camsaps: Ca1N1 (1-311 aa), Ca1N2 (312-858 aa), Ca1CC (859-
1442 aa), Ca1CKK (1443-1583 aa), Ca1LC (859-1583 aa), Ca2CKK (1333-1472 aa),
Ca2LC (739-1472 aa), Ca3CKK (1113-1252 aa), and Ca3LC (587-1252 aa) were
PCR amplified from the pLV-EGFP-Camsaps plasmids and constructed into pLV-
EGFP-C1. The K257A mutant of Katanin p60 (900 AAG→GCG) were generated
by PCR64. For expression of FLAG-fusion proteins, the cDNA fragments were

Fig. 7 Katanin provides central MT seeds by severing axomenal MTs. Pooled data (mean ± s.d.) were from three biologically independent experiments.
Student’s t-test, ns, no significance; **P < 0.01; ***P < 0.001. a, b Katanin p60 displayed multiciliary localizations. Wild-type mEPCs were fixed at day 7
either directly for visualizing endogenous p60 through immunostaining (a) or after infection with lentivirus at day −1 to express GFP-p60 (b). Ac-tub and
Hydin served as ciliary and CP markers, respectively. Arrowheads and arrows point to representative short cilia and long cilia, respectively. n= 3 biological
replicates. c Expression level of GFP-p60 and GFP-p60K257A in mEPCs. Wild-type mEPCs were infected with lentivirus at day −1 and day 2 to express
Centrin1-GFP, GFP-p60 or GFP-p60K257A and harvested at day 10 for assays in c–f. Gapdh served as loading control in immunoblotting (c). Note that the
expression of GFP-tagged p60 or p60K257A had little influence on the levels of endogenous p60, Wdr47, and Camsap1, as compared to Centrin1-GFP.
d p60K257A abolished the Hydin localization in multicilia. The framed regions of confocal micrographs are shown in separate grayscale channels.
Percentages of GFP-positive and ciliary Hydin-negative cells are shown. n= 3 biological replicates. e Effects of GFP-p60 or GFP-p60K257A overexpression
on ciliary beat patterns. Trajectories of four cilia during the first 56ms of imaging are shown for each EPC. Please refer to Supplementary Movie 5. At least
34 cells were scored in each experiment and condition. Three biologically independent experiments were performed. Error bars present as mean ± s.d.
Two-sided Student’s t test: **P < 0.01; ***P < 0.001. f Effects of GFP-p60 or GFP-p60K257A overexpression on the central MT formation. Representative
cross-sections in the GFP-p60 samples are presented. Arrowheads point to central MTs. n= 3 biological replicates. g RFP-p60K257A attenuated the rescue
effects of Camsaps overexpression on ciliary beat patterns in Wdr47−/− mEPCs.Wdr47−/− mEPCs were infected with lentivirus at day −1, day 2, and day
5 to co-express GFP-Camsap1 or GFP-Ca3LC with the indicated RFP-tagged proteins and live imaged at day 10. Trajectories of four cilia during the first
56ms of imaging are shown for each representative EPC. At least 45 GFP and RFP double-positive cells in the GFP-Camsap1 group and 31 double-positive
cells in the GFP-Ca3LC group were scored in each experiment and condition. Three biologically independent experiments were performed. Error bars
present as mean ± s.d. Two-sided Student’s t test: *P < 0.05; **P < 0.01; ***P < 0.001. Please also refer to Supplementary Movie 6. h A summarizing model
for central MT formation: (1) central MT seeds are generated by Katanin from peripheral MTs in short multicilia, stabilized at their minus ends by Camsaps,
and recruited to the central lumen through Wdr47; (2) Wdr47 deficiency abolishes the CP formation by markedly decreasing ciliary Camsaps; (3)
Increasing total Camsap levels through overexpression induces central MT formation but with low efficiency and various abnormalities. See Discussion
section for details.
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subcloned into the pcDNA3.1-NFLAG vector. The full-length cDNAs of mouse
Wdr47 or mouse Camsap1 (1073-1382 aa) were PCR amplified and constructed
into pET28a to express His-tagged antigens for antibody production and into
pGEX4T-1 to express GST-fusion proteins for antibody purification. All the pri-
mers were list in the Supplementary Table 1. All the constructs were verified by
sequencing.

Mice. Mice experiments were performed in accordance with the ethical guidelines
of Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sci-
ences, and approved by the Institutional Animal Care and Use Committee.

Wdr47Kof/+ mice (Wdr47tm1a(EUCOMM)Wtsi) were purchased from Wellcome
Trust Sanger Institute79. Wdr47+/− and Wdr47flox/+ mice were generated by
crossing the Wdr47 Kof/+ mice with Ella-Cre or FLP mice (Model Animal Research
Center of Nanjing University, China), respectively. To knockout Wdr47 in the
GFAP-positive glial cells, Wdr47 flox/flox mice were crossed with GFAP-Cre mice (a
gift from Dr. Leping Cheng, Institute of Neuroscience, Chinese Academy of
Sciences). Primers used for genotyping are listed in Supplementary Table 1.

Cell culture, transfection, viral infection, and cilia purification. Cells were
maintained at 37 °C in an atmosphere containing 5% CO2. Unless otherwise
indicated, the culture medium was Dulbecco’s Modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (Ausbian, VS500T), 0.3 mg/ml gluta-
mine (Sigma, G8540), 100 U/ml penicillin (Solarbio P8420), and 100 U/ml strep-
tomycin (Solarbio S8290).

mTECs were isolated and cultured as described previously78,80. mTECs were
isolated from 4-week C57BL/6J mice. After dissecting the adhered muscle tissue,
tracheas were sliced lengthwise and digested in Ham’s F-12K medium with 0.15%
Pronase E (Sigma, P6911) and 0.1 mg/ml DNase I (Sigma, D5025) overnight at
4 °C. Cells were collected by centrifugation for 5 min at 400 × g at room
temperature (r.t.) and resuspended with mTEC basic medium [DMEM-Ham’s F-12
medium (Thermo Fisher, 11330-032) supplemented with 3.6 mM sodium
bicarbonate, 4 mM L-glutamine, 1% penicillin/streptomycin, 0.25 μg/ml fungizone]
with 10% FBS. Cells were plated and incubated at 37 °C for 4 h to allow fibroblasts
to attach. mTECs were collected by centrifugation at 400 × g for 5 min,
resuspended in mTEC plus medium [mTEC basic medium supplemented with
10 μg/ml insulin (Sigma, I6634), 5 μg/ml transferrin (Sigma, T8158), 0.1 μg/ml
Cholera toxin (Sigma, C8052), 25 ng/ml epidermal growth factor (Sigma, E4127),
30 μg/ml bovine pituitary extract (Sigma, P1167), 5% FBS, and 0.05 μM retinoic
acid (freshly added; Sigma, R2625)], and seeded into collagen (Sigma, C8897)-
coated 6.5-mm Transwells with 0.4-μm-pore polyester membrane insert (Corning,
3470). When cells reached full confluency, air-liquid interface (ALI) was created by
removing medium in the upper compartment and replacing medium in the bottom
compartment with the mTEC differentiation medium [mTEC basic medium
supplemented with 2% Nu Serum (BD, 355100) and 0.05 μM retinoic acid (freshly
added)] to induce differentiation. DAPT (Sigma, D5942) was added to 10 μM at
day 1 post ALI to increase multiciliated cell differentiation efficiency.

Multiciliated mEPCs were obtained and cultured as described36,53,81. P0 C57BL/6J
mice telencephala were dissected after removing the cerebellum, olfactory bulbs, and
hippocampus with sharp tweezers (Dumont, 1214Y84) in cold dissection solution
(161mM NaCl, 5mM KCl, 1mM MgSO4, 3.7mM CaCl2, 5mM Hepes, and 5.5mM
Glucose, pH 7.4) under a stereo microscope. The telencephala were digested with 1ml
of the dissection solution containing 10U/ml papain (Worthington, LS003126), 0.2mg/
ml L-Cysteine, 0.5mM EDTA, 1mM CaCl2, 1.5mM NaOH, and 0.15% DNase I
(Sigma, D5025) for 30min at 37 °C. Cells were dissociated mechanically by pipetting up
and down 10 times with a 5-ml pipette and collected by centrifugation at 400 × g for
5min at r.t. Cells were resuspended with DMEMmedium supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin, and inoculated into the laminin-
coated flask (Sigma, L2020). Neurons were shaken off and removed after culturing for
2 days after inoculation. The remaining cells were further cultured to ~80% confluency
(usually 3–4 days) and then transferred into the wells of laminin-coated 29-mm glass-
bottom dishes (Cellvis, D29-14-1.5-N) for motility assay or immunofluorescence
staining or 75-cm2 laminin-coated flasks for cilia purification. After cells were confluent,
FBS was removed from the medium to initiate differentiation.

To express exogenous proteins, HEK 293T were transfected with
polyethlenimine (PEI, Polysciences, 23966-2), respectively, for 48 h. Lentiviral
production and infection were performed as described previously78. Cultured
mEPCs were infected at day one before serum starvation (day −1) unless otherwise
stated. For rescue experiments and expressing GFP-tagged Camsaps, and their
deletion constructs in Wdr47−/− ependymal cells, mEPCs derived from Wdr47−/−

mice were infected with lentivirus at day −1, day 2, and day 5 and assayed at
day 10.

Purification of ependymal cilia and LFQ mass spectrometric analyses were
carried out as described53. To purify ependymal cilia, two 75-cm2 flasks of
ependymal cells derived from 10 E18.5Wdr47+/+ orWdr47−/− embryos at the day
10 post serum starvation were harvested by centrifugation at 2000 rpm for 5 min at
4 °C. The cells were resuspended in 2.4 ml of deciliation buffer (20 mM PIPES,
250 mM sucrose, 20 mM CaCl2, 0.05% Triton X-100, pH 5.5) and agitated
vigorously for 10 min on a vortex mixer (G560OE, Scientific Industries). After
centrifugation at 600 × g for 5 min at 4 °C, the cilia-containing supernatant was
collected by centrifugation at 20,000 × g for 30 min. The pelleted cilia were washed

twice with 1 ml of PBS, followed by centrifugation at 20,000 × g for 15 min. The
isolated cilia were lysed in 100 μl of lysis buffer [20 mM Tris-HCl (pH 7.5),
100 mM KCl, 0.1% NP-40, 1 mM EDTA, 10 mM Na4O7P2, and protease inhibitors]
and boiled at 100 °C for 10 min. 50 μl of the samples was used for Mass
spectrometry analysis and another 50 μl was used for immunoblotting (Fig. 2d).
The full scan blots are provided in the Source Data file.

Label-free quantitative mass spectrometry. In all, 50 μL of lysed wild type and
Wdr47−/− cilia samples were precipitated with acetone. The protein pellet was
dried by using a Speedvac for 1−2 min. The pellet was subsequently dissolved in
8 M urea, 100 mM Tris-HCl, pH 8.5. TCEP (final concentration is 5 mM) (Thermo
Scientific) and iodoacetamide (final concentration is 10 mM) (Sigma) for reduction
and alkylation were added to the solution and incubated at room temperature for
30 min, respectively. The protein mixture was diluted four times and digested
overnight with Trypsin at 1:50 (w/w) (Promega). The tryptic-digested peptide
solution was desalted using a MonoSpinTM C18 column (GL Science, Tokyo,
Japan) and dried with a SpeedVac.

The peptide mixture was analyzed by a home-made 30-cm-long pulled-tip
analytical column (75 μm ID packed with ReproSil-Pur C18-AQ 1.9 μm resin, Dr.
Maisch GmbH), the column was then placed in-line with an Easy-nLC 1200 nano
HPLC (Thermo Scientific, San Jose, CA) for mass spectrometry analysis. The
analytical column temperature was set at 55 °C during the experiments. The mobile
phase and elution gradient used for peptide separation were as follows: 0.1% formic
acid in water as buffer A and 0.1% formic acid in 80% acetonitrile as buffer B,
0–1 min, 3–8% buffer B; 1–301 min, 8–25% buffer B; 301–339 min, 25–50% buffer
B, 339–340 min, 50–100% buffer B, 340–360 min, 100% buffer B. The flow rate was
set as 300 nl/min.

Data-dependent tandem mass spectrometry (MS/MS) analysis was performed
with a Q Exactive Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA). A
cycle of one full-scan MS spectrum (m/z 300–1800) was acquired followed by top
20 MS/MS events, sequentially generated on the first to the twentieth most intense
ions selected from the full MS spectrum at a 28% normalized collision energy. Full
scan resolution was set to 70,000 with automated gain control (AGC) target of 3e6.
MS/MS scan resolution was set to 17,500 with isolation window of 1.8m/z and
AGC target of 1e5. The number of microscans was one for both MS and MS/MS
scans and the maximum ion injection time was 50 and 100 ms, respectively. The
dynamic exclusion settings used were as follows: charge exclusion, 1 and >8;
exclude isotopes, on; and exclusion duration, 15 s. MS scan functions and LC
solvent gradients were controlled by the Xcalibur data system (Thermo Scientific).

MS/MS data were processed using Maxquant software version V1.6.10.43. MS/
MS spectra were searched by the Andromeda search engine against the SwissProt
Mouse database at a false discovery cutoff ≤1%. Data were searched at 20 ppm mass
tolerances for precursor ions for mass calibration and six amino acids were
required as the minimum peptide. LFQ intensity was used as relative quantification
of protein.

Light microscopy. mEPCs grown on fibronectin-coated 29-mm glass-bottom
dishes (Cellvis, D29-14-1.5-N) were fixed with 4% paraformaldehyde in PBS for
10 min at room temperature and permeabilization with 0.5% Triton X-100 for
15 min. In Figs. 1e and 4c, mEPCs were pre-extracted with 0.5% Triton X-100 for
30 s before fixation. GFP signals in mEPCs were visualized by immunostaining
using anti-GFP antibody. All the antibodies used are listed in Supplementary
Table 2.

Confocal images were captured by using Leica TCS SP8 system with a ×63/1.40
oil immersion objective and Z-stack images were obtained with maximum intensity
projections. 3D-SIM images were captured with Delta Vision OMX SR imaging
system (GE Healthcare) equipped with a Plan Apo ×60/1.42 NA oil-immersion
objective lens (Olympus). Serial Z-stack sectioning was performed at 125-nm
intervals. Images were processed with SoftWoRx software.

Ciliary motilities were recorded at 140 fps (frames per second) by using an
Andor Neo sCMOS camera on Olympus IX71 microscope with a ×63/1.40 oil
immersion objective43. To track fluid flows driven by ciliary beat82, fluorescent
beads (Fluoresbrite PolyFluor 570 microspheres, Polysciences, 24061-10) were
added at 1:200 dilution to the culture medium and imaged at 20 fps for 30 s with a
×63/1.40 oil immersion objective on an Olympus IX81 equipped with Hamamatsu
EMCCD camera. Images were processed with ImageJ and Adobe Photoshop CS6.

Electron microscopy. For transmission EM, mouse trachea or cultured mEPCs
were fixed in 2.5% glutaraldehyde overnight at 4 °C, washed with PBS, and treated
with 1% OsO4 for 30 min at room temperature. The samples were dehydrated with
graded ethanol series and embedded in Epon 812 resin. In total, 70-nm ultrathin
sections were stained with 1% lead citrate and 2% uranyl acetate. Images were
captured at 80 KV using a Tecnai G2 Spirit transmission electron microscope (FEI,
Hillsboro, OR).

For scanning EM, the cortex of P10 mouse brains was fixed in 2.5%
glutaraldehyde and 2% paraformaldehyde overnight at 4 °C and dehydrated with a
graded ethanol series. Critical point drying was carried out before metal shadowing.
The images were taken with a FEI Quanta 250 scanning electron microscope.
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Magnetic resonance imaging, tissue section and H&E staining. Mice were
anesthetized with isoflurane. T2 weighted spin echo images of the head were
acquired by using BioSpec 70/30 USR (Bruker). The imaging parameters were: slice
thickness 0.5 mm; time of repetition (TR) 2777.2 ms; and time of echo (TE) 34 ms.

P10 mouse brains were dissected and sectioned into 250-μm-thick sagittal slices
using a Leica VT 1000S vibratome. Images were captured with an Olympus SZX16
Stereo Microscope.

For H&E staining, P14 mouse brains and noses were paraffin-embedded and
sectioned into 5-μm thick slices with an RM 2235 microtome (Leica). The sections
were deparaffinized with xylene, rehydrated, and stained with hematoxylin for
5 min and eosin for 1 min. The tissue images were captured with an Olympus BX51
microscope.

Immunoprecipitation. Immunoprecipitation experiments were performed as
described78. Cells were lysed with lysis buffer [20 mM Tris-HCl, pH 7.5, 100 mM
KCl, 0.1% NP-40, 1 mM EDTA, 10 mM Na4O7P2, 10% Glycerol, and protease
inhibitors (Sigma, 539134)] and was cleared by centrifugation at 14,000 × g for
10 min at 4 °C. The precleared cell lysates were incubated with 20 μl of anti-FLAG
beads (Sigma, A2220) for 2 h. The beads were washed three times with lysis buffer
and three times with wash buffer (20 mM Tris-HCl, pH 7.5, 150 mM KCl, 0.5%
NP-40, 1 mM EDTA, 10 mM Na4P2O7,10% Glycerol). The proteins on the FLAG
beads were eluted with 30 μl of 1 mg/ml FLAG peptide.

Quantification and statistics. Microscopic and biochemical results were repeated at
least twice. Quantification results are presented as mean ± s.d. unless otherwise stated.
Two-sided Student’s t test (GraphPad Prism software) was used to calculate P-values
between unpaired samples. Differences were considered significant when P < 0.05. Only
results from three or more independent experiments were applied to the t-tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data of label-free quantitative (LFQ) proteomic analysis results (Fig. 2c) have been
deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomex
change.org) via the iProX partner repository83 with the accession code (PXD028219).
Source data are provided with this paper. Any remaining data that support the results of
this study are available from the corresponding author upon reasonable request. Source
data are provided with this paper.
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