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Abstract

Purpose

To identify the factors which significantly contribute to the thickness variabilities in macular

retinal layers measured by optical coherence tomography with or without magnification cor-

rection of analytical areas in normal subjects.

Methods

The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus

inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total ret-

ina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000,

NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas

were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without

magnification correction. For each layer thickness, a semipartial correlation (sr) was calcu-

lated for explanatory variables including age, gender, axial length, corneal curvature, and

signal strength index.

Results

Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13)

regardless of analytical areas or magnification correction. Without magnification correction,

axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with

GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer
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retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and

GCC became mostly insignificant following magnification correction.

Conclusions

The strong correlation between the thickness of inner retinal layers and axial length

appeared to result from magnification effects. Outer retinal thickness may differ by gender

and axial length independently of magnification correction.

Introduction
Evolution of optical coherence tomography (OCT) technologies has made in vivo thickness
measurements of retinal layers an indispensable tool for the diagnosis and management of vari-
ous diseases involving the macula. In particular, inner retinal layers, i.e. ganglion cell complex
(GCC), retinal nerve fiber layer (RNFL), and the ganglion cell layer plus inner plexiform layer
(GCLIPL), are the primary targets to quantitate retinal ganglion cell (RGC) loss in the macula
owing to the improved thickness measurements by spectral-domain OCT [1]. Furthermore,
given that the macula is where more than half of RGCs reside to serve as output neurons for
the central vision [2], in vivo quantification of RGCs in the macula provides vital information
to elucidate the structure-function relationship in glaucoma and other diseases [3–6].

Determinants of macular layer thickness in normal subjects have been extensively studied
in order to establish a normative database for improving diagnostic accuracy [7–10] and also
to reveal normal anatomical nature of the macula by utilizing data from population-based
studies [11–14]. Various factors including age [7,9–22], gender[7–14,16–20,22–26], ethnicity
[7–9,25,26], eye laterality [8,9], axial length [9–14,16–18,20,22,23,26–30], refractive error
[11,12,14,17,18,20,22,23,26–28,30], corneal curvature [13,14,18], and signal strength
[9,12,18,31] have been selected as potential candidates that may influence retinal layer thick-
ness in the macula. However, only a few studies have conducted a multivariate regression anal-
ysis to determine the relationship between various clinical factors and the thickness of multiple
retinal layers [10,17,18,22]. Although dependencies on age and ethnicity are relatively well
characterized and are incorporated into the normative databases of commercially available
OCT devices, the clinical relevance of other factors remain to be established.

A number of studies reported the significant effects of axial length on the retinal layer thick-
ness in the macula [9,11,12–14,16,17,20,22,26–29,32]. Some authors speculated that retinal
thinning in myopic eyes may result from mechanical stretching of the sclera along with axial
elongation [13,14,17,23,27]. However, another possibility is artificial retinal thinning due to
ocular magnification effects on the analytical area, which is inherent to OCT scanning [9–
11,17,23,28,29,31]. In this regard, a negative correlation between RNFL thickness, measured by
a peripapillary 12º circular scan, and axial length was eliminated by correcting the magnifica-
tion effects on the size of scan circle [32–35]. However, thickness changes by magnification
correction of the macular analytical area were only reported for total retinal thickness in one
study [31]. Furthermore, the influence of magnification correction on the correlation between
various clinical factors and the thickness of multiple retinal layers has not yet been reported. In
terms of the clinical significance, inner retinal thinning associated with a long axial length may
have a significant impact on the diagnosis of early glaucoma in highly myopic eyes due to an
increase in false positives [36,37].

The purpose of this study was to comprehensively investigate the relationship between clini-
cal factors and the thickness of multiple retinal layers in the macula measured by OCT in
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normal subjects and to identify the factors that significantly contribute to the variability in
thickness. Furthermore, the influence of magnification correction of the analytical area on the
contribution was also examined. To this end, we enrolled eyes with a broad range of axial
length.

Subjects and Methods

Study design
This was a prospective, cross-sectional, multicenter study conducted in six clinical centers;
Kyoto University (Japan), Nagoya University (Japan), Kanazawa University (Japan), the
National University Health System (Singapore), Tokyo Medical and Dental University (Japan)
and Tseung Kwan O Hospital (Hong Kong). The study adhered to the tenets of the Declaration
of Helsinki and approval of the Institutional Review Board was obtained at each participating
center. Asian adult subjects were enrolled in each site. Written informed consent was obtained
from each subject.

Protocols of ocular examination
The study subjects underwent a complete ocular examination: best corrected visual acuity
(BCVA), refractive status by autorefractometry, intraocular pressure (IOP) using Goldmann
applanation tonometry, anterior segment examination by slit lamp biomicroscopy, fundus
examination by ophthalmoscopy and slit lamp biomicroscopy, and fundus photography. Ocu-
lar biometry, i.e. corneal curvature using autokeratometry and axial length using partial coher-
ence interferometry (IOLMaster; Carl Zeiss Meditec, Inc., Dublin, CA, USA), was also
measured. Standard automated perimetry (SAP) was performed using a Humphrey field ana-
lyzer (Carl Zeiss Meditec) with the 24–2 Swedish Interactive Threshold Algorithm. Macular
scans by spectral-domain OCT (RS-3000, Nidek, Gamagori, Aichi, Japan), which consisted of
128 vertical B-scans, each of which had 512 A-scans, were performed by well-trained examin-
ers at each institution over a 30×30° square area, corresponding to 9×9 mm square area in the
Gullstrand model eye. Only high quality images with the highest possible signal strength index
(SSI) achievable, no centration errors, and no motion artifacts were used.

Exclusion criteria
Subjects with medical history of diabetes, hypertension, central nervous system diseases, use of
medications such as systemic steroids and anti-cancer drugs, ocular surgeries including corneal
refractive surgery, intraocular surgeries and retinal photocoagulation were excluded. Exclusion
criteria for ocular examination were BCVA<1.0, IOP>21 mmHg, glaucomatous abnormali-
ties in reliable SAP results (fixation loss�20%, false-negative error�15%, false-positive error
�33%) meeting the Anderson’s criteria in which one of the following was present: having a
cluster of 3 or more non-edge points with P< 5% and at least one point with P< 1% in the
pattern deviation probability plot, pattern standard deviation of less than 5%, or a glaucoma
hemifield test result outside normal limits. Eyes with shallow anterior chamber or media opac-
ity affecting the fundus imaging, low quality OCT images, fundus abnormalities such as glau-
coma, diabetic retinopathy, retinal detachment, macular degeneration, retinitis pigmentosa,
retinal vein occlusion, inferior staphyloma associated with tilted disc syndrome, scleral ridge
temporal to the optic disc, peripapillary intrachoroidal cavitation or diffuse chorioretinal atro-
phy were also excluded.

In order to study the influence of magnification correction of the analytical area, we aimed
to enroll eyes with a broad range of axial length. Accordingly, exclusion criteria were set for
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spherical equivalent refractive error (>+3.0 diopters) and axial length (>30 mm). Because of
the difficulty of enrollment of elderly, highly myopic eyes without any pathological changes in
the macula, we did not include subjects older than 60 years in this study. Even distribution of
subjects by gender was aimed in each decade of age. When both eyes were eligible for inclusion,
one eye was randomly chosen.

Analyses of the thickness of macular retinal layers
The thickness of retinal layers {RNFL, GCLIPL, RNFL plus GCLIPL (GCC), total retina, total
retina minus GCC (outer retina)} in the macular scans was measured using automatic segmen-
tation software. The segmentation of each layer in all B-scan images was inspected and cor-
rected manually if necessary.

The analytical area was defined by three concentric circles, 3.3°-, 10°- and 20°-diameters,
which correspond to 1-, 3- and 6-mm diameters in the Gullstrand model eye with an axial
length of 24.38 mm, respectively. The inner (1–3 mm) and outer (3–6 mm) rings were further
divided into four quadrants: inferior nasal, inferior temporal, superior temporal, and superior
nasal. The 30×30° square scan area is supposed to be a nominal 9×9 mm square area for all
eyes when magnification correction is not considered. A modified Littmann’s formula (Ben-
nett’s formula) was used to correct the ocular magnification effect associated with OCT scans
[38]. By entering the data of axial length into the formula, a magnification-corrected analytical
area was determined for each scan. For example, the scan area corresponded to a 10.5x10.5
mm square area after magnification correction in an eye with an axial length of 28.41 mm. The
sizes of three concentric circles were, then, rescaled according to the dimension of the ‘magnifi-
cation-corrected’ scan area, and this was defined as the ‘magnification-corrected’ analytical
area (Fig 1). Left eye data were converted to a right eye format.

Statistical analysis
Average thickness of retinal layers in each analytical area with or without magnification correction
was compared using a paired t-test. Equality of variance between the thickness with and without
magnification correction was examined by F-test. P-values were adjusted using Bonferroni correc-
tion given the 12 analytical areas to be compared for each retinal layer. Correlations between two
explanatory variables were examined using a Spearman’s rank correlation coefficient.

For each retinal layer thickness in each analytical area as an objective variable, a semipartial
correlation coefficient (sr) was determined in the multiple linear regression model with seven
explanatory variables: age, gender, eye laterality, axial length, spherical equivalent, corneal cur-
vature, and SSI. A significant sr means that a significant amount of variance of the objective
variable is explained by an explanatory variable independently of other explanatory variables.
A sr2 (sr squared) indicates the proportion of total variance in the objective variable uniquely
accounted for by an explanatory variable controlling for other explanatory variables. A sr was
also determined for the correlation of explanatory variables with retinal layer thickness in the
‘magnification-corrected’ analytical area.

Regarding the issue of multicollinearity, when two or more explanatory variables were
highly correlated each other and had high variance inflation factors (VIF>5), a variable with
the smallest partial correlation coefficient controlling for the highly correlated variables was
removed from the set of explanatory variables to be entered in the regression analysis, and
VIFs were recalculated. A partial residual plot was employed to visualize the relationship
between a given explanatory variable and the objective variable with the effect of the other
explanatory variables in the model. Statistical analyses were performed with SPSS software
(IBM SPSS Statistics 20, IBM Corp., New York, USA) and STATA software (STATA/MP
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version 14.0; StataCorp, TX, USA). For all analyses, a P-value of<0.05 was considered statisti-
cally significant.

Results
The characteristics of subjects including demographic and ocular biometric data are shown in
Table 1. Male subjects (35.3, 20.7–58.2 years; median, range) were significantly younger than
female subjects (40.5, 20.3–59.9 years; P = 0.047, Mann-Whitney test). Correlations between
these variables evaluated by Spearman’s rank correlation coefficient are shown in Table 2.
Axial length had significant correlations with other variables, especially with spherical equiva-
lent refractive error (rs, -0.89).

Fig 1. Thickness maps of the ganglion cell complex showing the effects of magnification correction
on the analytical area. A highly myopic eye with an axial length of 28.41 mm (A, B) and a hyperopic eye with
an axial length of 21.71 mm (C, D). The 30×30°square scan area is supposed to be 9×9 mm square area for
any eye when magnification correction is not considered (A, C). In this situation, the apparent sizes of the
analytical area on the recorded images, which is defined by three concentric circles (1-, 3- and 6-mm nominal
diameters), are identical regardless of the axial length (A, C). However, the scan area corresponded to a
10.5x10.5 mm (B) or 7.9x7.9 mm (D) square area after magnification correction in eyes with a long or short
axial length, respectively. The sizes of three concentric circles were rescaled according to the dimension of
the ‘magnification-corrected’ scan area, and defined as the ‘magnification-corrected’ analytical area (B, D).
The analytical area became relatively smaller or larger compared to the scan area by magnification correction
in eyes with a long or short axial length, respectively (B, D).

doi:10.1371/journal.pone.0147782.g001
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First, the influence of the magnification correction of the analytical area on the thickness of
retinal layers was examined. Average thickness of retinal layers in each analytical area with or
without magnification correction was compared (Table 3). Except for areas including some
quadrants of outer ring of RNFL and inner ring of GCLIPL, average thickness significantly
changed after magnification correction of the analytical area. RNFL and inner ring of GCC
were significantly thinner in the ‘magnification-corrected’ analytical area. On the other hand,
the outer ring of GCLIPL and GCC and all areas of the outer and total retina except for the cen-
ter became significantly thicker after magnification correction. The thickness variance became
significantly smaller after magnification correction in the outer ring of GCLIPL.

The relationship between axial length and thickness changes (μm or percentage relative to
the magnification-uncorrected thickness) after magnification correction in total area and inner
and outer rings is shown in Figs 2–4. The magnitude of thickness changes in each retinal layer
tended to increase as the axial length deviated from 24.38 mm. RNFL was the only retinal layer
which showed thickness changes correlated negatively with axial length in all three areas.
Other retinal layers had smaller thickness changes than RNFL, when expressed as percentage
of the magnification-uncorrected thickness, whereas apparent positive slopes were observed in

Table 1. Characteristics of the subjects including demographic and ocular biometric data.

Number of subjects/ eyes 202/ 202

Age (years), mean ± SD (range) 38.4 ± 10.8 (20.3–59.9)

Gender (female/ male) 95/ 107

Eye laterality (right/ left eye) 101/ 101

Axial length (mm), mean ± SD (range) 25.8 ± 1.7 (21.5–28.8)

Spherical equivalent refractive error (diopters), mean ± SD (range) -5.1 ± 3.9 (1.75 - -15.5)

Corneal curvature (mm), mean ± SD (range) 7.75 ± 0.24 (7.16–8.60)

Signal strength index, mean ± SD (range) 8.4 ± 1.1 (6–10)

SD = standard deviation. Data are shown as mean ± standard deviation.

doi:10.1371/journal.pone.0147782.t001

Table 2. Correlation between two explanatory variables by Spearman’s rank correlation coefficient.

Variables Age
(years)

Gender Eye
laterality

Axial
length

Spherical equivalent
refractive error

Corneal
curvature

Gender (female vs. male) rs 0.14

P-value 0.046

Eye laterality (left vs. right) rs 0.01 0.03

P-value 0.94 0.67

Axial length (mm) rs -0.20 -0.21 0.03

P-value 0.004 0.003 0.68

Spherical equivalent refractive error
(diopters)

rs 0.18 0.08 -0.03 -0.89

P-value 0.009 0.27 0.72 <0.0001

Corneal curvature (mm) rs -0.21 -0.15 -0.03 0.29 0.04

P-value 0.003 0.036 0.68 <0.0001 0.55

Signal strength index rs -0.08 0.10 0.12 -0.36 0.34 -0.16

P-value 0.23 0.14 0.10 <0.0001 <0.0001 0.02

rs = Spearman’s rank correlation coefficient.

doi:10.1371/journal.pone.0147782.t002
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total area and the outer ring. The thickness in the inner ring showed relatively smaller changes
than the outer ring, which was most obvious in GCLIPL. The inner retinal layers had more
thickness percentage changes than total or outer retina, especially in the inner ring of RNFL
and in the outer ring of GCLIPL and RNFL.

Influences of demographic and ocular biometric variables on each retinal layer thickness
per analytical area were examined by multiple linear regression analysis. Among seven explor-
atory variables examined, axial length and spherical equivalent refractive error, which were
highly correlated each other (rs, -0.89), had high VIFs (12.0 and 11.0, respectively). Given that
partial correlation coefficients adjusted for each other were smaller in refractive error than in
axial length for almost all the layer thicknesses, refractive error was omitted as an explanatory
variable, which reduced the VIFs of all the other variables to<2. With these six variables
entered into the multiple regression models, all variables except corneal curvature then had a
significant sr with at least one retinal layer (S1–S5 Tables). Age, eye laterality, and signal
strength index had a significant sr in some analytical areas of several layers although sr2 values
were small (�0.03).

Gender and axial length had a significant sr in all layers. In terms of gender, the significant
sr was mostly negative, indicating that the thickness controlling for other variables was signifi-
cantly smaller in females than in males (S1–S5 Tables, Fig 5). The results of simple between-
gender comparisons of retinal layer thickness (S6 Table) were similar to those of sr. A signifi-
cant negative sr was found in the inner ring of the inner retinal layers (sr2, 0.01 to 0.07) and in

Fig 2. The relationship between axial length and thickness changes of retinal layers in the total analytical area after magnification correction. The
thickness changes (μm; A) and relative thickness changes compared to the magnification-uncorrected thickness (%; B) after magnification correction were
plotted against axial length. Green squares: retinal nerve fiber layer, Red circles: ganglion cell layer plus inner plexiform layer, Blue circles: ganglion cell
complex, Light blue diamonds: total retina, Black triangles: outer retina.

doi:10.1371/journal.pone.0147782.g002
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all the analytical areas of outer and total retina (sr2, 0.05 to 0.13). The magnification correction
of analytical areas made the sr2 values slightly larger in many of the analytical areas. The sr2

was especially large in the ‘magnification-corrected’ analytical areas of the outer retina where
sr2 values were all�0.1.

Regarding the sr of axial length in ‘magnification-uncorrected’ analytical areas, a significant
positive sr (sr2 �0.1) was observed in the RNFL except for the temporal part of the outer ring,
whereas a significant negative sr (sr2 �0.2) was found in the outer ring of GCLIPL (S1–S5
Tables, Fig 6). As the sum of RNFL and GCLIPL, the negative sr in the outer ring was less sig-
nificant in GCC than in GCLIPL. After magnification correction, most of the sr in the inner
retina layers, especially in the GCC, became insignificant. In contrast, for the outer and total
retinas, all analytical areas except for the center had a significant negative sr (sr2 �0.05), which
were still significant in most of the analytical areas after the magnification correction although
sr2 values became smaller.

Fig 7 shows partial residual plots to illustrate the relationship between axial length and the
average thickness of total analytical area in each retinal layer controlling for the effects of the
other five explanatory variables. RNFL showed a positive correlation (sr, 0.46) with axial
length, while GCLIPL (sr, -0.48) and GCC (sr, -0.20) showed negative correlations, but only
without magnification correction. The negative correlations of total (sr, -0.39) and outer retina
(sr, -0.51) without magnification correction became weaker, but were still significant after mag-
nification correction (sr, -0.18 and -0.25, respectively).

Fig 3. The relationship between axial length and thickness changes of retinal layers in the inner ring of analytical area after magnification
correction. The thickness changes (μm; A) and relative thickness changes compared to the magnification-uncorrected thickness (%; B) after magnification
correction were plotted against axial length. Green squares: retinal nerve fiber layer, Red circles: ganglion cell layer plus inner plexiform layer, Blue circles:
ganglion cell complex, Light blue diamonds: total retina, Black triangles: outer retina.

doi:10.1371/journal.pone.0147782.g003
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Discussion
Without magnification correction, a negative correlation between axial length and retinal
thickness in the macula has been reported for full thickness [13,14,16,17,20,22,26,28] and also
for GCC [22,29] and GCLIPL [9,12,29,30], while RNFL thickness of the macular area had a
positive correlation with axial length [29]. Our results, which corroborate the earlier reports,
may be explained by the normal thickness profile of each retinal layer determined by spectral-
domain OCT [10,39]. For example, GCLIPL has an annular-shaped thickest portion in the
pericentral region, which makes the layer thicker in the inner ring than in the outer ring.
Therefore, the average GCLIPL thickness in the outer ring becomes gradually thinner in eyes
with longer axial length than the model eye due to widening of the analytical area when the
magnification effect is not corrected. The fact that the magnification correction almost nullified
the dependency of thickness in the inner retinal layers on the axial length indicates that axial
elongation may not significantly affect inner retinal thickness in the macula. In contrast, axial
length retained significantly negative contributions to outer retinal thickness even after magni-
fication correction. This implies that the thickness of the outer part of the retina has a true
axial length dependency which may partly be associated with scleral stretching by axial length
elongation.

Gender also had a significant contribution to macular retinal thickness. The results of thin-
ner macula in females than in males agree with previous reports [9–14,16,17,19,20,22–26]. In
this study subjects, males were significantly younger than females although even distribution of

Fig 4. The relationship between axial length and thickness changes of retinal layers in the outer ring of analytical area after magnification
correction. The thickness changes (μm; A) and relative thickness changes compared to the magnification-uncorrected thickness (%; B) after magnification
correction were plotted against axial length. Green squares: retinal nerve fiber layer, Red circles: ganglion cell layer plus inner plexiform layer, Blue circles:
ganglion cell complex, Light blue diamonds: total retina, Black triangles: outer retina.

doi:10.1371/journal.pone.0147782.g004
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subjects by gender was aimed. The effect of age imbalance on gender difference was adjusted in
multivariate regression analysis for determining a sr of gender. Given that the sr2 values for the
outer retina were larger than those for the inner retina in all analytical areas, gender may have
a greater influence on the outer retina than on the inner retina. Ooto et al. reported that the
inner nuclear layer, outer plexiform layer and outer nuclear layer were the retinal layers where
the thickness was significantly greater in males than in females [10]. Therefore, gender differ-
ences in the outer retina or total retina observed in this study may be attributable to these lay-
ers. The increase in sr2 values of gender for the outer ring of outer retina after magnification
correction suggested that the gender differences in the thickness of these layers may be attenu-
ated outside of the nominal 6-mm diameter circle. The attenuation of gender differences may
be accounted for by thinning of the outer nuclear layer from the center of the macula towards
the periphery. The clinical significance of the thickness variabilities by gender or axial length
can be compared with the measurement reproducibility by OCT. Spectral-domain OCT
devices have a high reproducibility of thickness measurements in macular scans. The

Fig 5. Semipartial correlation of gender with the thickness of retinal layers in each analytical area with or without magnification correction. The
significance of the semipartial correlation coefficient (sr) and magnitude of the sr squared (sr2) are color coded in each analytical area. S = superior,
N = nasal, I = inferior, T = temporal. A, F: retinal nerve fiber layer, B, G: ganglion cell layer plus inner plexiform layer, C, H: ganglion cell complex, D, I: total
retina, E, J: outer retina. A—E: ‘magnification-uncorrected’ analytical area, F—J: ‘magnification-corrected’ analytical area. A significant sr was found in the
inner ring of inner retinal layers and in all the analytical areas of outer and total retina. The sr2 was relatively large in total and outer retina compared to inner
retinal layers. The magnification correction of analytical areas did not cause remarkable changes in the magnitude of sr2 values compared to the sr of axial
length with the thickness of retinal layers (Fig 6).

doi:10.1371/journal.pone.0147782.g005
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coefficient of variations (CVs) were<1.5% in total retina [40,41],<1.5% in GCC [42],<1% in
GCLIPL [29,42], and<2.5% in RNFL [29,42] when measured in normal subjects. Using RS-
3000, Nakanishi et al. reported that the average CVs of thickness in GCC within the nominal
9-mm diameter circle were<2% in highly-myopic eyes with or without glaucoma [37]. Mean-
while, gender and axial length had�10% contribution (i.e. sr2�0.1) to the thickness variance in
many of the analytical areas of multiple retinal layers. For example, given that the mean, standard
deviation, variance and sr2 of axial length for GCLIPL thickness in the ‘magnification-uncor-
rected’ total area were 68.7 μm, 5.6 μm, 31.4 μm2, and 0.23, respectively, the variance that was
uniquely attributable to axial length was 7.2 μm2, which is larger than the reproducibility variance
corresponding to a CV of 3% (4.2 μm2). On the other hand, given that the mean, standard devia-
tion, variance and sr2 of gender for the outer retinal thickness in the ‘magnification-corrected’
total area were 200.2 μm, 7.7 μm, 59.3 μm2, and 0.13, respectively, the variance that was uniquely
attributable to gender was 7.7 μm2, which is smaller than the reproducibility variance corre-
sponding to a CV of 1.5% (9.0 μm2). Sr2 values�0.03 or�0.1 were needed for GCLIPL or GCC

Fig 6. Semipartial correlation of axial length with the thickness of retinal layers in each analytical area with or without magnification correction.
The significance of the semipartial correlation coefficient (sr) and magnitude of the sr squared (sr2) are color coded in each analytical area. S = superior,
N = nasal, I = inferior, T = temporal. A, F: retinal nerve fiber layer (RNFL), B, G: ganglion cell layer plus inner plexiform layer (GCLIPL), C, H: ganglion cell
complex (GCC), D, I: total retina, E, J: outer retina. A—E: ‘magnification-uncorrected’ analytical area, F—J: ‘magnification-corrected’ analytical area. A large
sr2 (�0.2) was observed in RNFL, GCLIPL and outer retina in ‘magnification-uncorrected’ analytical areas. After magnification correction, most of the sr in the
inner retinal layers, especially in GCC, became insignificant. In contrast, the sr were still significant in most of the analytical areas of the outer and total retina
after magnification correction.

doi:10.1371/journal.pone.0147782.g006
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and RNFL to exceed the reproducibility variance corresponding to the CV of normal subjects in
all ‘magnification-uncorrected’ analytical areas, while sr2 values�0.2 were required for total or
outer retina in all analytical areas regardless of magnification correction. Sr2 of gender was�0.07
for inner retinal layers and was�0.15 for total and outer retina. Among them, only the inner
ring of GCLIPL had comparably large sr2 values to the reproducibility variance of normal sub-
jects regardless of magnification correction. In contrast, sr2 values of axial length were large
enough to exceed the reproducibility variance in multiple ‘magnification-uncorrected’ analytical
areas of all retinal layers except for total retina. Therefore, axial length, under the condition of
‘magnification-uncorrected’ analytical areas, and gender for GCLIPL appeared to have significant
clinical impacts on the layer thickness in comparison with OCTmeasurement reproducibility.

Furthermore, regarding the magnification correction, as shown in Fig 2, a considerable pro-
portion of eyes had thickness changes larger than the CVs of measurement reproducibility of
each retinal layer in normal subjects (i.e. 1 to 2.5%). In particular, the thickness change may be
�5% in the outer ring of GCLIPL in eyes with an axial length>26 mm. Furthermore, the sta-
tistically significant reduction of thickness variance by magnification correction was observed
in the outer ring of GCLIPL. Thus, magnification correction is also clinically significant for the
thickness variability, especially in the inner retinal layers, and the results indicated that magni-
fication correction may be useful for the construction and application of normative database
involving the outer ring of GCLIPL.

Our study has several limitations. We did not include subjects older than 60 years because
of the difficulty in recruiting elderly, highly myopic subjects with a strictly normal fundus. This
may be one reason why we failed to find a significant contribution of age to retinal layer thick-
ness. In addition, we used a modified Littmann’s formula to correct the ocular magnification

Fig 7. Partial residual plots showing the relationship between axial length and the average thickness of each retinal layer in total analytical area
controlling for the effects of other five explanatory variables.Component plus residual was plotted against axial length for each retinal layer. A, F: retinal
nerve fiber layer, B, G: ganglion cell layer plus inner plexiform layer, C, H: ganglion cell complex, D, I: total retina, E, J: outer retina. A—E: magnification
uncorrected analytical area, F—J: magnification corrected analytical area. The other five explanatory variables = age, gender, eye laterality, corneal
curvature, and signal strength index.

doi:10.1371/journal.pone.0147782.g007
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effect associated with OCT scans. Although this method was proven to be equally accurate to
more detailed calculations using additional ocular biometric parameters [43], under- or over-
corrections may occur in eyes where ocular dimensions deviated from the assumption in the
formula. Regarding racial differences in normal thickness profiles of macular retinal layers,
applicability of our results to non-Asians needs to be determined in further studies.

In conclusion, we determined the unique contribution of various factors to thickness vari-
abilities in macular retinal layers measured by OCT with or without magnification correction
of analytical areas in normal subjects. Gender and axial length appeared to significantly con-
tribute to the thickness variance of all retinal layers in the macula. A significant correlation
between the thickness of the inner retinal layers and axial length appeared to result mostly
from magnification effects. Outer retinal thickness may differ by gender and axial length inde-
pendently of magnification correction. The significance of the clinical factors, especially axial
length and magnification correction, for the diagnosis of various diseases involving the macula
needs to be further elucidated.
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