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Affective human-robot interaction requires lightweight software and cheap wearable

devices that could further this field. However, the estimation of emotions in real-time

poses a problem that has not yet been optimized. An optimization is proposed for the

emotion estimation methodology including artifact removal, feature extraction, feature

smoothing, and brain pattern classification. The challenge of filtering artifacts and

extracting features, while reducing processing time and maintaining high accuracy

results, is attempted in this work. First, two different approaches for real-time

electro-oculographic artifact removal techniques are tested and compared in terms of

loss of information and processing time. Second, an emotion estimation methodology

is proposed based on a set of stable and meaningful features, a carefully chosen set

of electrodes, and the smoothing of the feature space. The methodology has proved to

perform on real-time constraints while maintaining high accuracy on emotion estimation

on the SEED database, both under subject dependent and subject independent

paradigms, to test the methodology on a discrete emotional model with three

affective states.

Keywords: real-time, EEG, artifact removal, emotion estimation, HRI

1. INTRODUCTION

The use of Electroencephalography (EEG) signals for emotion estimation has been in the point
of view of the field for the last decades. The future use of systems that could perform real-time
emotion estimations in subjects under different health conditions would improve the application
of therapies in different scenarios. One of the most promising fields for the application of such
methodologies is affective human-robot interaction (HRI).

Under the paradigm of emotion recognition, robots will allow the development of automatic
systems for the treatment and evaluation of the brain patterns of patients, taking into account the
emotional content and, furthermore, to have the ability to adapt their behavior as the mood of the
patient changes dynamically.

From the perspective of the field of robotics, emotions estimation can be performed by
evaluating the dynamical changes over facial expressions, body language, voice tone, EEG patterns,
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and physiological signals, related to the equilibrium between
the parasympathetic and sympathetic autonomous systems. The
EEG is a non-invasive method of high temporal resolution that
could allow real-time recognition of emotional responses. Also,
it can provide a better understanding of the user’s behavior and
emotional responses which involve facial expression, tone of
voice, or body gestures, which may remain hidden as is the case
for patients with expression and mobility problems. Therefore,
in this article, EEG patterns will be analyzed and related to
emotional responses, as they may provide a different perspective
on patients’ emotional responses.

Most research studies using EEG have presented
methodologies that used offline and supervised artifact removal
obtaining high accuracy results, however, often involving the use
of complex deep learning machines that require hyper-parameter
tuning (Khosrowabadi et al., 2014; Zheng and Lu, 2015; Zheng
et al., 2017; Song et al., 2018). Both processes could take up
to several days or even weeks of preparation which are not
affordable for domains of study where real-time constraints
are involved. On the other hand, the problem of real-time
recognition has been already addressed by Liu et al. (2010, 2017)
using the IADS database and own-produced video database,
respectively, using Fractal Dimensions as the main feature for
emotion recognition.

As EEG emotion estimation has proved to be affordable in
different ways, the next barrier is to perform such task under real-
time constraints. This process faces two main problems: online
artifact removal and classification with high accuracy results. The
former is usually performed in two steps. Firstly decomposing
the signals using independent component analysis (ICA) and
recompose the signals for the next step. Secondly, visualizing
the signals to manually remove the parts which are related to
artifacts. The latter involves the following procedures:

• Feature extraction, to represent the information as a set
of features.

• Feature smoothing, to remove variability over time.
• Scaling the training samples taking into account the

underlying data distribution.
• Dimensional reduction by means of feature

selection techniques.
• Model selection and hyper parameterization for

optimal generalization.

Finally, the development of such a methodology that could
work under real-time constraints must deal with two main
obstacles: artifact removal and accurate classification across
sessions and subjects.

1.1. Online Artifact Removal
The most common artifacts presented in EEG signals are
electro-oculographic (EOG) artifacts, muscle artifacts, and 50Hz
background noise. Artifact removal is necessary, as it reduces
possible classification errors and reduces the amount of processed
information. On the other hand, care must be taken while
carrying out such a process, since valuable information in the
signals could be damaged.

Taking into account these assumptions, an automatic artifact
removal method can be developed using the following approach.
Firstly, 50Hz background noise can be easily removed by a
notch filter based on IIR filters. Secondly, EOG artifacts, such as
blinking, are often presented within slow frequency bands, below
5Hz (Rani and Mansor, 2009), while muscle artifacts are usually
presented within medium to high-frequency bands 20–300Hz
(Muthukumaraswamy, 2013). Therefore, muscle artifacts are
partially removed outside the range of 1–50Hz when filtering
the signals, since this range includes the best frequency bands
for emotion estimation: delta (1–4Hz), theta (4–8Hz), alpha
(8–16Hz), beta (16–30Hz), and gamma (30–50Hz). As several
studies report (Zheng and Lu, 2015; Zheng et al., 2015, 2017),
the most effective band ranges for emotion estimation, are beta
and gamma bands. Finally, EOG artifacts can be effectively
removed with real-time constraints by using independent
component analysis (ICA) methods combined with wavelet
analysis. Although several real-time EOG artifact removal
methods have been developed, only twomethodologies (Mahajan
and Morshed, 2014; Mammone and Morabito, 2014) based on
these approaches were tested.

1.2. Emotion Estimation
EEG emotion estimation is considered a challenging task due
to different factors. Self-evaluation is needed as there is no
basic truth about emotion classification and thus, the assessment
performed over experienced emotions is a subjective task.
Therefore, a series of emotional models developed in the field
of psychology must be used to guide the self-evaluation process.
The most used, in the field of EEG emotion estimation, are the
discrete and dimensional models (Russell, 1980; Roseman et al.,
1990). The former is based on the assumption that emotions
produce differentiated and independent emotional responses.
The latter assumes that emotions are manifested dynamically
with subtle inter-relations among them. The use of discrete labels
for emotions is based on the affective-defensive emotional model
following Davidson and Fox (1982) and Davidson (1992). There
is still no clear evidence of whether emotions affect the brain
patterns across specific regions or spread over cortical and sub-
cortical areas (Kragel and LaBar, 2016). Due to the variability
in brain patterns, it is difficult to find invariant patterns across
sessions and subjects. In this paper, in total eight electrodes were
used, six temporal electrodes and two prefrontal (AF3, T7, TP7,
P7, AF4, T8, TP8, P8), since they have proved to be the best brain
areas for emotion estimation (Zheng and Lu, 2015; Zheng et al.,
2017).

EEG signals can be approached through several domains:
time, frequency, time-frequency, information theory, and signal
complexity. Features should be stable across sessions to avoid the
greatest amount of variability while carrying as much valuable
information as possible. To work in that direction, feature
smoothing is an effective technique that helps to erase such
variability over time. Linear Dynamic Systems (LDS), moving
average or Savitzky-Golay (SG) among other techniques can
be used (Zheng and Lu, 2015; Zheng et al., 2015, 2017).
Regarding scaling, outliers must be taken into account, by
choosing an appropriate methodology, since some methods such
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as standardizing or min-max scale approaches can damage the
feature space for the classification step.

One key step in such machine learning strategies is the
dimensional reduction stage for the selection of relevant and
stable features over time, which faces two main problems: First,
in real scenarios there is no access to the underlying distribution
related to the target, this makes it difficult to find relevant features
in a way that is closely related to bias-variance trade-off (Kohavi
and John, 1997). Second, finding the optimal set of features often
involves NP-hard search spaces and the selected model must take
into account time constraints in real-time scenarios.

Moreover, in the EEG emotion estimation, time series
corresponding to trials are split into a series of samples. The main
assumption is that time series related to trials are independent of
each other but related to the evoked emotion, so the time series is
homogeneous within the trial and heterogeneous between trials
(Tashman, 2000). This makes the EEG time series be a special
case. While in the time series prediction paradigms, as is the
case for regression models, past is used to predict the future,
supervised learningmodels assume independence of samples and
do not care about the time order of the samples. Therefore,
predefined cross-validation schemes for supervised learning
algorithms are not suitable for model performance evaluations.

For the dimensionality reduction step, different approaches
differ in the way they exploit the relation between features
and target (Kohavi and John, 1997). In general, they are
defined as filter-based, wrapper-based and embedded methods.
On one hand, filter-based methods perform feature selection
independently from the learning process and are based on the
assumption that a feature that has higher variance may contain
more useful information. On the other hand, wrapper-based
methods combine feature selection and the learning process
to select an optimal feature subset. This is also the case for
embedded methods, which perform a penalty against complexity
during the learning process to reduce the degree of overfitting or
variance of a model by adding more bias.

Wrapper and embedded methods involve the use of nested
cross-validation procedures which may lead to increased
computational cost and possible overfitting, especially when a
small number of observations are available. Also, as mentioned
earlier, these processes, when applied with predefined algorithms,
do not take into account the particularities of the EEG time series,
so that the feature subset estimates are further biased.

Regarding the classifier to be chosen for the methodology, in
recent years, very powerful deep learning approaches have been
developed and tested in the emotion estimation field (Tripathi
et al., 2017; Yin et al., 2017; Song et al., 2018). Although they have
proved to be promising tools, they usually require a very large
amount of time for hyper-parameter tuning, so there exists a need
to find an approach that could yield automatically and in a short
time, while still achieving high accuracy performances.

1.3. State of the Art
In this work, the proposed methodology is compared with the
latest performances in the field of emotion estimation. A set of
research studies are used for comparison as they show the best
results in terms of accuracy of the results, albeit the experimental

conditions which are not completely equivalent due to the real-
time constraints imposed on the present study.

First, Khosrowabadi et al. (2014) developed a Biologically
Inspired Feedforward Neural Network called ERNN. They
produced a database containing 57 subjects using emotionally
tagged audio-visual stimuli, achieving an average performance of
70.83% for arousal and 71.43% for valence dimensional spaces,
using the 5-fold cross-validation method.

Second, Zheng and Lu (2015) produced their own database,
SEED, for the estimation of three affective states. Deep Belief
Neural Networks (DBNs) were used to analyzing critical
frequency bands and channels through the weight distributions
of the trained DBNs. With a selection of 12 channels, the best
accuracy result obtained was a mean accuracy of 86.65% using
the first 9 trials as the training set and remaining 6 ones as the
testing set, Inter-trial (IT), for each subject.

Third, Zheng et al. (2017) explored a set of popular features
used in the domain of EEG emotion estimation. The SEED
database was used. Differential entropy and together with the
Graph regularized Extreme Learning Machine (GELM) classifier
outperformed state of the art results. Mean accuracy of 60.93%
was obtained using the Leave-one-out validation scheme (LOO).
For the inter-sessions validation scheme (IS) a mean accuracy of
79.28% was obtained.

Fourth, Tripathi et al. (2017) compared the use of both
Deep and Convolutional neural networks (DNN, CNN) using
the DEAP database. The valence and arousal dimensions were
split into three categories. The DNN model achieved 58.44 and
55.70%, while the CNN model achieved 66.79 and 57.58%,
respectively using the Leave-one-out validation scheme.

Later, Song et al. (2018) developed a novel Dynamical Graph
Convolutional Neural Network (DGCNN) tested over the SEED
database. Differential entropy features of five frequency bands
were combined resulting in average recognition accuracy of
90.40% using the first 9 trials as the training set and the
remaining 6 as the testing set.

Finally, a comparison is made taking into account those
experiments where real-time constraints were faced. As
mentioned above, Liu et al. (2017) developed a real-time emotion
recognition system which uses a three-level classification
approach and a real-time artifact removal algorithm. Regarding
the classifying strategy, in the first level, high-arousal and
valence emotions versus neutral emotions were estimated
with an average accuracy of 92.26. For the second level,
positive vs. negative emotions, with an average accuracy of
86.63 were estimated. For the last level, joy, amusement, and
tenderness were classified at an average accuracy of 86.43.
The training and validation scheme was done by using 8 trials
to elicit 7 discrete emotions and one neutral state and the
same amount of stimuli as a test set in a real-time emotion
estimation scenario.

2. METHODOLOGY

The objective of the present paper is to perform the whole process
involved in EEG emotion estimation under real-time constraints.
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To prove its feasibility, it will be tested on the SEED database. The
process comprises six main steps:

1. Online artifact removal: EAWICA.
2. Feature extraction: Differential Entropy, Amplitude Envelope,

Petrosian Fractal Dimension, Higuchi Fractal Dimension, and
Fisher Info.

3. Feature smoothing: Savitzky-Golay filter.
4. Feature scaling: Quantile transform followed by min-

max scaler.
5. Feature selection: Based on the chi-squared statistic.
6. Classification: Nearest Neighbors (KNN), Support Vector

Machines (SVM) with linear and radial basis function kernels,
decision trees, random forest, AdaBoost, naive Bayes, and
Quadratic Discriminant Analysis (QDA).

2.1. SEED Database
The SEED database (Zheng and Lu, 2015) has 15 subjects but the
experiment was performed three times each, with a time interval
of one week. Emotions were quantified in terms of three discrete
categories: POSITIVE, NEGATIVE, and NEUTRAL. A set of
15 emotional-tagged videos were employed, each approximately
180 s long. The international 10–20 system for EEG acquisition
was used with a set of 62 channels.

2.2. Online Artifact Removal
Two main approaches that are affordable in real-time
constraints are used: EAWICA (Mammone and Morabito,
2014), and ICA-W (Mahajan and Morshed, 2014) methods.
The performance over artificial artifactual data is first analyzed
to compare them under controlled conditions but finally, are
compared over real EEG samples obtained from the objective
SEED database.

Both approaches use the same underlying philosophy, that
is, they employ a divide and conquer strategy to isolate the
artifacts as much as possible, both in time-frequency domain
through the wavelets transform decomposition and by analyzing
the independent components sources. Based on the assumption
that artifactual and EEG signals are linearlymixed but statistically
independent, and that propagation delays through the mixing
medium are negligible, ICA seems to be an optimal tool for
decomposing an identifying the source of artifactual signals
effectively. In order to properly take into account either sub-
Gaussian and super-Gaussian signals, the Extended-Infomax
ICA algorithm (Bell and Sejnowski, 1995) is used in both
approaches, which allows the computation of the unmixing
matrix, so that the components are as independent as possible.

Spurious isolated oscillations are then automatically detected
by a means of entropy and Kurtosis measurements. On one hand,
the entropy value for EOG artifacts is expected to be low due to
the regular shape so they are more predictable in comparison to
neural oscillations. On the other hand, peak distributions with
highly positive Kurtosis values are expected for the same type of
artifacts (Mammone and Morabito, 2014). Both approaches have
been compared using an analysis over all the frequency range
bands (delta, theta, alpha, beta, gamma) as well as over the delta
band only.

2.2.1. ICA-W
EEG signals are decomposed in a series of independent
components (ICs), where is expected that independent sources
are separated from each other. Artifactual ICs are identified
by analyzing the statistical properties in terms of Kurtosis and
Multi-Scale Sample Entropy measurements. To remove as little
information as possible, ICs identified as artifactual are further
selected for bandpass decomposition with wavelet analysis.
Decomposed wavelet independent components (WICs) require
a second identification stage with the aim of zeroing only those
wavelet components carrying artifactual information. Finally, the
original signals are reconstructed with the inverse transforms of
wavelets and ICA decompositions (Mahajan andMorshed, 2014).

2.2.2. EAWICA
The original EAWICA method proposes the isolation approach
of the artifactual signal component by first computing the
wavelet components over the EEG signals within the frequency
ranges associated with the emotion estimation task. Thus, once
the information is bandpass filtered, ICA decomposition is
applied to isolate artifactual data in a series of WICS. In order
to automatically detect artifactual WICS, Kurtosis, and Renyi
entropy measurements are used. Those marked as artifactual
are further split into a series of time windows with a temporal
interval of one second defined as epochs, which in case of being
marked as artifactual, are zeroed to remove as little information
as possible. Finally, ICA reconstruction followed by wavelet
components addition is performed to reconstruct the original
signals (Mammone and Morabito, 2014).

2.2.3. Differences and Modifications
One of the main differences between both algorithms is that
EAWICA methods improve the localization of the artifactual
data by first band-passing the signals, which also helps the
ICA algorithms to properly identify the sources as it takes the
advantage of the redundancy by having more data. Another key
difference is the way both methods apply the threshold steps
to identify the artifactual data. While the ICA-W performs an
automatic threshold method that works in the frequency domain
(wavelet components), the EAWICA method performs in the
time domain. Regarding the EAWICA threshold was restrictive,
in order to improve upon this, a design decision has been taken to
allow the variation of the thresholds by manually adjusting them
in terms of the quartiles over the distribution values.

2.2.4. Metrics
To properly compare both methods, EEG signals have been
artificially contaminated with a set of artificially generated
artifacts as is done by Mammone and Morabito (2014). A
series of measurements are computed to compare both methods:
root-mean-square error (RMSE), correlation (CORR), mutual
information (MI), and coherence (C) together with timing
measurements, will allow the best method to be chosen.

2.3. Emotion Estimation Methodology
The proposed methodology has been designed for its future use
on subject dependent paradigms in the domain of HRI. This
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implies that the time consumption of each of the following
processes must accomplish real-time constraints. Therefore,
this philosophy guides the decision-making process taking
into account an optimal balance between fast computation
and accuracy.

2.3.1. Preprocessing
EEG signals are arranged in a three-dimensional matrix
containing n trials, c channels, and s samples at a sampling
frequency, fs. First, given that each signal has its own scaling
factor values, signals are standardized using the z-score method.
Second, a filter bank, based on sixth-order Butterworth filters,
is applied for all n, c, and s, within a set of 5 non-overlapping
bandwidths: 1–4, 4–8, 8–16, 16–30, and 30–50 Hz.

2.3.2. Feature Extraction Methodology
Once the data-set has been preprocessed, a set of features are
computed based on the oscillatory properties of brain signals:

• Differential Entropy (DE): computed as ametric formeasuring
the predictability of signal X, whose values have a probability
density function similar to a Gaussian distribution, N(µ, σ 2),
as is the case for EEG signals. It can be defined as
h(X) = 1

2 log
(

2πeσ 2
)

.
• Amplitude Envelope (AE): computed using the Hilbert

transform (Boashash, 1992).
• Petrosian Fractal Dimension (PFD): defined as

PFD = log (N) /
(

log (N) + log (N/ (N + 0.4Nδ))
)

, where N
is the series length, and Nδ is the number of sign changes in
the signal derivative (Petrosian, 1995).

• Higuchi Fractal Dimension (HFD): Higuchi’s algorithm can be
used to quantify the complexity and self-similarity of a signal
(Accardo et al., 1997).

• Fisher Information (FI): Fisher information is a way of
measuring the amount of information that an observable
random variable X carries about an unknown parameter θ of a
distribution that models X (Fisher, 1925).

All features have been computed using a sliding window
of 6 seconds as suggested by Candra et al. (2015), without
overlapping. Each training sample represents the computed
features for each time window. Features are computed for each
band/channel and later concatenated for each training sample.
Thus, resulting in a feature set of 435 samples with 200 features.
AE has been computed with the Neuro Digital Signal Processing
Toolbox (NeuroDSP) python library (Cole et al., 2019) developed
at Voytek’s Lab. PFD, HFD, and FI have been computed with the
PyEEG python library (Bao et al., 2011).

2.3.3. Feature Smoothing
Emotions are often considered static in the field of EEG to
simplify the data processing for the classifiers, albeit continuous
and subtle changes should be considered in the time domain.
It has been noticed previously (Zheng and Lu, 2015; Zheng
et al., 2015, 2017), that considering the temporal dependence
and variation of emotions during the stimuli improves the
performance of the training step. To do that, smoothing the
feature space allows us to filter out those components that are

unrelated to emotional states, thus becoming a key step for the
design of an optimal methodology. In other words, smoothing
the feature space deals with the amount of variability that emerges
due to subtle changes in emotional states across trials and with
the lack of stability over time, of the computed features.

Savitzky-Golay (SG) filtering method is proposed as an
alternative to Linear Dynamic Systems (LDS). Both approaches
have the property of outperforming the classification accuracy
reports above the results obtained without smoothing the feature
space, but also SG smoothing is significantly faster than LDS and
even improves the accuracy reports.

2.3.4. Feature Scaling
Feature scaling is a key step in preprocessing data. Outliers can
severely damage the performance of the classifiers while looking
for statistical differences. Moreover, some machine-learning
algorithms for the dimensionality reduction and classification
processes require data to have a predefined range of values. The
process of scaling data must be performed taken into account
both constraints to properly feed the algorithms in the next
steps. In this paper, the Quantile-Transform method (histogram
equalization to uniform distribution) followed by the Min/Max
scaling method is performed. The former is a non-linear method
for scaling data distributions which is robust to outliers. The
later allows re-scaling in a positive range of values [0− 1] as the
dimensional reduction proposed method requires positive values
as input.

2.3.5. Dimensionality Reduction
As mentioned in the introduction, wrapper and embedded
methods combine feature selection and the learning process by
the use of nested cross-validation schemes but this leads to biased
results when taking into account the particularities of EEG time
series. Therefore, χ2 feature selection technique has been chosen
as it is a filter-based method where the selection of features is
based on the chi-squared statistic which measures the lack of
independence between a feature and the target, without involving
any cross-validation biased scheme nor combining the selection
and the learning process.

2.3.6. Set of Classifiers
Classification process has been performed using a set of eight
classifiers: K-nearest neighbors, Support Vector Machine with
linear and radial basis function kernels, Decision Trees, Random
Forests, Ada-Boost, Gaussian Naive-Bayes, and Quadratic
Discriminant Analysis. Results have been obtained with
default hyper-parameter values. The Scikit-learn python library
(Pedregosa et al., 2011) has been used.

2.3.7. Performance Evaluation
The crucial point is to ensure that samples in the validation
set are reasonably independent of the samples in the training
set. Therefore, three different validation methods are reported in
this paper.

• Validation across trials: Using the first nine trials as the training
set and remaining six ones as the testing set for each subject
and session.
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FIGURE 1 | EAWICA and ICA-W methods performance comparison over artificial artifactual data. (A) ICA-W using only the delta band component of artifactual

signals. (B) ICA-W using all bands components of artifactual signals. (C) EAWICA using only the delta band component of artifactual signals. (D) EAWICA using all

bands components of artifactual signals.

TABLE 1 | Metrics comparison for the four cases.

RMSE Correlation Mutual information Time (s)

EAWICA - ALL 0.27 0.87 0.66 0.19

ICA-W - ALL 0.16 0.92 0.87 0.60

EAWICA - DELTA 0.29 0.86 0.64 0.36

ICA-W DELTA 0.14 0.93 0.93 0.68

• Validation across sessions: Train and test are performed over
the whole set of sessions pairs for each subject.

• Validation across subjects: Leave-one-subject-out validation
scheme is used.

3. RESULTS

3.1. Online Performance Over Artificial and
Real Artifactual Data
Figure 1 shows the performance of both EAWICA and ICA-W
methods applied over artifactual data. Both methods have been

applied, on one hand, using all the frequency ranges of interest
(delta, theta, alpha, beta, gamma) and, on the other hand, over
the slowest frequency range (delta). It can be noted that ICA-W
focuses on the artifactual data better than EAWICA, moreover,
the latter seems to affect the signal in all the frequency ranges. As
a comparison, a set of metrics are shown in Table 1. Taking into
account these metrics, ICA-W outperforms the obtained results
in terms of CORR, MI, and RMSE, with regard to the artifactual-
free signals. Concerning time consumption, EAWICA performs
the filtering process in 0.19 s while still having low RMSE and
high CORR and MI results, and ICA-W takes 0.6 s.

Signal filtering performance can also be evaluated in terms
of the coherence lost relative to the original artifact-free signal.
Coherence is referred to as the cross-frequency spectrum of two
signals, it is a measurement of the loss of the filtered signals
relative to the original, in the frequency domain. Figure 2A
shows the coherence estimates between both the EAWICA and
ICA-W filtering methods relative to the artifact-free signals,
where it can be noted that EAWICA applied over all frequency
ranges, severely damages the original signal in all the frequency
spectrum. On the contrary, EAWICA applied over the delta band
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FIGURE 2 | Coherence estimates between filtered (EAWICA and ICA-W) signal and artifact-free signal. (A) Coherence estimation after artifact removal using all

frequency bands. (B) Coherence estimation after artifact removal using only the delta band.

outperforms the signal cross-frequency measurements against
ICA-W as it can be shown in Figure 2B.

Artificial artifactual data is useful in order to compare the
performance of a set of algorithms taking into account the
basic truth, but real domains often involve more complex
signals. Therefore, both methods need to be compared against
real artifactual EEG data, which in this case is obtained
from the SEED database. Figure 3A shows the performance
of both algorithms and for the real case EAWICA seems to
outperform ICA-W. Figure 3B better shows how the EOG
artifacts are removed by EAWICA while still maintaining all
the information in the frequency spectrum. Regarding time
consumption, EAWICA required 0.4 s and ICA-W 2.2 s both for
filtering 6 s of 8 signals with a sampling rate of 200Hz. Taking
all these results into account, EAWICA has been selected for
the methodology.

3.2. Emotion Estimation
In machine learning applied to emotion estimation, the standard
K-fold cross-validation is often applied. At that point, there is
a key issue that arises when the performance of the models
is evaluated. These methods cannot be directly used with time
series data as they assume that there is no relationship between
the observations, that is, each observation must be independent
while in fact, they are not. The EEG time series data in
emotion estimation strongly correlated along the time axis. The
randomization performed with cross-validation methods make
it likely that for each sample in the validation set, numerous
strongly correlated samples exist in the training set but this
defeats the very purpose of having a validation set: the model has
prior information about the validation set, leading to optimistic
performance reports on it. Such an analysis could provide an
insight into how the selected model works, or if there exists a
statistical difference between samples, but not if a correlation
between these statistical differences and the task at hand is really
present. Furthermore, any estimate of the performance will be
optimistic and any conclusion based on this performance will be
biased and could be completely wrong. This problem is not only
related to the classification step, as a result, it also arises in the
dimensionality reduction step if predefined algorithms are used,
which do not take into account these assumptions.

Therefore, to properly evaluate the performance, three
different validation schemes were used. The evaluation has been
performed taking into account different subsets of features,
ranging from 1 to 200.

3.2.1. Feature Smoothing
Figure 4 shows the comparison of applying LDS or SG methods
on the feature space. It can be clearly noted that smoothing the
features space makes it possible to clearly observe the correlation
with the corresponding targets. Moreover, the SG method makes
the features space even less noisy. Therefore, although the LDS
smoothing method works well eliminating the variability, the
SG method outperforms the obtained results, both in terms
of removing such variability, as well as with regard to the
time consumption needed. While LDS needs roughly 200 s for
smoothing a feature space of 435 samples × 200 features, SG
takes approximately 73ms.

3.2.2. Trial Validation Tests
Figure 5 shows the µ±σM performance for inter-trial validation
tests for all subjects in each session. A set of 9 trials for each
subject have been selected for training while 6 are used as a test
set, were 2 trials are present for each class (POSITIVE, NEGATIVE,
NEUTRAL). For each training step, a set of features ranging from
1 to 200 have been used. This evaluation provides an insight
into the robustness of the method in terms of generalization
performance of the model in a more realistic scenario for the
unseen. The best mean accuracy report for the best subset
of features for each subject is (82.3± 4.4)% for session 1,
(78.9± 5.7)% for session 2, and (80.5± 8.6)% for session 3.

3.2.3. Sessions Validation Tests
Figure 6 shows the µ ± σM performance for inter-session
validation tests for all subjects and for all session to session pairs.
For each training step, a set of features ranging from 1 to 200
have been used. As the SEED database consists of the same set
of stimuli for each session, these results prove the stability of the
selected features over time. The best mean accuracy report for
the best subset of features for each subject is (74.6± 8.8)% for
session 1 to session 2, (74.9± 11.1)% for session 2 to session
1, (76.8± 8.1)% for session 3 to session 1, (77.0± 10.1)% for
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FIGURE 3 | EAWICA and ICA-W methods performance comparison over real EEG data. (A) Comparison between EAWICA and ICA-W artifact removal strategies in

the time domain. (B) Coherence comparison between EAWICA and ICA-W artifact removal strategies in the frequency domain.

session 1 to session 3, (76.4± 8.4)% for session 2 to session 3,
and (75.9± 6.7)% for session 3 to session 2.

3.2.4. One Subject Out Validation Tests
Figure 7 shows the µ ± σM performance for inter-subject
validation tests. A leave-one-out subject evaluation scheme has
been used. For each training step, a set of features ranging from
1 to 200 have been used. This validation scheme provides an
insight into the robustness of the selected set of features for
the subject independent paradigm, confirming that underlying
common processes exist across subjects and that the selected
features are closely related to invariant properties of the brain
oscillations dynamics for the evoked emotion experimentation.
The best mean accuracy report for the best subset of features
for each subject is (77.6± 5.6)% for session 1, (73.4± 6.7)% for
session 2, and (77.1± 7.7)% for session 3.

3.2.5. Time Consumption
The main objective of this methodology is to perform under real-
time constraints while having high accuracy results in terms of
emotion estimation. Thus, time consumption analysis is needed
as a comparison for the design decisions. Methodologies based
on real-time constraints have to deal with the following key
processing steps:

• Time consumption of the artifact filtering process and feature
extraction steps.

• Time consumption of the feature smoothing and scaling steps.
• Time consumption of the classifying and fine-tuning step.

Feature smoothing has shown to be a key step to further improve
the performance of models but those filtering processes cannot
be performed over unique samples. Therefore, a set of samples

for each trial should be present in the training set before
smoothing the features. Thus, the experimental paradigm in
a real scenario needs to be performed on three main stages.
First, a real-time signal acquisition while the subject is stimuli
evoked. In that stage, signals could be stored without any filtering
process to alleviate the computation effort of the acquisition
application. The second should consist of the model training
step. Each EEG set of signals would be split on windowed
samples for the processing of training sets. This stage should
perform the following steps: artifact removal, feature extraction,
feature smoothing, and scaling, and finally model training. For
this stage, it is a requirement for the time consumption to be
short, in order to reduce the amount of time the subject under
study is waiting. Finally, the following steps for each acquired
sample should be performed: online artifact removal, feature
extraction, smoothing, and scaling taking into account training
samples to properly transform the computed features, and the
final prediction step.

For this experimental paradigm, several time metrics have
been computed for each step. As a comparison,Table 2 shows the
details of each processing step for the case of offline training and
online prediction stages. The software used was the Scikit-learn
python library (Pedregosa et al., 2011) running in an Intel Core
i7-8700 K (3.70GHz).

Offline training is analyzed taking into account one subject
session, which means using 435 ∗ 200(samples/features). The
process of online filtering performed in (151.89± 0.23) s. The
feature extraction step required (79.27± 0.03) s. Concerning
feature smoothing, LDS required (149.35± 0.07) s, while
SG was able to perform the same task in approximately
(67.31± 0.01)ms. The scaling process was performed in
approximately (98.42± 0.01)ms. Feature selection was
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FIGURE 4 | Feature smoothing applied over the feature space. At the (top), the label of each short film in the time domain. Below, the feature space after

Quantile-Transform normalization. Then, feature space smoothed using LDS. At the (bottom), feature space smoothed using Savitzky-Golay filtering. As it can be

noted, label smoothing clarifies the correlation of the feature space regarding labels.

computed for the worst-case scenario, selecting only the
best feature, which required (1.87± 0.05)ms. The classifying
step was proposed for a set of eight classifiers. The proposed
approach consists of selecting a range of features taking into
account the aforementioned results to reduce the amount of
time to find the number of features that best generalizes over
the unseen. The amount of time needed for each classification
of a number X of selected features for the set of eight classifiers
is approximately (873.65± 0.62)ms. Furthermore, there is
no need for fine-tuning, as the previous results show that the
methodology is robust enough without hyper-parameter tuning.

On the other hand, the online prediction is analyzed regarding
the time consumption for one unique sample. Online artifact
removal is carried out in (200± 16)ms, while feature extraction
is performed in (182.25± 0.08)ms. Based on previous results, SG
smoothing is used instead of LDS, as the processing time has been
shown to reduce. Furthermore, feature selection is not computed
as the set of best features are previously determined during the
offline training stage. As SG smoothing and normalization steps
cannot be performed over one unique sample, the strategy must
involve the set of features computed for the offline training stage,
thus, the time required is the same as in the offline training.

Stacking the incoming samples in this data structure allows for
both processes to be applied, and once the incoming sample has
been smoothed and normalized, taking into account previous
training samples, it is unstacked for the final prediction step over
the best selectedmodel during the offline training, at the time cost
of (38.8± 1.1) µs.

4. DISCUSSION

The proposed methodology accomplishes the main processing
steps required for a real-time emotion estimation approach
and overcomes the many difficulties presented in this field
of study.

Artifact removal is the first step of the whole process and
therefore plays a very important role in the outcome. As
mentioned earlier, only two methods for online artifact removal
were tested, EAWICA and ICA-W, since they show to be feasible
for real-time constraints. EAWICA outperforms ICA-W when
using real EEG data and was therefore chosen as part of this
method. Amodified version of EAWICA, constrained to the delta
band, was used to reduce artifacts (EOG), and therefore reduce
computation time.
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FIGURE 5 | Inter-trial validation accuracy. The figure on the left shows the accuracy results for validation between trials in session 1, the middle figure for session 2

and the right figure for session 3.

FIGURE 6 | Inter-session validation accuracy. Six different combinations of inter-session validation are shown.

In this paper, 8 electrodes were used, six temporal electrodes
and two prefrontal, placed at AF3, T7, TP7, P7, AF4, T8, TP8,
and P8, since these were previously shown in the literature to
be the best brain locations to use for emotion estimation (Zheng

and Lu, 2015; Zheng et al., 2017). The chosen set of electrodes
showed to be a good choice since it offered a proper balance
between the more informative electrodes and redundancy for
the classifying step (Kohavi and John, 1997), and achieved good
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FIGURE 7 | One subject out validation accuracy with respect to selected features. Inter-subject validation for the three sessions.

TABLE 2 | Time consumption regarding offline training and online prediction

stages.

Offline training Online prediction

(Samples, features) (435, 200) (1, 200)

Artifact removal 151.89(23) s 200(16) ms

Feature extraction 79.27(3) s 182.25(8) ms

LDS smoothing 149.35(7) s None

SG smoothing 67.31(1) ms 67.31(1) ms

Normalize 98.42(1) ms 98.42(1) ms

Feature selection 1.87(5) ms None

Training/Predicting 873.65(62) ms 38.8(11) µs

Total 381.55 s 548.02 ms

results. Due to the great number of electrodes employed, high
dimensional space is often a limitation in the domain of EEG
signal analysis. Such signals have a complicated structure since
their intrinsic properties are non-linear and non-stationary, thus,
the need for balance between a wide dimensional space of features
that must be treated carefully with feature reduction techniques,
often biased by the statistics in hand (Fan and Li, 2006), and a set
of low components feature space, which would be desirable.

The robustness of the methodology is higher when only a
subset of eight temporal and prefrontal electrodes is used, leading
to a feature space with fewer dimensions. On the other hand,
the results show that in general, a subset ranging from 50 to 100
features leads to the optimal accuracy results, probably because
the redundancy on the features space enhances the performance
of the classifiers.

In the HRI domain, it is crucial to ensure that real-time
emotion estimation is a quick and versatile process. The set of
selected features chosen for this methodology is easy to compute
in any type of computer and can be easily implemented in
any programming language, allowing the quick development of
portable systems with high accuracy results, as is the case for the
openBCI system. Also, these features allow the interpretation of
the phenomenon under study, as they are direct measurements
of the properties of brain patterns, being far from black-
box techniques, which use deep-learning approaches such as
auto-encoders (Chai et al., 2016), or very complex features
with difficult interpretation in biological terms (Zheng et al.,
2015).

A proper validation scheme is important for every novel
methodology for it to be comparable to those in literature.
As mentioned earlier, predefined cross-validation schemes for
supervised learning algorithms are not suitable for model
performance evaluations in EEG emotion estimation (Tashman,
2000). Liu et al. (2017) proposed a real-time methodology
which recognized eight different brain affective states with a
three-step level classification. This methodology is therefore
comparable to the proposed method, however, the validation
scheme which was used is not clearly stated, and could, therefore,
be backtesting, IT or cross-validation. Without this knowledge,
a proper comparison of the results can not be achieved. On
the other hand, since different validation schemes were found
to be used in state of the art, this method was validated
using IT, IS, and LOO (see Table 3), in order to properly
compare the results. As observed in Table 3, the proposed
method is close to the results obtained by previous studies
in terms of accuracy for the cases of IT and IS schemes,
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TABLE 3 | State of the art comparison.

Validation scheme Database: Emotional model Accuracy (%)

Khosrowabadi et al. (2014) Cross-validation DEAP: valence/arousal 70.83/71.43

Zheng and Lu (2015) IT SEED: [pos., neg., neu.] 86.65

Zheng et al. (2017) LOO and IS SEED: [pos., neg., neu.] 60.93 and 79.28

Tripathi et al. (2017) LOO DEAP: valence/arousal 66.79/57.58

Song et al. (2018) IT SEED: [pos., neg., neu.] 90.4

Liu et al. (2017) Not specified Own produced: [neu., non-neu.]/[pos.,

neg.]/[joy, amusement, tenderness]/

[sad, angry, fear, disgust]

92.26/86.63/86.43/65.09

Proposed method IT/IS/LOO SEED: [pos., neg., neu.] 82.27/76.36/77.59

and outperforms the results obtained by previous studies in
the LOO scheme, which is the most complex due to inter-
subject variability.

5. CONCLUSION

Our method has proved to be robust and fast, reaching
comparable results to state of the art in subject dependent
and independent analysis for EEG emotion recognition. An
accurate and computationally light EEG emotional estimation
methodology could allow the use of portable and cheap devices
in the domain of emotional HRI.

This method uses a three-categories emotional model;
however, for more complex emotional models, more
complex deep learning strategies must be implemented
(Zheng et al., 2018; Zhao et al., 2019). Therefore, even
maintaining the three-categories emotional model, this
method could be improved by altering the filtering
methods and with a better coding strategy, that is,
with a set of features that better describe the invariant
relationships of emotionally evoked brain patterns and their
corresponding categories.

Since this method has proven to be fast, over 1 s total
processing time, and reliable, 82.27, 76.36, 77.59% for {IT, IS,

LOO} validation schemes respectively, it fulfills the proposed
task. Therefore, it is an optimal methodology for HRI, that could
further the research in this field.
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