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Abstract

One of the remarkable features of networks is module that can provide useful insights into not only network organizations
but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating
cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of
the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis
on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm,
which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules
composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both
types of modules provide better characterization for the division of a network into functional units than merely cohesive
modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious
modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally
smaller. Sparse modules are also found to have preferences in social and biological networks than others.
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Introduction

Networks that can describe diverse complex systems are

successful tools to understand unknown domains in nature [1].

One of the most interesting topics in the area of complex networks

is the module structure and its detection. Modular structure

detection has received a considerable amount of attention in

various fields because of the significant feature that the nodes in

the same module have similar attributes. In the literature, great

efforts have been devoted to mining cohesive modules of networks

in different fields, including social networks [2] such as collabo-

ration networks, technological networks such as the WorldWide

Web [3,4], and biological networks such as protein-protein

interaction (PPI) networks [5], metabolic networks [6], and neural

networks [7]. A cohesive module indicates its intra-vertices are

densely connected, which at the same time are sparsely connected

with the vertices in other modules [3,8,9]. Detailed analysis on the

meanings of the modules can thus be performed on the mining

outputs. For example, in protein-protein interaction networks,

modules may contain proteins having similar and specific

functions within the cell [5]; in metabolic networks, they likely

correspond to functional units such as metabolic pathways [10]; in

social networks, individuals tend to form modules of similar

hobbies, work environment, family, or friends [2].

Although community detection has been widely studied for a

long time [11–13], early analysis mainly focuses on small networks,

which can be accomplished by human power. In recent times, the

size of real networks we can measure has grown considerably,

reaching millions or even billions of nodes [9]. This calls for a new

theoretical framework that uses computer science to deal with such

big data for finding relationship among the nodes. Therefore, a

large number of computer algorithm-based methods were

proposed. One classical method [14] that aims at identification

of edges lying between communities appeared in 2002. Another

famous approach is the objective function known as modularity

[3,15], which can be used both to discover communities and to

measure their strength. By assumption, high values of modularity

indicate good partitions. So, several technologies, such as greedy

techniques [15], simulated annealing [16,17], extremal optimiza-

tion [18], and spectral optimization [1,19], have been employed to

optimize the modularity. Communities in networks often overlap

[10,20], such that nodes can simultaneously belong to several

groups. Clique percolation [10] and its derived CFinder [21] have

been used for discovering overlapped nodes. In contrast to the

above methods, which pay more attention to clustering nodes,

link-based community detection [22] can discover both commu-

nities and overlapped nodes successfully.

In general, module detection is implemented based on the

modular concept that connections of nodes within the same group

are denser than connections with the rest of the network. The

question is, are there any sparse modules in which the nodes are

sparsely connected internally and densely connected with other

sparse or cohesive modules possible in complex networks? Some

studies on this issue have been reported in biological networks
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[23–25]. In 2010, using an error function, Pinkert et al proposed

an alternative approach which does not consider any prior

definitions of what actually constitutes a ‘‘module’’ to detect

functional modules in PPI networks [23]. They applied their

method to the PPI network derived from the Human Protein

Reference Database (HPRD) and found some cohesive modules

that proved to be functional modules. In addition, the authors also

found some significant non-cohesive clusters, which are function-

ally related and can provide a better description of the PPI

network when combined with the cohesive modules. This finding

indicated that we need to extend our traditional concept about the

functional unit in a complex network by paying more attention to

the sparse modules. By overcoming the resolution limit and over-

split phenomena of the alternative approach [24,25], we proposed

a BinTree Seeking (BTS) method based on the Edge Density of

Module (EDM) and binary tree theory to mine both sparse and

cohesive functional modules in biological networks [24]. Exper-

imental results on three real PPI networks demonstrate that

functional modules in PPI networks are not dominantly cohesive

but can be sparse. Our studies also show that BTS can achieve the

goal of mining both the cohesive and sparse modules simulta-

neously and automatically.

Based on the results obtained in PPI networks, the motivation of

this paper is to study whether it is a general principle that sparse

modules co-exist with cohesive modules in the same complex

network regardless of its type. In order to answer this question, we

firstly used BTS method to mine cohesive and sparse modules

from 3 real networks with known modular structures. And then

these mined cohesive and sparse modules were analyzed in detail

by using known brokers in social networks, software classes in

computer software networks and functional units, or metabolic

pathways in biological networks. We further applied BTS method

to 25 different networks including social, computer software,

technological and biological networks. As a result, we detected

sparse modules in all 25 networks. Although it seems from the

results that it is a general rule for a network to have both cohesive

and sparse modules, we find the preferences of sparse modules

varied on different types of networks. We also illustrate the spatial

organization of some of these sparse modules that are found in the

real networks, which show that sparse and cohesive modules

sometimes are spatially correlated.

Results

Comparison to Other Methods
Although our major aim is not to illustrate the performance of

the BTS method, we compared BTS with three other methods on

four networks with known modular structure, which are listed in

Table 1. The first is a synthetic network that is generated using an

algorithm similar to the one used for the SB Benchmark [26] and

composed of 72 nodes and 448 edges. The synthetic network

comprises three modules of 16, 32 and 24 nodes. Two of these

modules are sparse modules and the third one form a cohesive

module. The average degrees of the nodes in these communities

are fixed to 16, 8, and 16, respectively (See Figure 1). Links are

placed according the designed module structure. 12 out of 16

edges in module 1 (light yellow) are linked to module 2 (light green)

and the other edges are connected to module 3 (red). Likewise,

except for those edges that are connected to module 1, the rest of

edges in module 2 are placed between module 2 and 3. For the

cohesive module, most edges are connected to intra-module except

links that are connected to modules 1 and 2 (The synthetic

network data and code are shown in the supplement). The other

three real networks are Davis’s southern woman [27], Scottish

corpor. interlocks [28], and Jung networks [29] respectively. The

Davis network is a well-known bipartite network, which describes

the relationship of social collaborations between women in

Natchez Mississippi. The other bipartite network is Scottish that

supports corporate interlocks in Scotland between 1904 and 1905.

The last network is a technological network, where nodes

represent software classes and edges correspond to different types

of dependencies among them (e.g. inheritance, parameters,

variables etc.).

Different types of modules in these four networks were detected

by BTS method. In addition, three methods that deal with the

detection of block structures in networks were also applied to these

networks. Among them are the mixture model method (NL

method) [30] proposed by Newman et al, and the module

detection method (Infomod method) [31] by optimizing the

function of minimum description length principle. The third

compared method is an alternative approach (Pinkert method)

[23] that optimizes an error function. Modules detected by the

four methods are first compared with known metadata, and then

the compared outcomes are measured by normalized mutual

information (NMI) [32]. High values of NMI indicate good

partitions. The results are presented in Table 1. Note that the

parameter of the number of modules is set to the actual number of

modules in the NL and Pinkert methods.

From Table 1, BTS performed better than the other methods

except on the Davis network, where Infomod performed slightly

better and NL performed significantly better than all others due to

the number of real modules passed in as input. Overall, the Pinkert

method performed poorly.

The Meaning of Cohesive and Sparse Modules in Various
Types of Networks

Although finding the coexistence of cohesive and sparse

modules in complex networks is the aim of this study, another

more significant task is to reveal their meaning in the complex

system. To answer the question whether or not the discovered

both sparse and cohesive modules are interesting, we applied BTS

to social, computer software and biological networks, respectively,

and then analyzed the output modules in detail.

Cohesive and sparse modules in social networks. A

social network can represent a set of people or groups of people

with some relationships between them [33]. These relationships

may include friendships between individuals, business partners

between companies and intermarriages between families. In

contrast to the people in cohesive communities, brokers who

trade over gaps in social structure [34,35] must be credibly

connected to actors, but they may not be connected to each other

[36]. There are two significant features of brokers. One is that they

bridge a gap in social structure, and the other is that they promote

information, goods, opportunities, or knowledge flow across that

gap [37]. In this section, we applied the BTS method to detect

brokers in the well known Newcomb Fraternity network, which

contains 17 students living together in a hostel. The development

of the network was followed up for 15 weeks except for a holiday

break of one week between weeks 9 and 10. In every week, the

students were consulted on their friendship preference with the

other 16 students [38]. In order to conveniently use BTS method

to mine brokers in the Newcomb Fraternity, we transformed it into

a network including nodes that represent students and edges that

correspond to friendships in the following role: for a student in

every week, five links are placed among the student and other five

students who are ranked in the top five. Note that an edge that is

placed between two students only means that the two students

have a strong friendship, does not mean they are unacquainted.

Module Mining in Complex Network
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According to the BTS consequences (see supporting information

at: www.csbio.sjtu.edu.cn/bioinf/SparseNetwork/for more de-

tails), in week 8, these students are divided into 5 groups, where

groups 4 and 5 are sparse groups including nodes 9 and 17, 13 and

16 respectively. These results are largely consistent with the

analysis by Taube [38] that nodes 9, 13 and 17 are coordinators

who may mediate contradictions among students. Another

example is the network generated by week 13 data. The modular

results detected by BTS contain only 1 sparse group, and nodes 13

and 17, who are coordinators, are all in this cluster. Likewise, as a

coordinator, node 17 appears in sparse modules in networks

generated by weeks 14 and 9 data. We furthermore find that node

17 is observed in many sparse modules corresponding to the 15

week networks, meaning that it plays a significant role in these 17

students.

Cohesive and sparse modules in computer software

networks. We further used BTS method to analyze a Jung

network (in Table 1) in software systems in which the actual

structure remains great unknown [29]. In the software network,

nodes correspond to software classes and edges represent different

types of dependencies among them (e.g., inheritance, parameters,

variables etc.) [39]. As a result, we found 14 cohesive and 21 sparse

modules respectively. For these modules, we analyzed some

modules detected by BTS in detail below. Module 1 with 33 nodes

is a cohesive group (See Table 2 and supplement information for

detailed results), and 23 of them consist of Jung ‘graph’ class, and

the other 10 nodes contain Jung ‘util’ class. As one could

anticipate, the nodes in the module are densely connected

internally and sparsely connected to the rest of the network. The

second cohesive module we analyzed is module 20 that includes 18

nodes, where 13 nodes are divided into the ‘algorithms.scoring’

class and the rest of nodes are clustered into ‘algorithms.shortest-

path’, ‘graph’, and ‘io’ classes (more details see Table 2). Three

sparse modules are discussed next. Module 5 is a sparse cluster and

its size is 20. The surprising result is that all the nodes in module 5

belong to Jung ‘visualization’ class. 9 and 6 nodes in the module 5

participate in ‘visualization.control’ and ‘visualization.renderers’

classes respectively. These results indicate that the nodes in this

sparse module detected by BTS share similar attributes. The other

two small sparse modules are module 14 and module 15 with 6

Figure 1. Generated synthetic network of this study.
doi:10.1371/journal.pone.0066020.g001

Table 1. Performance comparison of four methods on 4 networks.

Network Nodes Edges
Number of Real
Modules BTSa NLb Infomoda Pinkertb

NMI (Number of modules)

Synthesis 72 448 3 0.646(6) 0.423(3) 0.533(4) 0.275(3)

Davis 32 89 4 0.666(2) 0.818(4) 0.669(2) 0.665(4)

Scottish 228 358 9 0.565(5) 0.275(9) 0.122(7) 0.1536(9)

Jung 398 943 38 0.588(35) 0.591(38) 0.537(6) 0.451(38)

aThe number of clusters in the network is determined automatically by the algorithms.
bThe number of clusters in the network is set according to the number of real modules beforehand.
doi:10.1371/journal.pone.0066020.t001
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and 5 nodes respectively. 4 of 6 nodes in the module 14 contain

‘algorithms.layout3d’ class. In module 15, 4 nodes belong to

‘algorithms.importance’ class. As revealed by the network topol-

ogy, this module has no intra-group links, but links with other

modules, such as sparse modules 14 and 16.

Cohesive and sparse modules in biological networks. In

PPI networks, functional subunits or protein complexes generally

correspond to modular structures [40]. Recent literatures confirm

that sparse clusters that contain few or no edges can form

functional units, indicating functional units are not necessarily

cohesive modules. In this study, we extend this viewpoint to gene

co-expression networks, which are composed of nodes corre-

sponding to genes and edges that represent significant co-

expressed relationships between genes [41,42]. Since genes on

the same pathway or have related functions often exhibit similar

expression patterns under diverse conditions in DNA microarray

experiments [42], therefore, most of works on functional modules

or units detection in gene co-expression network pay more

attentions on cohesive modules [43–45], and rarely on sparse

modules. In this section, we first employed BTS method to detect

both cohesive and sparse modules in gene co-expression networks,

and then discussed the meaning of these modules.

The genes that are used to construct gene co-expression

networks are collected from Arabidopsis thaliana metabolic

pathway data [46] (www.arabidopsis.org/). By removing repeated

genes in the same pathway and pathways with less than 5 genes (in

order to avoid many small clusters), we finally obtained 174

pathways that contain 1725 genes. For these 1725 Arabidopsis

genes, Arabidopsis gene co-expressed data consisting of 20906 files

from the ATTED-II database [47] (http.//atted.jp/) was used to

identify their co-expressed relationships. Co-expression was

measured using Pearson’s Correlation Coefficients (PCCs). If the

PCC of any two genes is higher than 0.6, a link is placed between

these two genes. At last, a gene co-expression network with 793

Arabidopsis genes and 10184 edges was constructed (see

supporting information).

Using BTS, we detected 14 cohesive and 21 sparse modules

from the network. To demonstrate their importance, we compared

them with Arabidopsis metabolic pathway data based on the

hypothesis that the genes belonging to the same pathway are

highly co-expressed [48,49]. In addition, the functions of these

modules can also be measured by BiNGO [50], which is used to

assess a set of genes with Gene Ontology (GO) annotations [51].

The cohesive group of Module 5 has 64 nodes, 22 of which

participate in the adenosyl-L-methionine cycle. For the rest of

genes in this group, 11 nodes and 12 nodes belong to the

metabolic pathways of zeatin biosynthesis and galactose degrada-

tion respectively. From these results, we can clearly see that most

of the genes in Module 5 actively participate in biosynthesis and

degradation of adenosyl-L-methionine. Likewise, using BiNGO,

we further find that most genes in this module are involved in

acetyl-CoA biosynthesis with a low P-value (P-value= 5.0703E-12,

Biological Process (BP)).

Besides cohesive groups, there are also some sparse modules

found by BTS. For instance, Module 7 is a sparse module

containing 8 nodes. 4 of these 8 nodes are related to the metabolic

pathway of cutin biosynthesis, 2 nodes and 1 node belong to

chorismate biosynthesis and zeatin biosynthesis respectively. These

genes participate in biosynthesis and glucose catabolic process with

a significant P-value of 1.8822E-9. Another sparse group, Module

1, has 29 genes. These genes participate in different metabolic

pathways, but are significantly enriched in small molecule

metabolic process (P-value= 4.7619E-10). These results demon-

strate again that sparse modules not only form significant

functional units or participate in metabolic pathways, but also

can reveal important hidden relationships among nodes in the

network.

Sparse Modules Co-exist with Cohesive Ones in Complex
Networks

To better understand coexistence of cohesive and sparse

modules in various complex networks, we further applied BTS

approach to 25 networks with different scales and types (Table 3

shows the details). It is revealed by Table 4 (see supporting

information for more details) that sparse modules are prevalent in

all 25 networks rather than being isolated to specific networks.

These results suggest that both cohesive and sparse modules

characterize better functional units or modular structure of a

complex network than cohesive modules alone. The nodes’ similar

functions in a cohesive module are reflected by the direct links

among them, while functions in sparse modules are exhibited by

indirect linking and depending on other modules. Therefore, the

relationship between different nodes should be evaluated by both

types of modules.

To rationalize the existence of sparse modules, we compared the

outputs from BTS and those from the state-of-the-art cohesive-

specific module detection approach of Newman-fast algorithm

[15] because we do not know the modular structure of these

networks. From ref. [52], we know that cohesive modules with less

than 10 nodes possibly lack obvious modular significance.

However, to provide a full network-based view of the modules,

both cohesive modules detected by Newman-fast algorithm of

larger and smaller than 10 nodes were considered. For our

statistics, these modules are defined as large and small modules

respectively. We then can analyze the relationship between the

Table 2. Analysis of the main modules in Jung network.

Community
number Type Size Description

1 cohesive 33 [jung.graph].*(23), .util.*(10).

20 cohesive 18 [jung.algorithms.scoring].*(13), .shortestpath.*(2); [jung.graph].Hypergraph(1); [jung.io].GraphReader(1),
.graphml.GraphMLReader2(1).

5 sparse 20 [jung.visualization].*(2),.renderers.*(6),.control.*(9),.annotations.*(2),.transform.LensSupport(1).

14 sparse 6 [jung.algorithms].layout3d.*(4),.flows.EdmonskarpMaxFlow(1),.importance.AbstractRanker(1).

15 sparse 5 [jung.algorithms].importance.*(4),.shortestpath.ShortestPath(1).

*The detailed names of classes are omitted (refer to supporting information at www.csbio.sjtu.edu.cn/bioinf/SparseNetwork/for details).
doi:10.1371/journal.pone.0066020.t002
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outputs from BTS and Newman method to reveal the inherent

mechanism of the sparse module.

We first compared the results on the A00 network that has 352

nodes and 384 edges. Figure 2 shows the nodes distributions in

different types of modules identified by the two methods. In

Newman-fast, all the detected modules are cohesive modules;

While BTS outputs, both cohesive and sparse modules. As shown

in Figure 2, the total number of nodes in the small modules from

the Newman-fast approach is 110 and the remaining 242 nodes

are located in the large modules. At the same time, we found 138

and 214 nodes in the sparse and cohesive modules respectively

from the BTS algorithm. By systematically comparing these

outputs, we find that there is an intersection of 98 nodes between

the small modules and the sparse modules, and an intersection of

202 nodes between the large modules from Newman-fast

approach and the cohesive modules from BTS algorithm. It is

also worth mentioning that although there are a large number of

overlapped nodes between the small modules from Newman-fast

method and the sparse modules from BTS, their node component

organizations are quite different. The reason for the differences is

that the small modules are subjective to the cohesive definitions in

the Newman-fast method, while in the BTS, sparse modules are

totally diverse from the cohesive definition [24].

These findings indicate the following: (1) the core set of nodes in

the cohesive modules can be well identified by both the cohesive-

specific Newman-fast algorithm and the BTS method that can

mine both dense and sparse modules; (2) although the modules

with less than 10 nodes from the Newman-fast approach possibly

lack obvious cohesive modular significance [52], these nodes can

be potentially re-organized into sparse modules of important

functional units, which should be investigated in a different way

from the traditional cohesive-specific approach.

As a second example, let’s analyze modular structures of science

network, which describes the cooperative relationship among

scientists working on network theory and experiment. This

network includes 1461 nodes and 2742 edges (128 isolated nodes

are not considered). As a result, 24 modules and 275 modules were

mined by BTS method and Newman-fast algorithm respectively.

According to BTS, 1140 nodes are divided into sparse modules,

and 321 nodes belong to cohesive modules. In the Newman-fast

algorithm, 887 nodes belong to small cohesive modules, and the

remaining 574 nodes belong to large cohesive modules. By

comparing these results, we got a considerable intersection

composed of 836 nodes between the 887 nodes of the small

modules from Newman-fast algorithm and 1140 nodes in the

sparse modules from BTS approach. In addition, 270 nodes are

overlapped between the 574 nodes in the large modules from

Newman-fast algorithm and 321 nodes in the cohesive modules

from BTS.

At last, we compared the results on the Roget network, which

has 1022 nodes and 5075 edges. 22 modules including 14 small

modules and 8 large modules were mined by Newman-fast

Table 3. Descriptions of 25 networks studied in this paper.

Network Name Node Edge Ref Description

Csphd (S) 1384 1703 [54] PH.D. students to their advisors network

Erdos (S) 492 1417 [55] Erdos collaboration network

Football (S) 115 615 [14] Network of American football games between Division IA colleges

Lsle_of_Man (S) 675 2007 [54] The British lsle of Man family of history

Jazz (S) 198 2742 [18] Jazz musicians network

Science (S) 1589 2742 [56] A coauthorship network of scientists

Collaboration (S) 5242 14490 [57] Scientific collaboration network

Roget (S) 1022 5075 [58] Roget’s thesaurus of English words and Phrases

Geom (S) 7343 11898 [54] Collaboration network in computational geometry

Java (C) 1538 7817 [55] Java dependency network

A00 (C) 352 384 [55] A software project of classes and relationships

A96 (C) 1096 1677 [55] Finite automaton network

C98 (C) 112 168 [54] Theorethical graph network

Jung(C) 398 943 [29] Jung 2.0.1 framework network

E-mail (T) 1133 5451 [59] Network of E-mail interchanges

Odlis (T) 2909 16380 [60] Online dictionary of library and information science network

SmallW (T) 396 994 [61] Citation network produced by HisCite software

Polbook (T) 105 441 Network of books sold by online bookseller

Power (T) 4941 6594 [62] Power grid network

Usair (T) 332 2126 [54] United States air line

Yeast PIN (B) 2361 6646 [63] Protein interaction network in budding yeast

KPI (B) 887 1844 [64] Protein kinase and phosphatase interaction network

DIP yeast (B) 2147 4275 [65] Protein interaction network in yeas

BIND human (B) 3724 8748 [66] Protein interaction network in human

Gene co-expression(B) 793 10184 Gene co-expression network in Arabidopsis

(S), (C), (T), and (B) indicate social network, computer software network, technological network and biological network, respectively.
doi:10.1371/journal.pone.0066020.t003
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algorithm. These small modules contain 47 nodes and the other

975 nodes are in large modules. Using BTS method, we got 16

cohesive modules with 719 nodes and 10 sparse modules with 303

nodes. By comparison, we found that 707 nodes are identical

between the cohesive modules from the BTS method and the large

modules from the Newman-fast approach.

All these results show that sparse modules co-exist with cohesive

ones in various networks. Furthermore, these results also imply

that both sparse and cohesive modules can describe better

functional groups of a complex network than cohesive modules

alone. The reason is that sparse structure can reflect the functional

relationship for those nodes in the cohesive modules, which lack

obvious traditional modular significance.

Preferences of Sparse Structures
Which type of networks do sparse modules prefer? It is difficult

to answer this question accurately, so we will study this problem in

a straightforward way. The relative proportion of nodes in sparse

and cohesive modules from BTS is showed in Figure 3, from which

we can observe the difference among the different types of

networks. In biological networks, high proportions of nodes in

sparse modules that may correspond to functional units are found

in Figure 3. This implies that biological networks have a higher

tendency to possess sparse structure or weakly significant cohesive

modules, which is consistent with previous findings [23–25].

Significant differences are found in the tested 9 social

networks, where 4 of them may show obvious sparse structure

(Csphd, Is, Sc, and Geom), and 3 of them have obvious

cohesive feature (Fo, Jazz, and Roget). These results reveal that

the modular structures in social networks vary very much

according to the different relationships represented. For

example, in the football network, individuals in a module may

communicate with each other frequently or share more related

attributes, but exchange rarely between diverse groups. Conse-

quently, those, who share similar attributes, easily form social

communities, but few people help information flow across

communities. So, few brokers (nodes in sparse modules) are

generated in this social network. While, in Csphd and Science

networks, in which individuals are engaged in high technology

fields, advanced information should be spread across different

social communities, and promoting them development fleetly.

Therefore, more brokers are needed to perform the task.

Another potential reason for this phenomenon in social

networks is that current networks are far from complete, and

results on a partial network can simply reflect sub-organizations.

Although low proportion of nodes in sparse modules exists in

computer software networks shown in Figure 3, it does not mean

that sparse modular structures do not exist in them. For instance,

we have found some meaningful sparse modules in the Jung and

A00 networks as shown above. These results thus seem to imply

that sparse modules appear ubiquitous in nature, but have a

preference for some types of networks.

Sizes of Sparse Modules
We further study the size of sparse modules in various networks.

Figure 4 compares the average sizes of the mined sparse and

cohesive modules in 25 networks by BTS. Generally, sparse

modules are smaller than cohesive modules in the same network,

although 3 exceptions were observed (Csphd, Sc, and KPI). Here,

we give a general explanation for this phenomenon because we do

not have enough information on these networks. In social

networks, people in sparse modules possibly play the role of

brokers or mediator who help information flow across communi-

ties or mediate contradictions among people. Thus, these

individuals may have low proportion of all people in a special

industry. But in some social networks (for example Csphd and

Science networks) in which people take part in high technology,

the proportion can be larger since this industry needs more people

to exchange or share advanced information, to promote their

development. Compared to social networks, the ratio of sparse

Table 4. List of modules detected by BTS method in 25
complex networks.

Network name
Cohesive
modules

Sparse
modules Total modules

Csphd 5 13 18

Erdos 8 16 24

Football 15 6 21

Isle_of_Man 1 9 10

Jazz 5 12 17

Science 7 17 24

Collaboration 6 19 25

Roget 16 10 26

Geom 4 16 20

Java 9 19 28

A00 8 6 14

A96 7 17 24

C98 3 7 10

Jung 14 21 35

E-mail 7 17 24

Odlis 6 16 22

SmallW 3 2 5

Polbook 7 8 15

Power 5 19 24

Usair 5 9 14

Yeast PIN 5 9 14

KPI 8 21 29

DIP yeast 26 33 59

BIND human 26 39 65

Gene co-expressed 14 21 35

doi:10.1371/journal.pone.0066020.t004

Figure 2. Distributions of nodes in A00 network mined by BTS
method and Newman-fast algorithm.
doi:10.1371/journal.pone.0066020.g002
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module size to cohesive module size is smaller in software and

biological networks, which may be due to sparse modules forming

functional units or software packages. However, the fact that the

average size of sparse modules is smaller than cohesive modules is

still not clear and waiting for further studies.

Possible Organizing Structures of Sparse Modules
We have shown above that sparse and cohesive modules can

simultaneously exist in the same network, but the possible spatial

structures of sparse modules are still not clear. Here we report two

possible organizing structures for sparse modules in complex

networks observed from the results on the 25 networks. Figure 5A.1

illustrates the bridge sparse module that links one or more other

cohesive modules, and Figure 5A.2 shows a real example from the

Science network. It is also worth pointing out that these bridge

modules were also found in the biological networks as reported in

refs. [23,24]. Another common organization is different sparse

modules interacting with each other as shown in Figure 5B.1,

where Figure 5B.2 illustrates a real example from the Geom

network.

Conclusion and discussion
Complex networks of people, proteins, webpages, or other

elements with some pattern of contacts or interactions between

them tend to exhibit modular features, which have been studied

deeply by sociologists, mathematicians, and biologists. Based on

the principle that elements in the same cohesive module have

similar attributes, much effort has been devoted to mining

cohesive modules and significant progress has been achieved.

Recent studies reveal that networks comprise even more sophis-

ticated modules than traditional cohesive modules [30,39,53]. For

example, sparse modules in PPI networks have been verified to

exist, and to have nodes with similar functions [23–25]. Using an

extended BTS method that can successfully mine both cohesive

and sparse clusters in various types of networks, we analyzed the

meanings of cohesive and sparse modules detected from three

types (social, computer software and biological) of networks.

Furthermore, to better show the ubiquitousness of cohesive and

sparse modules coexisting in complex networks, the modular

structures of 25 different networks were also investigated. Our

results suggest that sparse modules commonly exist with cohesive

modules, indicating both types of modules should be analyzed

simultaneously in order to reveal the functions of the whole

network. We also observed some characteristics of the sparse

modules and their possible spatial organizations.

Although meaningful results were obtained, great challenges

remain. First, in order to further annotate the functions for the

Figure 3. The relative proportions of nodes in different networks from sparse and cohesive modules detected by BTS method.
doi:10.1371/journal.pone.0066020.g003

Figure 4. The average sizes of sparse and cohesive modules in
various networks.
doi:10.1371/journal.pone.0066020.g004
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mined sparse modules, more information is needed when

constructing the networks. This is particularly urgent in social

networks since information for verifying the functions of the

mined modules is lacking. Second, many functions for

measuring cohesive modules have been proposed. But, few

functions were developed to assess both cohesive and sparse

modules that are simultaneously mined in the same network.

Third, algorithms that are suitable for mining both cohesive and

sparse modules should be further investigated especially when

dealing with large real-world networks (e.g., more than 10000

nodes).

Datasets and Methods

Datasets
A total 25 complex networks were studied in this paper, which

are summarized in Table 3 (See supplement for the websites of

these 25 networks). These networks have following features: (1)

different types divided into 4 categories of social, computer

software, technological and biological networks, (2) different scales

varied from 105 to 7,343 nodes, and from 168 to 16,380 edges, (3)

different network topologies reflected by the edge densities. In

general, a network can be represented as a graph where a node

corresponds to an individual or object and an edge to a special

relationship or interaction. For example, Csphd network was

constructed to describe the relationship between Ph.D students

and their advisors in theoretical computer science, which contains

1384 nodes and 1705 edges.

Methods
Unlike previous approaches that mainly extract functional units

by identifying cohesive modules, we have recently developed an

algorithm called BinTree Seeking (BTS) that can also find sparse

modules in PPI networks [24]. Members in a sparse module are

defined as sparsely connected internally and densely connected

with other sparse or cohesive modules at the same time [24]. By

using an adjacency matrix to represent a network, BTS detects

modules by depicting edges and nodes simultaneously rather than

nodes alone and its derivation procedure is based on matrix

primary transpositions. When BTS finally converges, it will

generate a binary tree, where each leaf represents a state of

possible divisions composed of both cohesive and sparse modules.

Then, we can use a kind of evaluation function to measure the

qualities of the leaf states so that we can pick up the best

formulation, e.g. the leaf corresponding to the lowest error

function E [23]. The BTS method not only avoids the drawbacks

(such as the resolution limit and over-split phenomena [25]) of

Figure 5. Two possible organizations of sparse modules in the network.
doi:10.1371/journal.pone.0066020.g005

Figure 6. The relationship between a3 and E value.
doi:10.1371/journal.pone.0066020.g006
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previous methods but also has some significant merits. One of

them is that the number of modules in a network can be

automatically determined in this approach. Thus, both sparse and

cohesive modules in 25 different networks were mined by BTS

algorithm. For more details about the BTS method, the readers

are referred to ref. [24], and the main ideas of BTS are given in

the appendix. BTS software is available at: http://www.csbio.sjtu.

edu.cn/bioinf/BTS/.

To effectively detect cohesive and sparse modules in various

networks, three thresholds of (a1, a2, a3) are introduced in BTS

method, which play significant roles. a1 is the lower limit of the link

density of cohesive module, a2 is the upper limit of link density of

sparse module, and a3 is the lower limit of edge density of bridge

matrix required to confirm the existence of bridge matrix. In [24],

we have discussed the choice of three thresholds in detail on PPI

networks. In order to apply BTS method to various types of

networks and detect modules effectively, in addition to the classical

values of three thresholds (a1~a0:73 , a2~a1:53 , a3~EDN1, denoted

as (0.7, 1.5, 1 ) in a simple form), we also provide here other five

groups of three thresholds: (0.5, 1.3, 1), (0.5, 1.7, 1), (0.85, 1.3, 1),

(0.8, 1.4, 1) and (0.5, 1.5, 1). Therefore, one can employ BTS

method with these thresholds to mine cohesive and sparse

modules, and then select a result corresponding to the smallest

error function E value or a result that is consistent with known

modular structure. Although one can select arbitrary one group of

thresholds to detect modules, we suggest that researchers should

first consider the classical values of three thresholds because it can

generally yield better results. In this study, 11 of 25 networks,

synthetic and gene co-expressed networks used the classical

thresholds, and 5 networks employed the group of thresholds

(0.5, 1.5, 1). The other 3, 2, and 1 networks adopted three

thresholds of (0.85, 1.3, 1), (0.8, 1.4, 1), and (0.5, 1.3, 1)

respectively (See supporting information for details). All 15 social

networks generated by Newcomb Fraternity data used the

thresholds of (0.5, 1.7, 1).

As an improvement over the original BTS method, extended

BTS method can also expediently detect modular structure from

bipartite networks, such as Divas and Scottish networks. Likewise,

detecting bipartite structure also faces the problem of selecting

three thresholds. Differing from the problem of three thresholds

mentioned above, only one parameter a3 is changed to get better

results, and the other two parameters are fixed (a1~a03, a2~a1:53 ).

Figure 6 displays the relationship between a3 and E values [23].

From Figure 6, we can see that different a3[(0:7*1:5) lead to

different E values with low fluctuation. So, several values of

a3[(0:9*1:2) were selected with an interval of 0.05.

Supporting Information

Text S1 Brief description of BTS algorithm.

(DOC)
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