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ABSTRACT

Developing effective methods for analyzing array-
CGH data to detect chromosomal aberrations is
very important for the diagnosis of pathogenesis
of cancer and other diseases. Current analysis
methods, being largely based on smoothing and/or
segmentation, are not quite capable of detecting
both the aberration regions and the boundary break
points very accurately. Furthermore, when evaluat-
ing the accuracy of an algorithm for analyzing array-
CGH data, it is commonly assumed that noise in
the data follows normal distribution. A fundamental
question is whether noise in array-CGH is indeed
Gaussian, and if not, can one exploit the character-
istics of noise to develop novel analysis methods
that are capable of detecting accurately the aberra-
tion regions as well as the boundary break points
simultaneously? By analyzing bacterial artificial
chromosomes (BACs) arrays with an average 1 Mb
resolution, 19 k oligo arrays with the average probe
spacing <100 kb and 385 k oligo arrays with the
average probe spacing of about 6 kb, we show that
when there are aberrations, noise in all three types
of arrays is highly non-Gaussian and possesses
long-range spatial correlations, and that such noise
leads to worse performance of existing methods
for detecting aberrations in array-CGH than the
Gaussian noise case. We further develop a novel
method, which has optimally exploited the charac-
ter of the noise, and is capable of identifying both
aberration regions as well as the boundary break
points very accurately. Finally, we propose a new
concept, posteriori signal-to-noise ratio (p — SNR),
to assign certain confidence level to an aberration
region and boundaries detected.

INTRODUCTION

Amplification or deletion of chromosomal segments can lead
to abnormal mRNA transcript levels and result in the mal-
functioning of cellular processes. Locating chromosomal
aberrations in genomic DNA samples is an important step
in understanding the pathogenesis of many diseases, most
notably cancers. Microarray-based comparative genomic
hybridization (array CGH) is a powerful technique for mea-
suring such changes (1-5). To realize the promise of the
array CGH technique, it is very important to develop effec-
tive methods to identify aberration regions from array CGH
data. Existing analysis methods (6-23) can be roughly classi-
fied into two categories: smoothing-based (6-9) and
segmentation-based (10-19). The latter approaches explicitly
model the observed array data as a series of segments, with
unknown boundaries and unknown heights estimated from
the data by employing certain optimization criterion. While
the boundary points thus identified are reliable, the aberration
regions identified may be less so, in the sense that some of
them may be false positives. Smoothing-based approaches
assume that true signals in a specific region, aberration or
non-aberration, are smoother than any kind of noise superim-
posed on the signals. Therefore, they attempt to reduce noise
by comparing individual data points to their adjacent ones
and modifying them. While such methods can reduce the
number of false aberration regions identified, the boundary
points detected are usually less accurate than segmentation-
based methods. It would be very desirable to develop new
methods for analyzing array CGH data, with both the merits
of smoothing and segmentation based approaches. Such a
goal may not be fully accomplished by just incorporating
mean or median smoothing to a segmentation-based method.

The term ‘noise’ is often used in biology to describe
experimental measurement imprecision. In particular, when
evaluating the accuracy of an algorithm for detecting aberra-
tions, it is commonly assumed that noise in the data follows
normal distribution. However, this important assumption
has not been verified/falsified based on the analysis of
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experimental data. More importantly, one has to ask whether
the performance of an algorithm depends on the character of
the noise, and if yes, can one exploit the characteristics of
noise to improve detection of aberrations?

To address the above questions, in this work, we treat any
deviations from mean values as noise. Therefore, our noise
essentially represents the array CGH measurements them-
selves, encompassing both global measurement imprecision
and localized underlying biological alterations. Based on
the analysis of bacterial artificial chromosomes (BACs)
arrays with an average 1 Mb resolution (2), 19 k oligo arrays
with the average probe spacing <100 kb (24) and 385 k oligo
arrays with the average probe spacing of about 6 kb (http://
www.nimblegen.com/products/cgh/), we show that when
there are aberrations, noise in all three types of arrays is
highly non-Gaussian and possesses long-range spatial corre-
lations. We also show that such noise indeed leads to worse
performance of existing methods for detecting aberrations in
array-CGH than the Gaussian noise case. Fortunately, such
noise can be exploited to devise a novel algorithm for
analyzing array-CGH, which is capable of identifying both
aberration regions as well as the boundary break points
very accurately. We also address the fundamental question
of how to assign certain confidence level to an aberration
region and boundaries detected, by proposing a new concept,
posteriori signal-to-noise ratio (p — SNR).

CHARACTERIZATION OF NOISE IN ARRAY CGH

In this section, we carry out distributional analysis as well as
spatial correlation analysis of array-CGH noise, and assess
the effect of such noise on the performance of published algo-
rithms for detecting aberrations from array-CGH data. Below,
we first describe data.

Data

In this paper, we analyze data of three resolutions, BAC array
(2), 19 k oligo array (24) and 385 k oligo array (http:/
www.nimblegen.com/products/cgh/). The BAC array (2) has
an average 1 Mb resolution. It is from Stanford University,
which can be freely downloaded from http://www.nature.
com/ng/journal/v29/n3/suppinfo/ng754_S1.html. It consisted
of 15 human cell lines with known karyotypes (12 fibroblast
cell lines, 2 chorionic villus cell lines and 1 lymphoblast cell
line) from the NIGMS Human Genetics Cell Repository.
Each cell line had been hybridized with an array CGH of
2276 BACs, spotted in triplicate. The variable used for
analysis was the normalized average of the log base 2 test
over reference ratio, as processed by the original authors. In
each cell line, there were either one or two aberrations.
Among the 15 cell lines, 6 had aberrations that covered an
entire chromosome. Note that some of these datasets were
recently used by Olshen and Vankatraman (12) to evaluate
the effectiveness of their algorithm for detecting aberrations
from the data. For convenience, the names of the 15 cell
lines are listed in the first column of Table 1.

The 19 k oligo array data (24) are from Harvard Medical
School. It has an average probe spacing of <100 kb. The com-
plete OligoLibrary consists of 18861 oligos representing
18664 LEADSTM clusters and 197 positive controls. There

PAGE 2 oF 10

Table 1. p — SNR and Hurst parameter for noise of the 15 BAC array data (2)

Cell line/chromosome(s) p — SNR H

GMO01750/9/14 3.555/5.905 0.743
GMO01524/6 5.308 0.739
GMO01535/5/12 4.032/12.170 0.688
GMO03134/8 2.829 0.619
GMO03563/3/9 3.910/11.019 0.715
GMO05296/10/11 5.793/3.741 0.666
GMO07081/7 3.193 0.664
GM13031/17 5.172 0.667
GM13330/1/4 3.982/7.947 0.663
GMO00143/18 4.429 0.741
GM02948/13 3.960 0.718
GMO03576/2/21 5.080/5.473 0.770
GM04435/16/21 4.337/4.266 0.707
GMO07408/20 5.774 0.712
GM10315/22 5.277 0.728

When there are two aberration regions, p — SNR is defined for both regions.

are four datasets for lymphoma tumors that developed in
ATM deficient mice (24).

The 385 k oligo array data http://www.nimblegen.com/
products/cgh/ has a median probe spacing of 6 000 bp
through genic and intergenic regions. There are two datasets
for the 385 k oligo array data. One is the normal female ver-
sus male case, where polymorphisms are observed by our
method (to be described later) in chromosomes 1, 4 and 5.
Another is the tumor case, where chromosome 8 has the long-
est aberration length (~2000), while chromosomes 10 and
19-22 do not have detectable aberrations at all (see Figure
1). Note that if we downsample the data to a resolution com-
parable to the BAC array data (2), then the longest aberration
region in chromosome 8 only has less than 20 points. There-
fore, the 385 k oligo array data http://www.nimblegen.com/
products/cgh/ has the smallest aberration regions.

Distributional analysis of array CGH noise

When carrying out distributional analysis, an important issue
to consider is the size of the sample points. For the 385 k
oligo array data http://www.nimblegen.com/products/cgh/,
we have considered noise for each chromosome in two scena-
rios, corresponding to that aberration and non-aberration
regions (i) are considered together and (ii) are considered
separately. The results are similar for both scenarios. For
the BAC array data (2) and the 19 k oligo array data (24),
we have also considered two cases, (i) each chromosome is
considered separately and (ii) all the chromosomes are
combined together. While the distribution for all the chro-
mosomes combined is not the same as that for individual
chromosomes, the qualitative feature of deviation from
Gaussian distributions is similar for both cases. Comparisons
of these different scenarios suggest that the non-Gaussian
distributions discussed below may not be due to summation
of multiple Gaussian distributions with different variance,
corresponding to the euploid and copy-number-variant parts
of the chromosome. In the main text here, we present results
for the first scenario for all three types of data. Readers inter-
ested in knowing more details about the second scenario are
referred to Supplementary Figures 1-3.
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Figure 1. The 385 k oligo array data for (a) chromosome 1, normal; (c)
chromosome 1, tumor; (e) chromosome 8, normal; (g) chromosome 8, tumor.
The right column ones are the corresponding data processed by the proposed
method described in Exploiting noise to improve detection of aberrations
from array CGH data. The negative peak in (b) contains six sample points.

To simplify analysis, we have simply formed histograms.
This is justified by noticing that the number of sample points
is large in all the datasets. The distributions for the noise in
two of the 15 BAC array data (cell line GMO05296 and
GMO04435) are shown in Figure 2a and b. We observe that
the distribution deviates from the Gaussian distribution
considerably. In fact, these are typical results for the BAC
array data (2). The distribution of noise in the 19 k oligo
array data (24) is even more non-Gaussian, as shown in
Figure 2c and d, which are typical among the four datasets.
Since the 19 k oligo array data (24) has wider aberration
regions, we suspect that the deviation from Gaussian distribu-
tion is positively correlated with the length of aberration
regions. This hypothesis seems to be supported by analysis
of the 385 k oligo array data http://www.nimblegen.com/
products/cgh/. In Figure 2e-h we have shown the distribu-
tions for noise in chromosomes 8 and 9 of both the normal
and tumor cases, where Figure 2e and g are for the normal
case, while Figure 2f and h are for the tumor case. Note
that distributions for noise in other chromosomes are very
similar to those shown in Figure 2e—h. We observe that the
distribution in Figure 2e and g is very close to Gaussian,
while the distribution in Figure 2f and h is non-Gaussian,
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Figure 2. Probability distribution function (PDF) for noise of (a and b) BAC
array data (cell line GM05296 and GM04435), (c and d) 19 k oligo array data,
(e) 385 k oligo array data, chromosome 8, normal case and (f) 385 k oligo
array data, chromosome 8, tumor case, (g) 385 k oligo array data,
chromosome 9, normal case, and (h) 385 k oligo array data, chromosome
9, tumor case. The solid black curves are estimated from the data, while the
dashed red ones are the fitted Gaussian distribution curves.

but the deviation from Gaussian is less severe than that
shown in Figure 2a—d. Note that there are no aberrations
in the normal case, while the aberration regions in the
tumor case of the 385 k oligo array data (http://
www.nimblegen.com/products/cgh/) are smaller than those
in the BAC array data (2).

Spatial correlations in array CGH noise

Denote array CGH noise by xy, x5, - - -, X, and the spatial res-
olution by Ax. We have found that array CGH noise can be
characterized as a type of fractal noise characterized by an
algebraically decaying spatial autocorrelation function,

Y(m) = E(xixi+n1)/E(xz‘2) ~ m21-172’ 1

where m corresponds to physical spacing mAx, 0 < H < 1 is
the Hurst parameter (25). In particular, when 1/2 < H < 1, the
summation of the autocorrelation becomes unbounded if m
can go to infinity. Therefore, such noise process is often
said to have long-range persistent correlations. We shall dis-
cuss its implications to DNA copy number change momentar-
ily. When H = 1/2, the noise is like the white Gaussian noise.



e35 Nucleic Acids Research, 2007, Vol. 35, No. 5

There exist many different ways to estimate the Hurst
parameter H (25,26,27). For ease of interpretation, we choose
variance-spacing relation. To use this method, one can
analyze non-overlapping running means of the original
array data by constructing a new time series Xt = {X,(m ,
t=1,2,3,},m=1,2,3,--=

X" = (S + o+ X, 1= 1,

For a noise process with the property described by Equation
(1), the variance of the running means, X,m , declines in a
power-law manner as the size of the sample, m, increases:

var(X") = o*m*2, 2
where 67 is the variance of the original time series x,. Based
on Equation (2), one can readily understand the meaning of
H in terms of how effective smoothing can reduce variations
in the noise. For example, when H = 0.5, var(X""”) drops to
6%/10 when m = 10. However, if H becomes 0.75, then for
the variance to drop to o%/ 10, one needs to take m = 100.
This is an order of magnitude larger than if # = 0.5. In
other words, smoothing is less effective in reducing variations
in the data. For notational convenience, we shall re-write
Equation (2) as

F(m) = m[var(X")]'"* = om!". 3

We examine the long-range spatial correlations in the
385 k oligo array data (http://www.nimblegen.com/products/
cgh/) first. Since the datasets have very high-spatial resolu-
tion, in each chromosome, we have plenty of data points.
We carry out variance-spacing relation analysis of the data
in each chromosome separately. When aberration regions
exist in the data, we pre-process the data using two methods.
One is to discard the part of data corresponding to the aber-
ration regions. Another is to retain the part of data corre-
sponding to the aberration regions, with the mean of that
part removed. It is clear that after processing by either
method, the remaining data is the fluctuations or noise in
the array probes. The characteristics of fluctuations by both
methods are similar. Below, we present results for the first
method. Figure 3 shows log, F(m) versus log, m for the
data of the six chromosomes of the 385 k oligo array data,
where the red diamond is for the tumor case, while the
black circle is for the normal case. The solid black and
dashed red lines are straight lines fitted by linear least squares
regression, whose slopes estimate the Hurst parameter. We
observe that the fitted straight lines are valid up to m =
2'° Since the spatial resolution of the data are ~6 kb, this
corresponds to ~6 Mb physical spacing within the chromo-
some. We also observe that for the chromosomes 1, 8,
9 and 12, which have fairly large aberration regions, the
Hurst parameters for the tumor case are larger than those
for the normal case. In fact, in the tumor case, those Hurst
parameters are much larger than 0.5, indicating strong long-
range spatial correlations. However, for the chromosomes
19 and 20, which do not have any aberration regions, there
is little difference in the Hurst parameter between the
tumor and the normal case.

Comparing spatial correlation analysis with distributional
analysis of the 385k oligo array data (http://www.nimblegen.

PAGE 4 oF 10

8
(a) chrom 1 (b) chrom 8 .

o normal
4 o tumor »”

I092 m

(d) chrom 12

Iog2 m Iog2 m

(e) chrom 19 (f) chrom 20

log, m log, m

Figure 3. log,F(m) versus log, m for the data of the 6 chromosomes of the
385 k oligo array datasets. The red diamond is for the tumor case, while the
black circle is for the normal case. The solid black and dashed red lines are
straight lines fitted by linear least squares regression. There are no aberrations
in chromosomes 19 and 20. The Hurst parameters are obtained as the slopes
of the straight lines, which are indicated in the figure.

com/products/cgh/), we make a few interesting observations.
In terms of distributions, all the chromosomes are similar: the
distributions are close to Gaussian in the normal case
(Figure 2e and g), but deviate, with similar degree, from
Gaussian in the tumor case (Figure 2f and h). In terms of
spatial correlations, chromosomes with aberrations are char-
acterized by a Hurst parameter larger than 0.5 (Figure 3a—d),
indicating array probes to be correlated with array probes not
only nearby but also far away. Because of this, different
chromosomes in the tumor case become different, depending
on whether there are aberrations in the chromosomes, and
if yes, how large the aberration regions are. On the other
hand, chromosomes without aberrations become all similar,
irrespective of whether they are in the normal or tumor
case. Therefore, spatial correlation is a better means to
characterize aberrations than the distribution.

Due to the low spatial resolution of the BAC array data (2)
and the 19 k oligo array data (24), in each chromosome, we
do not have enough data points to carry out variance spacing
relation analysis. Thus, we have performed the analysis based
on the whole array data, without separating the data into
different chromosomes. We find that the Hurst parameters
for the BAC array data (2) and the 19 k oligo array data
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Figure 4. ROC curves corresponding to different aberration widths and SNRs.

(24) are in the range of 0.6-0.77 (H for the BAC array
data (2) are listed in the 3rd column of Table 1). While
they are all larger than 0.5, suggesting long-range spatial
correlations, we have to emphasize that such long-range
spatial correlations are the correlations across chromosomes,
and therefore, are different than the correlations in the 385 k
oligo array data (http://www.nimblegen.com/products/cgh/),
which are within chromosomes. We believe this is the
primary reason that the Hurst parameters for the BAC array
data (2) and the 19 k oligo array data (24) are smaller than
those of the 385 k oligo array data (http://www.
nimblegen.com/products/cgh/) with tumors. While the long-
range spatial correlations in the BAC array data (2) and the
19 k oligo array data (24) might not have much biological
relevance, they are important features to consider when
one designs methods to detect DNA copy number changes
from them.

Effect of array noise on detection of aberrations

To illustrate the effect of array noise on detection of aberra-
tions, we choose CGHseg algorithm (15), which is one of the
best segmentation based algorithms, and consider simulated
data of various aberration widths (5, 10, 20 and 40 probes)
and noise levels (SNR of 1, 2, 3 and 4). SNR is defined as
the mean magnitude of the aberration (i.e. signal) divided
by the SD of the superimposed noise. Two types of noise
are considered. One is simulated Gaussian noise. The other
is the actual noise in the BAC array data (2). For each
aberration width and SNR, we generate 100 artificial chromo-
somes, each consisting of 100 probes and with the square-
wave signal profile added to the center of the chromosome.
To generate receiver operating characteristic (ROC) curve
corresponding to a particular aberration width and SNR,

we calculate the true positive rates (TPR) and the false posi-
tive rates (FPR). TPR is defined as the number of probes
inside the aberration whose fitted values are above the thresh-
old level divided by the number of probes in the aberration.
FPR is defined as the number of probes outside the aberration
whose fitted values are above the threshold level divided by
the total number of probes outside the aberration. We vary the
threshold value for aberration from the minimum log-ratio
value to the maximum. Each threshold value results in a
TPR and a FPR, represented by a point on the ROC curve.
Similar simulation procedure has been used by Lai er al.
(23). Figure 4 shows the ROC curves corresponding to differ-
ent aberration widths and SNRs, where the purple curves cor-
respond to the simulation with real array noise, while the
green curves correspond to the simulation with Gaussian
noise. We observe that the green curves are generally
above the purple ones. This is especially so when SNR = 1
and the aberration width is 20. Therefore, we can conclude
that performance of CGHseg algorithm for detecting aberra-
tions from array CGH data are worse when real array noise is
used than when Gaussian noise is used. Interestingly, other
existing methods behave similarly.

Summary

Summarizing the results discussed so far, we can conclude
that when there are aberrations, noise in array CGH is highly
non-Gaussian and possesses long-range spatial correlations. It
appears that the non-Gaussian feature as well as the long-
range spatial correlation feature become stronger when the
aberration regions become larger. When SNR is low and
the aberration width is large, performance of existing meth-
ods for detecting aberrations is worse with this type of
noise than when noise is assumed to be Gaussian.
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respectively. The dashed red lines in (f) denote the threshold T7.

EXPLOITING NOISE TO IMPROVE DETECTION OF
ABERRATIONS FROM ARRAY CGH DATA

We now present an algorithm for detecting aberrations from
array CGH data that has considerably taken into account the
character of array noise. Since the method has merits of both
smoothing and segmentation based methods, we denote it by
CGHss. It consists of five steps. They are detailed below.

(1) To reduce noise, the original log, ratio data y(n),
n=1,2,---,N is filtered by a median filter. In order
not to lose too much information about the boundary, the
length of the filter is 3-point. Let us denote the resulting
data by y(n).

(2) Construct a random walk process from y(n) by simply
forming partial summation of y,(n) based on the
following formula,

)= 3 il0) - ul 4

where [ is the mean of y(n); then )/1 (n) is partitioned
into overlapping segments of length 3 and overlap 2,
and the local trend in each segment is calculated to
be the ordinate of a linear least-squares fit for the
random walk in that segment. Denote the dif-
ference between the original walk and the local trend
by ya(n).
Note this step plays the role of smoothing. In particular,
as will be shown in Figure 5c, the pattern of yl1 (n) can be
well-associated with the aberration regions. We empha-
size that unlike conventional lossy smoothing, here,
information on original data can be recovered. Hence, it
is a lossless smoothing. Furthermore, y,(n) can be used
to estimate the Hurst parameter through the method
called detrended fluctuation analysis (28). Therefore, this
is the step that has fully taken into account the spatial
correlation feature of the data.

(3) Let var{a,b} denote the variance of two variables a and
b, which is simply (@ — b)*/2. Now we modify y;(n)
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according to the following rule:

¥i(m) =y (n+ 1), i var{y, ()., (n — 1)}
>var(y, (). (0 + 1)}, 3

yi(n)—y,(n — 1), otherwise

Note this step does both segmentation and smoothing.
(4) Let

v3(n) = yi(n) x y,(n),

and define

= {3

where T is a threshold value. This step yields a square
wave-like signal. With this signal, we can make simple
decisions, which is our step (5).

(5) Set thresholds T, (a positive number) and T3 (a negative
number), and identify the regions in y,(n) data greater
than 7, or less than T3 as potential amplifications or
deletions in array CGH data. Sometimes in order to
reduce false positives, we may discard small regions with
only one or two probes. However this should be done
with caution, since some microdeletions may only
contain a single probe.

if y3(n)| > T,

. 6
otherwise

To make the above steps concrete, we have simulated an
artificial chromosome data consisting of 100 probes, with
the centering 10 probes having aberrations. The simulated
data y(n) is shown in Figure 5a. Figure Sb—g show the signals
yi(n), yi(n), y2(n), y1(n), y3(n) and ya(n), respectively. The
red dashed lines in Figure 5f correspond to a more or less
arbitrarily chosen threshold value T;.

Note all the three thresholds, Ty, T, and T3, can be defined
by users. Also note that the ROC curves presented below do
not depend on T sensitively. After we describe the concept
of p — SNR, we shall provide some guidelines as how to
choose T, and Ts5.

We now compute the ROC curves for our method under
the same setting as when we discussed the CGHseg algorithm
(Figure 4, green and purple curves). They are shown in
Figure 4 as red and black curves, for array noise and Gaussian
noise, respectively. First we note that comparing with the
results of a recent comparison paper (23), our method is
comparable to the best smoothing based methods. Next, we
make two interesting observations from Figure 4: (i) The
ROC curves for our method are very similar for the array
noise and the Gaussian noise. This is because our method
has fully taken into account the character of the array
noise. (ii) Our method is more accurate than CGHseg, espe-
cially when SNR is low and the aberration width is narrow.
As we shall argue later, in the low SNR case, a good thresh-
old to choose would correspond to the case of TPR +
FPR = 1. Under such a criterion, our method is almost
20% more accurate than CGHseg, for the case of SNR = 1
and aberration width = 5. Therefore, our method will be
especially useful for processing array CGH data with small
SNR [the 19 k oligo array data (24) belong to this category,
as we shall show in the next section].

Next we examine the performance of our method for
detecting the boundaries of aberrations. Figure 6 compares
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our result with those obtained using the CGHseg algorithm
(15). The simulated data, shown in Figure 6a, consists of a
single aberration region, from 48 to 52. Due to fairly low
SNR, visually it is hard to tell which region might be the
aberration region. However, our method correctly detects
both the aberration region and the two breakpoints, as
shown in Figure 6b. The CGHseg algorithm, however, does
not seem to be able to cope with such low SNR data. This
is evident in Figure 6¢c and d (as well as Supplementary
Figures 4-7): The CGHseg method may not only produce
false aberration regions, but also fail to detect boundary
points correctly. The reason that our method works better is
that a few steps of our method have used smoothing. In par-
ticular, the second step of our method is a lossless smoothing.
No other methods have done so.

Finally, we evaluate our method by analyzing 15 BAC
array data (2). Figure 7 compares aberration detection by
using our method shown in Figure 7a and b and the method
of Olshen and Vankatraman (12) shown in Figure 7c and d.
The cell line is GM05296, with known aberrations on chro-
mosomes 10 and 11. We observe that the two methods per-
form similarly well. As will be explained later, these two
datasets have fairly high-SNR, and hence, aberration detec-
tion is not too difficult.

POSTERIORI SIGNAL-TO-NOISE-RATIO (p — SNR)

We now consider an important question: after one applies
an algorithm to identify aberration regions and breakpoints
from an array CGH data, how much confidence can one
have on the final result? When there are a lot of data avail-
able, together with information on the background normal
situations, one may follow the procedure discussed by
Wang et al. (19). Here, we consider the more challenging
case of only one array data are available.

Our solution is quite simple. It amounts to utilizing the
information summarized by ROC curves obtained by numeri-
cal simulations as much as possible. From Figure 4, it is clear
that the accuracy of detection depends on two critical
parameters, the size of the aberration region and SNR. In
fact, from Figure 4, it is clear that SNR is even more impor-
tant than the size of the aberration region. Therefore, a good
starting point would be to estimate SNR after one identifies
one or a few aberration regions. This can be achieved by
using the following simple formula:

SNR = |mean (aberration) — mean(background)]
b ~ max[STD(aberration), STD(backgroud)] ’

where p is used to emphasize that this is a posteriori esti-
mation, and mean and STD denote mean and SD of the
data in the aberration region and background region (i.e.
non-aberration region), respectively. When there are multiple
aberration regions, p — SNR may be estimated for each aber-
ration region identified. When this is the case, one needs to
take the background region to be only around that aberration
region. The p — SNR for the BAC array data (2) are listed in
the second column of Table 1. We observe that they are quite
large, indicating that one can have high-confidence in the
final detection results for the BAC array data (2). The p —
SNR for the 385 k oligo array data http://www.nimblegen.
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Figure 6. Comparison of our result with those obtained using CGHseg algorithm (15). The aberration region consists of 5 probes, from 48 to 52. SNR is 2. (a)
Shows the simulated data; this signal is also shown in (b—d) as blue dots. (b) Shows the result of our method. The red curve is y4(n), as explained in the procedure.
The breakpoints 48 and 52 are both correctly detected; (¢) Shows the result by CGHseg algorithm using heteroscedastic model, the estimated number of segments
is K = 3, while the breakpoints identified are 65 and 66; (d) Shows the result by CGHseg algorithm using homoscedastic model. The estimated number of
segments is K = 8, one of the two breakpoints, 48, is correctly detected. In (¢ and d), red lines represent the estimated mean of each segment, and green lines, the
estimated mean plus or minus 1SD. To aid visual inspection, vertical dotted lines are drawn in (b—d).

com/products/cgh/ are around 0.9 to 1.5, and are even smaller
for the 19 k oligo array data (24) (around 0.7-1.1). In particu-
lar, we have estimated the p — SNR for the 385 k and 19 k
oligo array data based on the X chromosome using sex-
mismatched samples. We have found that the p — SNR for
the two array platforms are 1.26 and 1.03, respectively,
both falling in the range for each type of data listed above.
Although we do not have access to the sex-mismatched X
chromosome data for the BAC array data (2), based on our
analysis of the other two types of data, we have good reason
to believe that the p — SNR for the BAC array data’s sex-
mismatched X chromosome would be at least around 3, there-
fore, much larger than the p — SNR of the other two types
of data.

Our concept of p — SNR suggests that a good starting point
to choose the parameters 7, and T3 used in step (5) of our
algorithm may correspond to signal intensity divided by
p — SNR. This amounts to choosing one SD of the data.
This rule suggests an iterative operation: starting from
arbitrarily chosen T, and T3, calculate the corresponding
p — SNR, then use the criterion discussed above to obtain
a new estimate of T, and T3, finally calculate the new
p — SNR'. If p — SNR and p — SNR' are similar, then the
two parameters have been chosen appropriately.

We emphasize that our method works excellently if p —
SNR is high. However, if p — SNR is low, then one may
choose threshold values that roughly yield TPR + FPR = 1,
where TPR and FPR define the ROC curve. In this case,

however, one should bear in mind that the classification
may be incorrect with a probability of FPR.

DISCUSSION

In this paper, we have examined noise in array CGH data
of three resolution, the BAC array data, the 19 k and 385 k
oligo array data, and found that noise is highly non-Gaussian
and possesses long-range spatial correlations. We have also
developed a novel method for processing array CGH data.
The method is a suitable combination of smoothing and
segmentation, and has fully taken into account the charac-
teristics of noise in array CGH data. We have shown that
the method is as accurate as the best smoothing-based
methods for detecting aberration regions, and as accurate as
the best segmentation-based methods for finding boundary
points. Furthermore, we have proposed a new concept,
(p — SNR), to quantify the confidence level of aberration
regions and boundaries detected. We have found that
p — SNR for the 15 publicly available BAC array CGH
data are all quite large, indicating it is a relatively easy matter
to accurately detect aberrations and boundaries from those
data. However, p — SNR for the four 19k oligo array
data are quite small, suggesting it is considerably more
challenging to detect aberrations from such array CGH data.

Although we have found that array CGH noise is highly
non-Gaussian with long-range spatial correlations, we do
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not clearly know the mechanisms. A challenging task for
future research would be to understand the biological mecha-
nisms of such noise, as well as understand whether those
mechanisms are differentially related to different types of
diseases.

Being able to identify smaller copy-number changes that
affect only a few probes is of particular importance in the
field of copy number polymorphism. This is because inher-
ited, germ-line copy number variants are typically much
smaller than rearrangements in cancer genomes. For example,
two recent papers, one by McCarroll et al. (29), another by
Conrad et al. (30), identified a large class of inherited, multi-
kilobase deletion polymorphisms that are predominantly
smaller than 20 kb in size. We emphasize that in order to
detect small copy number changes, the key is to improve
the resolution of the array technology so that at least 2 points
can be sampled for the region of interest. If only a single iso-
lated point can be sampled, then it would be impossible by
any analysis method to classify it as a true copy number
change or just an outlier or noise.

Finally, readers interested in this method are strongly
encouraged to contact with the authors (e.g. gao@ece.ufl.edu)
to obtain the source Matlab code.
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