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RESEARCH NOTE

In‑silico analysis reveals druggable single 
nucleotide polymorphisms in angiotensin 
1 converting enzyme involved in the onset 
of blood pressure
Brenda Udosen1,2,5, Opeyemi Soremekun1, Chinwe Ekenna3, Olaposi Idowu Omotuyi4, Tinashe Chikowore6,7, 
Oyekanmi Nashiru5 and Segun Fatumo1,5,8*   

Abstract 

Objective:  The Angiotensin 1 converting enzyme (ACE1) gene plays a critical role in regulating blood pressure and 
thus, it has become a major therapeutic target of antihypertensives. Single nucleotide polymorphisms (SNPs) occur-
ring within a gene most especially at the functional segment of the genes alter the structure–function relationship of 
that gene.

Results:  Our study revealed that five nsSNPs of the ACE1 gene were found to be potentially deleterious and dam-
aging and they include rs2229839, rs14507892, rs12709442, and rs4977 at point mutations P351R, R953Q, I1018T, 
F1051V, and T1187M. The protein stability predictive tools revealed that all the nsSNPs decreased stability of the 
protein and the Consurf server which estimates the evolutionary conservation profile of a protein showed that three 
mutants were in the highly conserved region. In conclusion, this study predicted potential druggable deleterious 
mutants that can be further explored to understand the pathological basis of cardiovascular disease.
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Introduction
Hypertension is a significant health problem worldwide 
which accounts for an estimated 7.5 million deaths [1]. 
The ACE1 gene is a significant component of the renin-
angiotensin system (RAS) [2, 3] which helps to regulate 
blood pressure and converts the hormone angiotensin I 
to the active vasoconstrictor angiotensin II [4]. The ACE1 
gene is 21 kb in length on the long arm of chromosome 
17 (17q23.3) and is made up of 26 exons and 25 introns. 
Rigat et al., who first reported the ACE1 gene polymor-
phism, proposed that this gene’s insertion/deletion 

polymorphic form accounts for half (47%) of the pheno-
typic variance for serum enzyme level.

Considering the implication of ACE1 Single nucleotide 
polymorphisms (SNPs) on the phenotypic variance for 
serum enzyme level and considering the role this gene 
plays in high blood pressure, it is necessary to study the 
implications of its SNPs. Therefore, this study aims to 
identify deleterious and disease-causing nsSNPs in ACE1 
that could serve as molecular and genetic biomarkers to 
diagnose high blood pressure and are targeted explicitly 
by inhibitors.
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Main text
Materials and methods
Single nucleotide polymorphism data retrieval
Non-synonymous SNPs of our target gene were 
retrieved from the SNPs database (dbSNPs) server of 
the National Centre for Biotechnology Information 
(NCBI) [8]. The basis of selection was focused on poly-
morphisms with small-scale multi-base deletions or 
insertions and single-base nucleotide substitutions.

Phenotype prediction of deleterious nsSNPs
To identify potential deleterious nsSNPs associated 
with ACE1 gene of high blood pressure, we used six 
different bioinformatics tools implemented in the fol-
lowing web servers: the Sorting Intolerant from Tol-
erant (SIFT) [9], Protein Variation Effect Analyzer 
(PROVEAN) [10], Polymorphism Phenotyping (Poly-
Phen-2) [11], SNPs&GO [12], Predictor of human Del-
eterious Single Nucleotide Polymorphism (PhD-SNPs) 
[13], PANTHER [14]. SIFT server classifies nsSNPs 
based on tolerance index (TI) to be either tolerated 
(TI ≥ 0.05) or deleterious (≤ 0.05). PolyPhen-2 classi-
fies nsSNPs as either being possibly/probably (0.00–
0.99) damaging or probably benign (≥ 2) by assigning 
position-specific independent counts (PSIC) score 
(0 ≤ 2 ≤ X) [15]. The SNP with the highest deleterious 
prediction by at least five in silico tools were considered 
the most deleterious nsSNPs for ACE1 and selected for 
further investigation.

Protein stability analysis of predicted ACE1 nsSNPs
To have a higher prediction accuracy of protein stability 
changes upon single AA mutation, we used the istable 2.0 
server [16] to exploit in-built sequence-based tools like 
the MUpro [17], interpretable decision tree method 
iPTREE-STAB [18], I-Mutant 2.0 [19], and also the 
impact of non-synonymous variations on Protein Stabil-
ity (INPS) [20]. The I-Mutant tool uses a reliability index 
(RI) score ranging from 0 through 10 for prediction. 
DDG is a parameter used by various tools to evaluate the 
stability of the protein upon mutation at pH 7.0 and 25°c 
temperatures. A decrease of free energy change (ΔΔG) in 
the value is encoded as 0, and an increase of free energy 
change (DDG) is encoded as 1.

Protein conservation analysis
To identify putative functional and structural amino 
acids and estimate their evolutionary conservation pro-
file, we used Consurf [21], a web server tool that uses the 
Bayesian approach to analyze the evolutionary pattern of 

the amino acid. The conservation grades were mapped 
onto the query structure and specified using the Consurf 
color-code, with cyan-through-purple corresponding to 
grades 1 (most evolving) through 9 (most evolutionary 
conserved).

Protein modeling of wild and mutant type ACE1 
and structural difference
To predict our protein’s three-dimensional (3D) structure 
and further analyze the difference between the mutant 
and wild type of ACE1 protein, we used the homology 
modeling tool in Robetta [22], the resultant structure was 
then viewed using Chimera 1.11[23]. Validation of the 
predicted protein structure was assessed using ERRAT 
[24], Verify-3D [25], and PROCHECK [26] programs 
available from the structural and verification analysis 
server SAVE (http://​nihse​rver.​mbi.​ucla.​edu/​SAVES). A 
TM-align algorithm was then used to compare the wild 
and the mutant type protein structure of the ACE1 gene 
[27].

Molecular docking was carried out using AutoDock 
vina tools in-built in Chimera (ref ). A grid box with coor-
dinate (Centre: x = 17.588, y = 60.433, z = 40.395 and size: 
x = 23, y = 34, z = 33) was set around the binding site of 
ACE1 protein to accommodate Benazepril. Benazepril 
is an inhibitor drug that is used to treat high blood pres-
sure by lowering blood pressure through inhibiting the 
formation of angiotensin. The 2D structure of Benazepril 
in mol2 format was retrieved from DrugBank [29], the 
structure was further optimized using the GAFF force-
field and steepest descent in Avogadro [30].

Results
Non‑synonymous single nucleotide polymorphism 
retrieved from dbSNPs database
The identification of disease-causing SNPs is vital to 
understand the role a protein plays in disease. A total of 
80 nsSNPs were retrieved from the National Centre for 
biotechnology informatics dbSNPs database server [8] 
(Additional file 1: Table S1). The retrieval process was fil-
tered to retrieve only nsSNPs that had a clinical conse-
quence reported by Clinvar and implicated in High blood 
pressure [31].

Identification of deleterious nsSNPs in ACE1
All eighty nsSNPs retrieved were subjected to six tools 
which predicted fifty-nine nsSNPs to be potentially del-
eterious (Additional file  1: Table  S2a). SIFT tool pre-
dicted twenty-three nsSNPs to be deleterious (Additional 
file 1: Table S2b). SNPs&GO tool predicted thirty-seven 
nsSNPs to be diseased (Additional file  1: Table  S2c) 
while PhD-SNP predicted forty nsSNPs to be diseased 
(Additional file 1: Table S2c). PANTHER revealed eleven 
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nsSNPs to be diseased (Additional file  1: Table  S2c). 
According to PROVEAN results, thirty-nine nsSNPs 
were predicted to be deleterious (Additional file  1: 
Table S2d). Unlike other tools, PolyPhen-2 had the least 
deleterious prediction of only six nsSNPs (Additional 
file 1: Table S2e). Fifty-nine SNPs identified to be delete-
rious across the six tools were shortlisted to five, which 
included SNPs that were common in at least five of the 
predictive tools so that only the highly deleterious SNPs 
will be used for downstream analyses (Table 1).

Stability profile prediction of nsSNPs protein in ACE1
To predict the protein stability changes, we used the 
istable algorithm tool, which incorporated results from 
three sequence-based tools; MUpro, iPTREE-STAB, 
I-Mutant2.0, and an additional tool, INPS. The five highly 
deleterious nsSNPs identified from the previous analysis 
were used to predict protein stability. The five predictive 
tools revealed that all these nsSNPs decrease stability of 
ACE1 protein (Additional file 1: Table S3a–d).

Conservation prediction of deleterious nsSNPs in ACE1
To further explore the possible effect of the five nsSNPs, 
Consurf was used to reveal the essential functional and 
structural regions by analyzing the evolutionary pattern 
of the five nsSNPs protein. The results predicted I1018T 
and F1051V as structural residues making them highly 
conserved and buried, while P351R, R953Q, and T1187M 
were indicated as functional residues making them highly 
conserved and exposed (Additional file 1: Table S4).

Comparative ACE1 modeling of wild and mutant type 
and structural characterization
The protein sequence of ACE1 (1300 AA residues) with 
accession number P12821 was retrieved from the Uni-
Prot database [32]. The sequence was then inputted into 
Robetta [22] and was used as a template to model the 
3D structure of ACE1 (Fig.  1a). Following the valida-
tion of the modeled structure in PROCHECK, ERRAT, 
and Verify-3D [24–26], the output result from Verify-
3D revealed that 89.73% of the residues have an average 
3D-1D score of ≥ 0.2 [33] (Fig.  1b). The quality of the 

3D protein structure was further assessed through the 
Ramachandran plot available in PROCHECK. The plot 
from the predictive model showed that 92.6%, 6.8%, 
0.5%, and 0.1% residues be in favored, allowed, outlier 
regions, and disallowed, respectively, confirming that 
the protein structure is of good quality (Fig. 1c). ERRAT 
showed a quality factor of 96.395 (Fig.  1d). Generally, 
results obtained from the above tools suggested that 
our modeled protein structure is of good quality and 
thus could be used for downstream analysis.

ACE1 Mutant type as a potential drug target
To predict the bound conformations and the binding 
affinity of the molecule with the protein, we performed 
molecular docking using the AutoDock tool in Chi-
mera [33]. The binding affinity and interacting amino 
acids residues within the ACE1 binding pocket of each 
mutant protein upon binding to Benazepril are high-
lighted in (Table 2). Some of the interactions exhibited 
by Benazepril include hydrogen bond, pi-alkyl, pi-pi 
stacked, etc. (Additional file 2: Figs. S1 and S2).

Discussion
We found a total of fifty-nine deleterious nsSNPs, five of 
which were consistent across the six tools used at muta-
tion points in P351R, R953Q, T1187M, I1018T, and 
F1051V. The protein stability analysis highlighted five 
nsSNPs to decreased stability. According to previous 
studies, decreased protein stability leads to misfolding 
and degradation of the protein [34]. In addition, using 
Consurf for conservation analysis showed that three of 
the amino acid mutation point were highly conserved 
with a conservation score of 9.

Amino acids involved in protein–protein interaction 
located at the enzymatic sites are known to be more con-
served than others and are also known to be involved in 
various cellular processes in a biological system including 
the stability of the genome [35]. For this reason, highly 
conserved nsSNPs located in the conserved region are 
more deleterious than nsSNPs located in the variable 
regions because they destabilize the protein structure 
and function.

Table 1  Clinically significant information of Deleterious predicted SNPs

SNP ID Chr17 (GRCh37) 
location

Nucleotide 
change

Protein ID Amino acid change Functional Consequence

rs2229839 61559033 C > G ENSP00000290866 P351R Missense variant

rs143507892 61568688 G > A ENSP00000290866 R953Q Coding sequence variant

rs4976 61570937 T > C ENSP00000290866 I1018T Coding sequence variant

rs4977 61571297 T > G ENSP00000397593 F1051V Coding sequence variant

rs12709442 61574215 C > T ENSP00000290866 T1187M Coding sequence variant
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Although the use of a single computational tool can-
not generate a substantial predictive result of the func-
tional protein region [36], the implementation of several 
tools could help provide further insight into the impact of 
nsSNPs on a protein function. Hence, this current study 
applied multiple in silico tools including INSP, SIFT, 
Polyphen2, PhD-SNP, PROVEAN, I-Mutant2.0, MUpro, 
SNPs&GO, Verify-3D, PROCHECK, ERRAT, and Con-
surf to identify and evaluate deleterious nsSNPs in the 
ACE1 gene. Each of these tools implemented different 
machine learning approaches such as neural network 
(NN), decision tree, support vector machine (SVM), 
and the Bayesian Network to identify nsSNPs that could 
be used as a drug target for the treatment of high blood 
pressure [18, 37–39].

Conclusions
Our results showed that SNPs identified through in-silico 
analysis can alter the structure and function of the ACE1 
gene protein. The five nsSNPs analyzed in this study 
occur in the functional region of the ACE1 gene and may 
therefore altar the functionality of ACE1. This can sub-
sequently be used as a basis for enhancing effective drug 
discovery and pathogenesis targeting ACE1. One major 
strength of this study is that it engages different tools 
which leverage different algorithms for prediction. This 
further increases the reliability of the predictions.

Fig. 1  a In-silico 3-Dimensional structure of ACE1 modeled using ab-initio homology modeling. b Verify-3D plot showed that 89.73% of the 
residues have averaged a 3D-1D score of ≥ 0.2. c Assessment and validation of HBB Protein showing Ramachandra plot obtained by PROCHECK: 
92.6% residues in favorable regions; 6.8% residues in additional allowed regions; 0.5% residues in generously allowed regions; 0.1% residues in 
disallowed regions. d ERRAT plot showing 96% quality factor.

Table 2  Molecular docking of amino acid change against Benazepril

Amino acid change Interacting amino acids Binding score (Kcal/mol)

P351R Tyr805, Cys652, Ala636, Glu658, His635 − 8.7

R953Q Tyr344, Asn352, Tyr642, Ala345, His692, Ala638, Val800, Trp639 − 9.1

I1018T Asn348, Asn352, Tyr642, Ala345, Ala638, His692, Val800, Trp639 − 9.0

F1051V Tyr344, Asn352, Tyr642, Ala345, His692, Val800, Trp639 − 9.2

T1187M Asn352, Tyr642, Ala345, His692, Ala638, Ser637, Val800, Trp639 − 9.2
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Limitation
A major limitation of this study like other in-silico stud-
ies is that all the steps taken to predict the impact of the 
nsSNPs are computer-based, hence, there is a need to 
explore more robust in-vitro and in-vivo investigations to 
confirm these result.
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